Mesure du risque et extrêmes

Aurélien Alfonni, alfoni@cermics.enpc.fr
http://cermics.enpc.fr/~alfoni/mrf.html

Introduction aux mesures de risque

Les banques possèdent des portefeuilles qui portent sur plusieurs milliers d’actifs, actions, options... exposées à une multitude de sources de risque.
La question naturelle qui se pose c'est de savoir comment une banque peut prendre ce type de risque en évitant tout que possible de faire faillite.
D’ou les États, il est impératif de limiter au maximum le risque de faillite de banque, vis-à-vis des particuliers (surtaxe 1929)

Historique

Comité de banque (créé en 1979): chargée de mettre en place des outils de supervision bancaire
Accords de banque (1988)
- Bâle I (1988-92) Ratio de Cooke
 Les banques doivent avoir 8% au fond propre de leur exposé au crédit
- Bâle II (2004-06) Corrige le premier accord
 ratio de Cooke -> ratio MC
 Mais les règles prudentielles n'avaient incontestablement concerné
Bâle III (2013)
Prime au compte d'aspects dynamiques (stress test à
Règles de contraintes notamm ent par leurs capiteux...

Pour les États, ces règles sont intéressantes pour limiter
le risque de faillite des banques; Elles le sont aussi
pour les banques car elles permettent de contrôler le
risque lié à l'activité de chacune des équipes, et
éventuellement des difficultés financières.

Réf. Stochastic
Finance Chery.

I Axiomatisation des mesures de risques (VaR, AEs)

On souhaite quantifier le risque associé à un portefeuille
e une position sur le marché qui sera décrite par
X: L \rightarrow \mathbb{R} var. aléa. décrivant la valeur du portefeuille.
Au bout d'un temps donné (10 jours pour Bâle III)
Malgré une règle de gestion de portefeuille (polaire et
delta hedge ...)
On souhaite mesurer le risque de cette position i.e.
queurr une f \cdot P(x) qui est telle que:

* Notre portefeuille est acceptable si P(x) \leq 6

* lorsque P(x) > 0 ; on souhaite que pour soit
le nomm de Cash minimale à rajouter à notre
portefeuille pour qu'il soit acceptable.

L'axiomatisation que nous avons prônées a été initiée
par un article de P. Artzner "Coherent Measure
1) Mesure de risque et ensemble de partitions acceptables.

2 : espace de réalisation possible.

\[X : \mathbb{R} \rightarrow \mathbb{R} \] app. qui décrit la partition actualisée
d'une partition financière (\(X_{n-panée bonée) \)

\(\mathbb{H} \) ensemble des partitions financières possibles.

(esp. de \(X \) bonée sur \(\mathbb{R} \rightarrow \mathbb{R} \))

Déf

Une application de \(\rho : \mathbb{H} \rightarrow \mathbb{R} \) est une mesure de
risque monotone si elle satisfait :

- monotone : \(x, y \in \mathbb{H}, x \leq y \rightarrow \rho(x) \geq \rho(y) \)
- invariante par translation : \(x \in \mathbb{H}, m \in \mathbb{R} \)
 \[\rho(x + m) = \rho(x) - m. \]

Normalisation.

Quitte à considérer \(\rho(x) = \rho(x) - \rho(0) \), on peut
supposer qu'\(\rho(0) = 0 \).

Pour une mesure monotone, l'ensemble des
partition acceptables est celui qui donne un risque
négaif. \(A_\rho = \{ x \in \mathbb{H} : \rho(x) \leq 0 \} \).

Si \(x \in A_\rho \) et \(x \leq y \) alors \(y \in A_\rho \).

cash invariance (invariance par translation)

\[\inf\{ m \in \mathbb{R} : m \leq A_\rho \} = 0. \]
Grâce à la cash invariance, \(p(x) \) est la somme minimale \(m \in \mathbb{R} \) de cash à apporter pour que la position \(X \) soit acceptable.

\[\text{Ex:\ } p(x + p(x)) = p(x) - p(x) = 0 ! \]

Rq.

On travaille ici avec la valeur actualisée de la position financière. On pourrait choisir de travailler avec la valeur non actualisée \(X' = (1+r)X \) et dans ce cas définir \(p'(X(1+r)) = p(x) \). Cette mesure est monotone et cash-invariente.

Déf. Une mesure de risque marginale \(p: X \to \mathbb{R} \) est convexe si elle vérifie

\[\forall x, y \in X, \quad p(\lambda x + (1-\lambda)y) \leq \lambda p(x) + (1-\lambda)p(y) \]

Cette axiome traduit l'intérêt que l'une des diversités de risque : le risque d'une combinaison convexe de 2 positions financières est inférieur à la combinaison des risques.

