Examen du cours de "Mesures de risque en finance"

Mercredi 18 Décembre 2019 (9h00-11h00)

Aucun document autorisé.

Il est impératif de rédiger la réponse aux deux parties sur des copies différentes.

Partie I (10 points)

Soit $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité et $\mathcal{X} = L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$, l'ensemble des variables aléatoires à valeurs bornées muni de la norme $||X||_{\infty} = \inf\{M > 0, \mathbb{P}(|X| \leq M) = 1\}$. On suppose l'espace de probabilité sans atome, c'est à dire qu'il existe $U \in \mathcal{X}$ suivant la loi uniforme sur [0, 1]. On note $\mathcal{M}_1(\mathbb{P})$ l'ensemble des mesures de probabilité sur (Ω, \mathcal{F}) qui sont absolument continues par rapport à \mathbb{P} et rappelle que le théorème de Radon-Nikodym garantit que

$$\mathbb{Q} \in \mathcal{M}_1(\mathbb{P}) \iff \exists Z \in L^1(\Omega, \mathcal{F}, \mathbb{P}), \forall X \in L^{\infty}(\Omega, \mathcal{F}, \mathbb{P}), \mathbb{E}_{\mathbb{Q}}[X] = \mathbb{E}[ZX].$$

On considère $\rho_1, \rho_2 : \mathcal{X} \to \mathbb{R}$ deux mesures de risque monétaires telle que

$$\inf_{Z \in \mathcal{X}} \rho_1(-Z) + \rho_2(Z) > -\infty,$$

et on définit l'inf-convolution de ρ_1 et ρ_2 par

$$\rho_1 \square \rho_2(X) = \inf_{Z \in \mathcal{X}} \rho_1(X - Z) + \rho_2(Z).$$

Cela peut être interprété par exemple comme une institution financière avec deux filiales (ayant pour mesure de risque respective ρ_1 et ρ_2) qui cherche à répartir le risque de façon optimale entre les deux.

- 1. Montrer que $\rho_1 \square \rho_2(X) > -\infty$ pour tout $X \in \mathcal{X}$, puis que $\rho_1 \square \rho_2 : \mathcal{X} \to \mathbb{R}$ est une mesure de risque monétaire (qui peut être non normalisée). Vérifier que $\rho_1 \square \rho_2 = \rho_2 \square \rho_1$.
- 2. Montrer que $\rho_1 \square \rho_2$ est une mesure de risque convexe si ρ_1 et ρ_2 sont des mesures de risque convexes.
- 3. Exprimer la transformée de Fenchel-Legendre $(\rho_1 \square \rho_2)^* : L^1(\Omega, \mathcal{F}, \mathbb{P}) \to]-\infty, +\infty]$ à l'aide de ρ_1^* et de ρ_2^* .
- 4. On considère la mesure de risque entropique de paramètre s > 0:

$$\operatorname{Ent}_s(X) = \frac{1}{s} \log(\mathbb{E}[e^{-sX}]), \ X \in \mathcal{X}.$$

Montrer que Ent_s est une mesure de risque monétaire convexe invariante en loi (on rappelle que cette dernière propriété assure la semi continuité inférieure pour la topologie faible*).

- 5. En déduire que $\operatorname{Ent}_s(X) = \sup_{\mathbb{Q} \in \mathcal{M}_1(\mathbb{P})} \mathbb{E}_{\mathbb{Q}}[-X] \alpha_s(\mathbb{Q})$, où $\alpha_s : \mathcal{M}_1(\mathbb{P}) \to [0, +\infty]$ est une fonction à préciser à l'aide de Ent_s^* et $\frac{d\mathbb{Q}}{d\mathbb{P}}$. Inversement, à l'aide du cours, exprimer Ent_s^* à l'aide de α_s .
- 6. On admet que $\alpha_s(\mathbb{Q}) = \frac{1}{s}H(\mathbb{Q}|\mathbb{P})$, où $H(\mathbb{Q}|\mathbb{P}) = \mathbb{E}\left[\frac{d\mathbb{Q}}{d\mathbb{P}}\log\left(\frac{d\mathbb{Q}}{d\mathbb{P}}\right)\right]$. Montrer que pour s, t > 0, $(\operatorname{Ent}_s \square \operatorname{Ent}_t)^{**} = \operatorname{Ent}_{\frac{st}{s+t}}$.
- 7. Pour $X \in \mathcal{X}$, trouver $\lambda \in [0,1]$ tel que $\operatorname{Ent}_s(\lambda X) + \operatorname{Ent}_t((1-\lambda)X) = \operatorname{Ent}_{\frac{st}{s+t}}(X)$. En déduire la valeur de $\operatorname{Ent}_s \square \operatorname{Ent}_t$ et déterminer alors la répartition optimale du risque si $\rho_1 = \operatorname{Ent}_s$ et $\rho_2 = \operatorname{Ent}_t$.