Si \(p(x) = p(y) \)

\[p(\lambda x + (1-\lambda)y) \leq p(x) \]

Rq.

\[\text{Si } \lambda \geq 0, \lambda p(x) \leq p(\lambda x) \]

Si \(\lambda > 1 \)

\[\lambda p(x) \leq p(\lambda x) \]
D'autres axiomes peuvent également exprimer l'intérêt de la diversification.

Exemple:

\[\text{sous-additive : } p(x+y) \leq p(x) + p(y) \]
\[\text{croissante homogène : } p(\lambda x) = \lambda p(x) \]

convexe et homogène → cohérente

Pour une mesure de risque convexe, on a :

\[\lambda \rightarrow p(\lambda x) \text{ convexe} \]
\[p((n+1)x) - p(nx) \text{ croissante} \]

ie le risque engendré par la \(n \)-ième partition est plus grand que celui engendré par la \((n-1) \)-ième partition.

En somme, si la mesure est homogène

\[p((n+1)x) - p(nx) = p(x) \]

Ce qui n'est pas difficile car c'est plus sûr de dériver le \(n \)-ième partition que la 1ère.

Il est plus facile de vendre \(n \) fois un actif que 1 fois \(n \)-actif.

Si \(p \) est positive et homogène:

\[p \text{ convexe et } p \text{ sous-additive} \]

Exemple de mesures

\[p(x) = \inf_{w \in \Omega} X(w) \]

Mesure de risque monétaire, convexe, homogène.
\[p(x) = -\frac{1}{\mathcal{E}[V]} \] convexe, homogène.

- La VaR

On munit \((\mathcal{E}, \mathcal{F})\) d'une proba \(P\) d'une variable \(X\) acceptante \(\pi; P(X \leq a) \leq \alpha\) pour un certain niveau \(\alpha\).

\[\text{VaR}_\alpha(X) = \inf \{ \mu \in \mathcal{E} \mid P(\mu(X) \leq a) \leq \alpha \} \]

- mesure de risque monotone, pondérée homogène non convexe.

\[\text{VaR}_{0.01}(X) = \text{VaR}_{0.01}(Y) = 0.99. \]

\[\frac{P(X+Y \leq 10^6)}{2} = P(X \leq 10^{-6} \text{ ou } Y \leq 10^{-6}) \approx 0.01 \]

de \[\text{VaR}_{0.01}(X+Y) > 10^6 \frac{2}{2}. \]

Pire espérance conditionnelle de niveau \(\alpha\).

\[\lambda \in \mathcal{F}_0; \mathcal{C} \]

\[W_{CE}(X) = \sup \{ CE(X|A) \mid A \in \mathcal{F}, \mathcal{P}(A) > \lambda \}. \]

mesure de risque cohérente.
L'ensemble de probabilité $\Omega = (\Omega, \mathcal{F}, Q)$ tels que $\forall x \in \mathbb{R} / \int_{\mathbb{R}} f(x) Q(dx) < \infty$

\[p(x) = \inf_{Q \in \mathcal{E}} \mathbb{E}_Q [e^{-x} Q(x)] \quad \forall x \in \mathbb{R} \]

Convexe et cohérente si $\forall Q, \delta(Q) = 0$

Propriétés de Lipschitz des mesures de risque.

$|p(x) - p(y)| \leq ||x - y||_{\infty}$

Définition : Caractérisation des mesures de risque par l'ensemble des positions acceptables.

$s \in \mathcal{H} : \mathcal{H}$ est un ensemble de position acceptable si $s \neq p$ et $\inf \mu, \eta \in \mathcal{A} \geq -\infty$ $x \in \mathcal{A}$, $y \in \mathcal{A}$ alors $y \in \mathcal{A}$.

Si p est une mesure de risque monotone, \mathcal{A} est un ensemble de positions acceptables.

Réciproquement, si \mathcal{A} est un ensemble de position acceptable, on pose :

\[p_A(x) = \inf \{ m \in \mathcal{M} | m + Y \in \mathcal{A} \} \]

c'est une mesure de risque monotone.

Si $X \leq Y$, on a $p_A(X) = m + Y \in \mathcal{A}$.

- $\mathcal{E} \subseteq \mathcal{A} \Rightarrow p_A(x) = p_A(Y)$
- $x \in \mathcal{E}$ et $\eta \in \mathcal{M} \Rightarrow p_A(x + \eta) = p_A(x)$
- $p_A(x) = -\infty$ car $x \in ||x||_{\infty}$ et $p_A(x) \geq p_A(||x||_{\infty})$.

Prop

Si p est une mesure de risque bancaire $P = P_{A_p}$

en particulier $p_1 = c_2 \Rightarrow A_{c_2} = A_{c_2}$

Prop

- p convexe si : A_λ convexe
- p positivement homogène si A_λ est un cône

$\lambda \in (E_{A\lambda}, \lambda \geq 0)$

La Value at Risk (VaR) et l'Average Value at Risk (AVaR)

soit (Ω, Σ, P) espace de proba

Def On appelle quantile d'ordre λ de X un réel q

$\mathbb{P}(X \leq q) \geq \lambda$

$\mathbb{P}(X < q) < \lambda$

On pose

$q_{\lambda}^{-1}(\lambda) = sup \{ x, \mathbb{P}(X \leq x) < \lambda \}$

$q_{\lambda}^{-1}(\lambda) = inf \{ x, \mathbb{P}(X \leq x) > \lambda \}$

$q_{\lambda}^{+}(\lambda) = sup \{ x, \mathbb{P}(X < x) \leq \lambda \}$

$q_{\lambda}^{+}(\lambda) = inf \{ x, \mathbb{P}(X < x) \geq \lambda \}$

On peut vérifier que ce sont des quantiles de X

d'ordre λ et pour tout quantile q de X d'ordre λ

$q_{\lambda}^{-1}(\lambda) \leq q \leq q_{\lambda}^{+}(\lambda)$

q_{λ}^{+} est une application croissante càd lâg.
\[\text{VaR}_\lambda (x) = \inf \{ \alpha \in \mathbb{R} : P(x+m < 0) \leq \lambda \} = \inf \{ \alpha \in \mathbb{R} : P(x-m < 0) \leq \lambda \} = -q_x^+(1) = q_x^-(1-\lambda) \]

On définit l'AVaR (ou conditional VaR (CVaR) ou expected shortfall (ES))

l'AVaR corrige en partie les défauts de la VaR (elle est convexe)

Déf. Soit \(\lambda \in]0,1[\), l'AVaR de niveau \(\lambda \) est donnée par

\[\text{AVaR}_\lambda (x) = \frac{1}{\lambda} \int_0^\lambda \text{VaR}_\alpha (x) \, d\alpha = -\frac{1}{\lambda} \int_0^\lambda q_x^+(\alpha) \, d\alpha \]

C'est la moyenne des VaR de niveau \(\leq \lambda \)

Req. Elle intégrale à toujours un sens. En effet, \(q_x^+ \) est une fonction croissante de \(\alpha \).

De \(q_x^+(\alpha) \leq q_x^+(\lambda) \)

Donc soit elle est intégrable en \(\Theta \), soit elle n'est pas et auquel cas \(\int_0^\lambda q_x^+(\alpha) \, d\alpha = +\infty \) et \(\text{CVaR} = +\infty \).

On a aussi \(\text{CVaR}_\lambda (x) > \text{VaR}_\lambda (x) \)

\(\Rightarrow \) pour un même seuil \(\lambda \), l'AVaR est plus conservatrice que la VaR.
\[R_q \quad AVar_\lambda(x) = \mathbb{E} \mathcal{Q}_x^q(U) 1_{U \leq \lambda} \quad \text{avec} \quad U \sim \mathcal{U}([0,1]) \]
\[= - \frac{1}{\lambda} \mathbb{E} q_x^q(U) 1_{U \leq \lambda} \]
\[= - \frac{1}{\lambda} \int_0^\lambda q_x^q(x) \, dx. \]

\(\mathcal{Q}_x^q(U) \sim X \)

\[AVar_\lambda(X) = -\mathbb{E} X \mathbb{I} \text{Var}_\lambda(X) \leq -X \mathbb{I} \]
\[\text{(d'où le nom CVaR)} \]

\[AVar_\lambda(X) < \infty \quad \text{s'il} \quad \mathbb{E} \mathcal{Q}_x^q(U) 1_{U \leq \lambda} < \infty \]
\[\text{pour} \quad U \leq \lambda \quad q_x^q(U) \leq q_x^q(x) \]

Donc

\[AVar_\lambda(X) = \mathbb{E} \mathcal{Q}_x^q(U) 1_{U \leq \lambda} < \infty \quad \text{s'il} \quad \mathbb{E} (-X)^+ \mathcal{J} < \infty \]
\[\text{(en particulier \(\lambda \) et \(X \) sont intégrable)} \]

Dans ce cas

\[AVar_\lambda(X) = \mathbb{E} \mathcal{Q}_x^q(U) \mathcal{J} = \mathbb{E} X \mathbb{J} \]