Partie II (barème indicatif /10 points)

Question 1 (2,5 points)

Soit G fonction de répartition d'une loi max-stable. Lorsque $G(x) \in]0,1[$, nous définissons l'inverse généralisé U de la fonction $-\log(-\log(G))$.

- 1. Montrer qu'il existe une fonction réelle a(s) > 0 telle que $[U(y + \log(s)) U(\log(s))]/a(s) = U(y) U(0)$.
- 2. Si a(s)=1 pour tout s>0, montrer que G est la fonction de répartition d'une loi de Gumbel.

Question 2 (1,5 points)

Une condition nécessaire pour vérifier le principe d'attraction est d'avoir :

 $\lim_{x\to x_{\mu}} \overline{F}(x)/\overline{F}(x^{-}) = 1$ où $\overline{F} = 1 - F$ est la fonction de survie associée à la loi μ et $x_{\mu} = \sup\{x; F(x) < 1\}$.

Montrer alors qu'une loi géométrique de paramètre $p \in]0,1[$ ne vérifie pas le principe d'attraction.

Question 3 (3,5 points)

Soient deux constantes α et β strictement positives, les densités respectives d'une loi Gamma (α, β) et d'une loi logGamma (α, β) sont données par

$$f_{\Gamma}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\beta x} 1_{x > 0}$$

$$f_{\log \Gamma}(x) = \frac{\beta^{\alpha}}{\Gamma(\alpha)} [\log(x)]^{\alpha - 1} x^{-\beta - 1} 1_{x > 1}$$

et notons \overline{F}_{Γ} et $\overline{F}_{\log \Gamma}$ leur fonction de survie.

- 1. Lorsque $x \to \infty$, montrer que $\overline{F}_{\Gamma}(x)/f_{\Gamma}(x) \to \beta^{-1}$ et que $\overline{F}_{\log \Gamma}(x)/[xf_{\log \Gamma}(x)] \to \beta^{-1}$.
- 2. Justifier l'appartenance de Gamma (α, β) au domaine d'attraction de la loi de Gumbel et préciser les suites $c_n > 0$ et d_n associées.
- 3. Justifier l'appartenance de logGamma (α, β) au domaine d'attraction de la loi de Fréchet et préciser la suite $c_n > 0$ associée $(d_n = 0)$.

Question 4 (2,5 points)

Dans un marché de gré à gré, une banque b et son client c établissent un contrat dans lequel la banque assure une somme D_t de flux entre 0 et $t \in [0,T]$. Soit le couple prix-couverture (π,ξ) de ce contrat, incluant le défaut τ^b et τ^c de chaque partie avec $\tau = \tau^b \wedge \tau^c$ et $\overline{\tau} = T \wedge \tau$, qui vérifie

$$\begin{cases} \pi_{\overline{\tau}} = 1_{\tau < T} R & R = R^c - 1_{\tau = \tau^b} R^f, \\ d\pi_t = -1_{\tau > t} dD_t + (r_t \pi_t + g_t(\pi_t, \xi_t)) dt + dm_t^{\xi} & t \in [0, \overline{\tau}]. \end{cases}$$

1. Donner deux raisons rendant la stratégie de couverture moins usuelle.

Pour $t \in [0, \overline{\tau}]$, définissons $\theta_t = p_t - \pi_t$ et $(p_t)_{0 \le t \le T}$ le prix mark-to-market (excluant les défauts) associé à D.