Comme la VaR est une mesure de risque monétaire positivement homogène la AVar l'est aussi.

\[\text{Prop} \quad \lambda \in \mathbb{R}^+ \]

Soit \(q \) un quantile d'ordre \(\lambda \).

\[AVar_\lambda(X) = \frac{1}{\lambda} \mathbb{E} (q - X)^+ \mathcal{J} - q \]
\[= \frac{1}{\lambda} \int_0^\lambda (q - q_x^q(U)) \, du - q \]
Théorème

Soit $X \in \mathcal{L}^2$, $f : \mathbb{R} \rightarrow \mathbb{R}$ une mesure de risque
cohérente qui admet la représentation suivante :

$$\text{VaR}_R(x) = \max_{Q \in \mathcal{F}} E_Q [x - X]$$

où \mathcal{F} est la famille $(Q, \mathcal{X}) / \frac{dQ}{dP} \leq 1, R = P \cdot q_{P,R}$.

Démonstration

VaR convexe ok.

$x = 1 \quad \frac{dQ}{dp} \leq 1$ alors $Q = P$, $z = \mathcal{E}P$.

$$\text{VaR}_R(x) = E_P [x - X]$$

où $x > 1$

$$\frac{dQ}{dp} \leq 1 \iff \exists' z : 1 \rightarrow E_Q [x - X]$$

$E_Q [x - X] = E_{EQ'x} x J$

Donc $\sup_{x \in \mathcal{X}} E_Q [x - X] = \sup_{x \in \mathcal{X}} E_{EQ'x} x J$

$E_{EQ'x} x J = E_{E Q'x} x J$$

et en a

$0 \leq E_{EQ'x} x J \leq 1$

$E_{EQ'x} x J = 1$.

$E_{EQ'x} x J$ est une u.s. $\delta(x)$ mesurable $\Rightarrow \exists$ mesurable $\delta(x)$

$E_{EQ'x} x J = \delta(x)$

Ainsi $\sup_{x \in \mathcal{X}} E_Q [x - X] = \sup_{x \in \mathcal{X}} E_{EQ'x} x J$

Intuitivement, il faut charger au maximum là où x est négatif.
On pose \(Y_0(x) = \frac{1}{x} \) si \(x < q \) et \(x \geq q \).

- L'intervalle de taille 1 de \(x \).
- \(k = 1 - \frac{1}{x} \) si \(x < q \).

\[\mathbb{E}[Y_0(x)] = 1 \quad \text{et} \quad Y_0 \in \mathbb{E}[0; 1] \]

\[\mathbb{E}[1 - Y_0(x)] = \text{AVR}(x) \]

- Soit \(\psi \) une \(\psi \)-mesurable \(0 \leq \psi \leq 1 \) telle que \(\mathbb{E}\psi(x) = 1 \).

\(\psi(x) \leq \psi_0(x) \) pour \(x < q \)

et \(\psi(x) > \psi_0(x) \) pour \(x \geq q \).

On montre que c'est le max.

Introduction à la transformation de Fenchel-Legendre

Conjugate duality and optim. (1974)

Rôles de topologie et théorème de Hahn-Banach

Soit \(X \) un espace. \(\mathcal{C}(X) \) est une topologie sur \(X \) si:

- \(\emptyset, X \in \mathcal{C} \)
- toute union d'éléments de \(\mathcal{C} \) est dans \(\mathcal{C} \)
- stable par intersection finie.

Rq Les ouverts sont des éléments de la topologie.
Rq2
Un ensemble est dit fermé si son complémentaire est ouvert.

Rq3
1. \(\Theta(x) \) est une topologie sur \(X \).
 - Très souvent, on travaille sur des espaces munis d'une norme ou d'une distance et on travaille sur les ouverts associés à cette norme (distance).

Déf
Si \(\mathcal{T}_1 \) et \(\mathcal{T}_2 \) sont deux topologies sur \(X \), \(\mathcal{T}_2 \) est plus faible que \(\mathcal{T}_1 \) si \(\mathcal{T}_2 \subset \mathcal{T}_1 \).

Déf
Un espace topologique \((X, \mathcal{T}) \) est un espace de Hausdorff si, pour toute paire \(\{x, y\} \subset X \), il existe deux ouverts \(U, V \subset X \) tels que \(x \in U \), \(y \in V \), et \(U \cap V = \emptyset \).

Déf
Une partie \(B \subset \mathcal{T} \) est une base pour la topologie \(\mathcal{T} \) si
\[\forall x \in X, \forall \mathcal{B} \in \mathcal{B}, \exists \mathcal{B} \subset \mathcal{B} \text{ de la base } \mathcal{B} \text{ telle que } x \in \bigcup_{\mathcal{B}} B. \]

Exemple
Si \(X = \mathbb{R}^n \), un espace de Banach
une base est \(B = \{ B(x, E), x \in X, E > 0 \} \).

Déf
Un espace topologique est dit localement convexe si il existe une borne \(B \) parie d'ensembles convexes
\[\forall \mathcal{B} \in \mathcal{B}, \forall x, y \in X, x, y \in \mathcal{B}, \exists \mathcal{B} \subset \mathcal{B} \text{ de la base } \mathcal{B} \text{ telle que } x + y \in \bigcup_{\mathcal{B}} B. \]
Une partie $A \subseteq \mathbb{K}$ est compacte si de tout recouvrement de A par une famille d'ouverts, on peut extraire un recouvrement fini.

$\{ V_\alpha \}_{\alpha \in \Lambda} \subseteq \mathcal{O}$ / $\mathcal{O} \subseteq \mathcal{E}$ / $\mathcal{U} \subseteq \mathcal{O}$

Prop.

Si $(x_n)_{n \in \mathbb{N}}$ dans \mathcal{F} / $x \in \mathcal{F}$ converge vers un $x \in \mathcal{F}$.

Déf.

Si $x \in \mathcal{K}$, on appelle voisinage de x tout ouvert contenant x.

Déf.

Une suite $(x_n)_{n \in \mathbb{N}} \subseteq \mathcal{K}$ converge vers un x si pour tout voisinage V de x,

$\exists N \in \mathbb{N} : \forall n \geq N : x_n \in V$.

Déf.

$(\mathcal{K}, \mathcal{O})$ et (\tilde{x}, \tilde{O}) sont deux espaces topologiques.

$\varphi : (\mathcal{K}, \mathcal{O}) \rightarrow (\tilde{x}, \tilde{O})$ est continue si :

$\forall \tilde{O} \in \tilde{O} : \varphi^{-1}(\tilde{O}) \in \mathcal{O}$.

Déf.

Une fonction $\varphi : (\mathcal{K}, \mathcal{O}) \rightarrow \mathbb{R}$ (ou \mathbb{K}) est dite semi-continue inférieurement (sci) (ou scs) si $A \subseteq \mathbb{R}$

$\forall x \in \mathcal{K} : \varphi(x) > c \in \mathcal{O}$ (sci)

$\forall x \in \mathcal{K}, c \in \mathcal{O} : \varphi(x) < c \in \mathcal{O}$ (scs)
Prop 5.7. Si f est aci ($\lim \sup f(x_n) = f(x)$) et $x_n \to x$ alors
\[\lim \inf f(x_n) = \lim \inf f(x_n \to x) \geq f(x) \]
\[(\lim \sup f(x_n) = \lim \sup f(x_n \to x) < f(x)) \]

Démon. (aci)

Soit $\varepsilon > 0$
\[A_\varepsilon = \{ y \in E \mid f(y) > f(x) - \varepsilon \} \] est un voisinage de x.
\[\exists N \in \mathbb{N} : \forall n > N \quad x_n \in A_\varepsilon \]
\[\text{et donc } \inf f(x_n) > f(x) - \varepsilon \text{ pour tout } n \geq N. \]
\[\text{donc } \lim \inf f(x_n) > f(x) - \varepsilon \quad \forall \varepsilon > 0. \]

Consequences

\neg aci. E fermé, $E \subset \mathbb{C}^K$ et K compact.
\[\exists z \in E / f(z) = \inf_{y \in K} f(y) \quad \forall E \in E \]

Démon. $\forall (y_n) / f(y_n) \to \inf f(y) \quad E \in E /\forall_{y \in E}$
\[\exists N \in \mathbb{N} : f(y) \leq \lim \inf f(y_{n \to N}) = \lim_f f(y_{n \to N}) = \inf f(y_{n \to N}) \quad \forall E \in E. \]

Déf. (E, τ) est un espace vectoriel topologique si c'est un espace vectoriel, de Hausdorff, $(x, y) \in E \times E \to x + y$ et $(\lambda, x) \in \mathbb{R} \times E \to \lambda x$ sont continues.
Rq.

\(x \times x \) min de la topologie du produit.

Théorème de Hahn-Banach

Soit \((X, \mathcal{E})\) un espace topologique vectoriel localement convexe.