- 2. Exprimer la valeur de p en fonction de D et β avec $\beta_t = \exp(-\int_0^t r_s ds)$.
- 3. En identifiant la martingale \hat{m} , montrer que θ vérifie

$$\begin{cases} \theta_{\overline{\tau}} = p_{\overline{\tau}} - 1_{\tau < T} R \\ d(\beta_t \theta_t) + \beta_t g_t(p_t - \theta_t, \xi_t) dt = d\widehat{m}_t & t \in [0, \overline{\tau}]. \end{cases}$$

Corrigé:

- 1. On a $X \geq -\|X\|_{\infty}$ et donc $\rho_1(X-Z) \leq \rho_1(-\|X\|_{\infty}-Z) = \|X\|_{\infty} + \rho_1(-Z)$. Par conséquent, $\rho_1 \Box \rho_2(X) \geq \|X\|_{\infty} + \inf_{Z \in \mathcal{X}} \rho_1(-Z) + \rho_2(Z) > -\infty$. Cash-invariance : $\rho_1 \Box \rho_2(X+c) = \inf_{Z \in \mathcal{X}} \rho_1(X+c-Z) + \rho_2(Z) = \inf_{Z \in \mathcal{X}} \rho_1(X-Z) + \rho_2(Z) c = \rho_1 \Box \rho_2(X) c$. Monotonie : si $X \leq Y$, alors $X Z \leq Y Z$ pour tout $Z \in \mathcal{X}$ et donc en passant à l'inf, $\rho_1 \Box \rho_2(X) \leq \rho_1 \Box \rho_2(Y)$. Symétrie : on pose Z' = X Z. Par la propriété d'espace vectoriel de \mathcal{X} , $\rho_1 \Box \rho_2(X) = \inf_{Z' \in \mathcal{X}} \rho_1(Z') + \rho_2(X-Z') = \rho_2 \Box \rho_1(X)$.
- 2. Soient $X,Y\in\mathcal{X},\,\lambda\in[0,1],$ on a en utilisant la structure d'espace vectoriel de \mathcal{X} pour la deuxième égalité :

$$\rho_1 \square \rho_2(\lambda X + (1 - \lambda)Y) = \inf_{Z \in \mathcal{X}} \rho_1((\lambda X + (1 - \lambda)Y - Z) + \rho_2(Z)
= \inf_{Z_1, Z_2 \in \mathcal{X}} \rho_1(\lambda (X - Z_1) + (1 - \lambda)(Y - Z_2)) + \rho_2(\lambda Z_1 + (1 - \lambda)Z_2)
\leq \inf_{Z_1, Z_2 \in \mathcal{X}} \lambda [\rho_1(X - Z_1) + \rho_2(Z_1)] + (1 - \lambda)[\rho_1(Y - Z_2) + \rho_2(Z_2)]
= \lambda \rho_1 \square \rho_2(X) + (1 - \lambda)\rho_1 \square \rho_2(Y).$$

3. Par définition la fonction $(\rho_1 \square \rho_2)^* : L^1(\Omega, \mathcal{F}, \mathbb{P}) \to]-\infty, +\infty]$ est définie par :

$$Y \in L^{1}, \ (\rho_{1} \square \rho_{2})^{*}(Y) = \sup_{X \in \mathcal{X}} \mathbb{E}[XY] - \rho_{1} \square \rho_{2}(X)$$

$$= \sup_{X \in \mathcal{X}} \mathbb{E}[XY] + \left(\sup_{Z \in \mathcal{X}} -\rho_{1}(X-Z) - \rho_{2}(Z)\right)$$

$$= \sup_{X,Z \in \mathcal{X}} \mathbb{E}[(X-Z+Z)Y] - \rho_{1}(X-Z) - \rho_{2}(Z)$$

$$= \sup_{Z,Z' \in \mathcal{X}} \mathbb{E}[Z'Y] - \rho_{1}(Z') + \mathbb{E}[ZY] - \rho_{2}(Z) = \rho_{1}^{*}(Y) + \rho_{2}^{*}(Y).$$

4. Ent_s est clairement monotone par croissance de la fonction exponentielle. Invariance par translation $\operatorname{Ent}_s(X+c) = \frac{1}{s}\log(\mathbb{E}[e^{-s(X+c)}]) = \frac{1}{s}\log(e^{-sc}\mathbb{E}[e^{-sX}]) = \operatorname{Ent}_s(X)-c$. Convexité : pour $X,Y\in\mathcal{X},\ \lambda\in]0,1[$, on a

$$\mathbb{E}[e^{-\lambda sX - (1-\lambda)sY}] = \mathbb{E}[(e^{-sX})^{\lambda}(e^{-sY})^{1-\lambda}] \leq \mathbb{E}[e^{-sX}]^{\lambda}\mathbb{E}[e^{-sY}]^{(1-\lambda)}$$

par l'inégalité de Hölder. Il en découle la convexité de Ent_s . Enfin, si $X, X' \in \mathcal{X}$ ont même loi, e^{-sX} et $e^{-sX'}$ ont même loi et même espérance ce qui donne l'invariance en loi.