On suppose que \(X, C\) 2 ensembles convexes de \(X\):
- \(X\) compact.
- \(C\) convexe fermé avec \(C \cap X = \emptyset\)

Alors, \(\exists \ l : (X, C) \to \mathbb{R}\) continue linéaire

\[
\sup_{x \in C} l(x) \leq \inf_{y \in C} l(x)
\]

\[\text{strict ou non}\]

Admis
La transformée de Fenchel - Legendre

Soient $(X, \langle \cdot, \cdot \rangle)$ et $(X', \langle \cdot, \cdot \rangle')$ deux espaces vectoriels topologiques localement convexes et une forme bilinéaire

$$X \times X' \rightarrow \mathbb{R}$$

$$(x, x') \rightarrow \langle x, x' \rangle$$

En supposant outre que $\exists \ l : X \rightarrow \mathbb{R}$ application linéaire continue, alors $\exists x' \in X'$: $\ l(x) = \langle x, x' \rangle$

Définition

Duel topologique : ensemble des applications linéaires continues $X \rightarrow X'$.

En particulier, on peut donc identifier le dual topologique de X à X'.

Exemple

$X = \mathbb{R}^n = X'$

$\langle x, x' \rangle = \sum_{i=1}^{n} x_i x'_i$

Si \mathbf{X} espace de Hilbert, $X = X' = \mathbb{H}$, $\langle \cdot, \cdot \rangle$ produit scalaire, on a le théorème de Riesz (théorème de représentation de son linéaire)

Définition

Une fonction $\phi : X \rightarrow \mathbb{R}$ est convexe si son épigraph est convexe

$$\text{Epi}(\phi) = \{ (x, t) \in X \times \mathbb{R} : x \leq \phi(t) \}$$

Exemple

$X \rightarrow \mathbb{R}$: $f \rightarrow \int_{0}^{1} f(x)^2 dx$
déf \ En applique domaine effectif de f l'ensemble

\[\text{dom} f = \{ x \in \mathbb{R} : f(x) \neq -\infty \}. \]

Rq 1) Si f convexe

\[\text{dom} f \text{ est convexe de } \mathbb{R} \text{ car } x, y \in \text{dom} f \]
\[f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) \]
\[\lambda \in [0, 1], \quad \lambda \geq 0. \]

2) Si f convexe propre aci

Si $x \in \text{dom} f \setminus \{ -\infty \}$

alors $x \in \text{dom} f$

(car convexe)

\[f(\lambda x + (1-\lambda)y) \leq \lambda f(x) + (1-\lambda)f(y) \]
\[\lambda \in (0, 1]. \]

\[\lim_{y \to x} f(y) = f(x) \]

\[\exists \alpha \in \mathbb{R}, \quad \text{acu} \]

et
def \ Une fonction convexe est propre si $\text{dom} f \neq \emptyset$

Prop 1) Si $(f_{x}, x \in \Theta)$ une famille de fonctions convexe de \mathbb{R}

Alors,

\[\sup_{x \in \Theta} f(x) \text{ est encore une fonction convexe.} \]

(épigraph de $\sup_{x \in \Theta} f(x) = \gamma_{\pi} (\pi)$)
Prop

Si \(f : X \to \mathbb{R} \) est a.c.i. (pas forcément convexe) alors \(\text{Epi}(f) \) est un ensemble fermé.

\[\text{Epi}(f) = \left\{ (x, y) \in X \times \mathbb{R} \mid y \leq f(x) \right\} \]

\[= \bigcup_{c \in \mathbb{R}} \left\{ x \in X \mid f(x) > c \right\} \]

\[= \bigcup_{c_1 \leq c_2} \text{intervalle convexe de } \mathbb{R}. \]

\[\quad \text{avec } c_1 \leq c_2 \]

Prop

Soit \(f : X \to [-\infty, +\infty] \) convexe, a.c.i., propre.

Alors \(f(x) = \sup_{A} \left(\langle x, x' \rangle - A \right) \)

\[A = \left\{ x' \in X, \exists a \in \mathbb{R} / \forall x < x' \Rightarrow x \in \text{Epi}(f) \right\} \]

\[\quad \text{dém.} \]

On travaille sur \(\text{dom}(f) \)

\[A < f(x) \quad (x, A) \in \text{Epi}(f) \]

qui est convexe et forme.

et \(\mathbb{Y}(x, A) \) un compact. / \((x, A) \in \text{Epi}(f) = \emptyset \).