- 5. Ainsi, le théorème vu en cours assure que $\operatorname{Ent}_s(X) = \sup_{\mathbb{Q} \in \mathcal{M}_1(\mathbb{P})} \mathbb{E}_{\mathbb{Q}}[-X] \alpha_s(\mathbb{Q})$, avec $\alpha_s(\mathbb{Q}) = \sup_{X \in \mathcal{X}} \mathbb{E}_{\mathbb{Q}}[-X] \operatorname{Ent}_s(X) = \operatorname{Ent}_s^*(-\frac{d\mathbb{Q}}{d\mathbb{P}})$. Inversement, nous avons vu dans le cours que $\operatorname{Ent}_s^*(Y) = +\infty$ si $Y \notin \{Z \in L^1, Z \leq 0 \text{ et } \mathbb{E}[Z] = -1\}$ et $\operatorname{Ent}_s^*(Y) = \alpha_s(\mathbb{Q}^Y)$ sinon, avec $\frac{d\mathbb{Q}^Y}{d\mathbb{P}} = -Y$.
- 6. Par définition, pour $X \in \mathcal{X}$.

$$\begin{split} (\operatorname{Ent}_s & \,\Box \,\operatorname{Ent}_t)^{**}(X) = \sup_{Y \in L^1} E[XY] - (\operatorname{Ent}_s \,\Box \,\operatorname{Ent}_t)^*(Y) \\ &= \sup_{Y \in L^1} \mathbb{E}[XY] - \operatorname{Ent}_s^*(Y) - \operatorname{Ent}_t^*(Y) \\ &= \sup_{Y \in \{Z \in L^1, Z \leq 0 \text{ et } \mathbb{E}[Z] = -1\}} \mathbb{E}[XY] - \operatorname{Ent}_s^*(Y) - \operatorname{Ent}_t^*(Y) \\ &= \sup_{\mathbb{Q} \in \mathcal{M}_1(\mathbb{P})} \mathbb{E}_{\mathbb{Q}}[-X] - \alpha_s(\mathbb{Q}) - \alpha_t(\mathbb{Q}) \\ &= \sup_{\mathbb{Q} \in \mathcal{M}_1(\mathbb{P})} \mathbb{E}_{\mathbb{Q}}[-X] - \frac{st}{s+t} H(\mathbb{Q}|\mathbb{P}) = \operatorname{Ent}_{\frac{st}{s+t}}(X). \end{split}$$

7. On a $\operatorname{Ent}_s(\lambda X) + \operatorname{Ent}_t((1-\lambda)X) = \frac{1}{s}\mathbb{E}[e^{-s\lambda X}] + \frac{1}{t}\mathbb{E}[e^{-t(1-\lambda)X}] = \frac{st}{s+t}\mathbb{E}[e^{-\frac{st}{s+t}X}]$ en prenant $\lambda = \frac{t}{s+t} \in]0,1[$ (et donc $1-\lambda = \frac{s}{s+t})$. On a toujours $(\operatorname{Ent}_s \square \operatorname{Ent}_t)^{**}(X) \leq \operatorname{Ent}_s \square \operatorname{Ent}_t(X)$, et comme $\operatorname{Ent}_s \square \operatorname{Ent}_t(X) \leq \operatorname{Ent}_s(\lambda X) + \operatorname{Ent}_t((1-\lambda)X)$ en prenant $Z = (1-\lambda)X$, il vient que $(\operatorname{Ent}_s \square \operatorname{Ent}_t)^{**}(X) = \operatorname{Ent}_s \square \operatorname{Ent}_t(X) = \operatorname{Ent}_{\frac{st}{s+t}}(X)$. Ainsi pour ces mesures de risques, la répartition optimale du risque est obtenue en affectant la proportion $\frac{t}{s+t}$ du portefeuille à l'entité de mesure de risque Ent_s et la proportion $\frac{s}{s+t}$ du portefeuille à l'entité de mesure de risque Ent_t .