Mahn-Banach, \(\exists l : (X, \mathbb{L}) \to \mathbb{R} \) linéaire continu

\[l(x, A) = \sup \left(l(y, y') \right) \]

\((y, y') \in \text{Epi} \)
Ligne de base: \[f(y) = l(y, 0) + p l(0, 1) = \delta \in \mathbb{R} \]

\[y \rightarrow l(y, 0) \text{ linéaire continue.} \]

\[\forall x' \in x', \forall y \in x, l(x, 0) \leq \langle y, x' \rangle \]

\[\sup \langle y, x' \rangle + \beta y < \langle x, x' \rangle + \beta \delta \]

\[y \in x, \beta \in (0, 1) \]

\[\forall y \in \text{Dom } \]

\[x, y \geq 0 \text{ (par l'absurdité \(x > 0 \), \(y \to \infty \) absurd...)} \]

\[x \neq 0 \]

\[(x' \notin \text{ Dom } \rightarrow \langle x, x' \rangle \leq 0 \] \[\quad \forall x' \in x'. \]

D'où, sup est atteint pour \(x = p(y) \) (par exemple)

\[\sup \langle y, x' \rangle + \beta \langle y, x \rangle \]

\[y \in \text{Dom } \]

\[\forall y \in \text{Dom } \]

\[\forall y, x' \geq 0, \langle y, x' \rangle = \delta(\rho(y)) < \langle x, x' \rangle + \beta \delta \]

\[\langle y, x' \rangle - \langle x, x' \rangle + \beta \delta > \]

\[\text{app \# affine } \]

\[\text{qui want } A \in x. \]

et ce pour tout \(A \ldots \) donc une \(\text{Dom } \)
Transformée de Fenchel-Legendre

Soit \(f : \mathbb{R} \to \mathbb{R} \) convexe.

\[f^* : \mathbb{R}^* \to \mathbb{R}, \quad f^*(x^*) = \sup_{x \in \mathbb{R}} \left(<x,x^*> - f(x) \right) \]

\(f^* \) est convexe si et seulement si \(f \) convexe.

def \(f^* \) est la transformée de Fenchel-Legendre de \(f \).

On peut définir de même \(f^{**} : \mathbb{R} \to \mathbb{R}^* \) et donc la double transformée

\[R_{f^{**}} : \mathbb{R} \to \mathbb{R}, \quad x \mapsto \sup_{x^* \in \mathbb{R}} \left[<x,x^*> - f^{**}(x^*) \right] \]

On a

\[<x,x^*> - f(x) \leq f^*(x^*) \]

\[<x,x^*> - f^*(x^*) \leq f(x) \]

\[\sup_{x^*} \left[<x,x^*> - f^*(x^*) \right] \leq f(x) \]

\(f^{**} \) est convexe si \(f \) convexe.

\(f^{**} = f \) s'il convexe : \(\mathbb{R} \to \mathbb{R}, x \mapsto -\infty \) on l'appelle propre.
Example:

1. \(f(x) = ax \)
 \[
 \therefore \quad f'(y) = \sup_x (xy - ax) = \sup_x (xy - ay) \]
 \(\xi = y > a \rightarrow +\infty \)
 \(\xi = x = a \rightarrow 0 \)
 \[
 f''(x) = \sup_y xy - f'(y) = ay \quad (\text{on } y = a) \]

2. \(f(x) = \frac{2x^2}{2} \)
 \[
 f'(y) = \sup_x (xy - x^2) = y^2 \quad (\text{on } y = x) \]
 \[
 f''(x) = \frac{x^2}{2} \]

3. \(f(x) = \begin{cases} +\infty & \text{if } |x| > 1 \\ 0 & \text{if } |x| < 1 \end{cases} \)
 \[
 f'(y) = \sup_x xy - f(x) = \{1y\} \]
 \[
 f''(x) = \sup_y xy - f'(x) = \{1y\} \]
 \(\xi \text{ if } x > 1 \rightarrow +\infty \) avec
 \(\xi \rightarrow 0 \)
Démo

\[f^*(x) = \sup_{x' \in X'} \langle x, x' \rangle - f^*(x') \]

\[= \sup_{x, x' \in X'} \langle x, x' \rangle - x' \]

\[\exists x' \in X^* \text{ tels que } f^*(x) = \langle x, x' \rangle - x' \]

\[(x, x') \in \text{Epi}(f^*) \implies x' \geq f^*(x) \]

\[\forall x \in X \implies \langle x, x' \rangle \leq f^*(x) \leq f(x) \]

\[\implies f^{**}(x) = \sup_{x' \in X'} \langle x, x' \rangle - x' \geq f(x) \text{ par le prop. } \]

\[\text{car } f^* \text{ est convexe.} \]

Exemple important (d'apercu doux de } X, X')

Nous allons étudier des dualités utiles pour la représentation de certaines d'espaces.

1) Dualité espace } L^p et } L^q

On définit } (R, \mathcal{E}, (P) \text{ un espace de proba.}

\[p + q \leq 1 \text{ et } \frac{1}{p} + \frac{1}{q} = 1 \text{ ou } p = 1, q = \infty. \]

\[L^p(X, \mathcal{E}, P) = \{ X : L^p \rightarrow (R, \text{ mesurable) / } E \in L^p \} \text{ et } L^q(X, \mathcal{E}, P) = \{ X : L^q \rightarrow (R, \text{ mesurable) / } E \in L^p \} \]

\[L^p(X, \mathcal{E}, P) \text{ est Banach.} \]
\[L^\infty \left(\mathbb{R}, \mathcal{B}, \mu \right) : \left\{ x : \mathbb{R} \to \mathbb{R}, \exists \int_{\mathbb{R}} \mu \right\} = 1 \]

\[\| x \|_{L^\infty} = \inf \left\{ c > 0 \mid \mu \{ \omega \in \{ c \} \} = 0 \right\} \]

\[(L^\infty, \| . \|_{L^\infty}) \text{ Banach} \]

Théorème

\[l : L^p \to \mathbb{R} \text{ AC continue} \]

\[\forall x \in L^p, \forall \lambda \in \mathbb{R}, l(x) = \lambda \cdot x \cdot y \]

Yonique

\[L^p \text{ dense} \]

= Hölder

= cf. Hlder

Corollaire

\[p_q \text{ conjugué} \quad p > 1, p \in \mathbb{N}^*, q = \frac{1}{p}, p' = \frac{1}{p}, \quad x \in L^p, x' \in L^q \]

\[f : L^p \to \mathbb{R} \text{ convexe, } f(0) = 0, f \text{ convexe, } f(0) = 0 \]

\[f(x) = \sup_{y \in L^q} \left\{ y \cdot x \right\} \]

\[f^*(y') = \sup_{x \in L^p} \left\{ y' \cdot x \right\} \]

\[f^*(y') = \sup_{x \in L^p} \left(y' \cdot x \right) \]

\[f^*(y') = \sup_{x \in L^p} \left(y' \cdot x \right) \]}
Lorsque $p = \infty$ et $q = 1$, on a posé $\ell_1(X, Y)$.

ℓ_1 dual de L^∞ mais L^∞ n'est pas le dual topologique de ℓ_1.

I.e. $L^1 \to \mathbb{R}$ continue $\Rightarrow \exists Y \subseteq L^\infty / \ell_1(X) = \mathbb{E}[X,Y]$.

Mais $L^\infty \to \mathbb{R}$ continue $\not\Rightarrow \exists Y \subseteq L^1 / \ell_1(X) = \mathbb{E}[X,Y]$.

En revanche, si $Y \subseteq L^1 / \mathbb{E}[X,Y] < \|X\|_2 \text{ et } \forall x \to \mathbb{E}[X,Y]$ continue.

(3 plan d'Az que elles soient reparties par L^1 !)

On souhaite montrer que le dual topologique de L^∞ est L^1.

Trop souvent, sur L^∞ trouver une topologie forte !

La solution à ce problème est donnée par la topologie faible.*

Notée $\sigma(L^\infty, L^1)$, engendrée par la base des ensembles:

$\{Y \subseteq L^\infty / \forall y \in Y : \mathbb{E}[x,y] < \epsilon \}$.

On dit qu'une suite $(x_n) \in L^\infty$ converge faiblement vers x si

$\forall Y \subseteq L^1 / \forall y \in Y : \mathbb{E}[x_n,y] \to \mathbb{E}[x,y]$.

Prop

ℓ_1 est localement convexe pour cette topologie et, muni de cette topologie, L^1 est le dual topologique de L^∞ i.e. $

L : (L^\infty, \sigma(L^\infty, L^1)) \to \mathbb{R}$ AL continue.

$\exists x \in \ell_1 / \ell_1(x) = \mathbb{E}[x,y] \forall x \in L^\infty$.

Consequence

Si \(\phi : L^\infty (\Omega, \mathcal{F}, \mathbb{P}) \to L^\infty \) convexe

\[\phi(\mathcal{M}) = \phi(X) = \sup_{X' \in \mathcal{L}} \mathcal{E} \mathcal{C} X' (X) - \phi(X) \]

\[\mathcal{C} : \phi(X') = \sup_{X \in \mathcal{C}} \mathcal{E} \mathcal{C} X' (X) - \phi(X) \]

Topologies faible et \(\mathcal{C} \) \(\mathcal{C} \)

Soit \((\mathcal{X}, ||.,||)\) Banach

La norme \(||.||' = \{ A \in \mathcal{C} \}' \)

\(\text{et} \) Topologie faible sur \(\mathcal{X} \) \(\mathcal{X} \to \mathcal{X} \) \(\mathcal{X} \to \mathcal{X}' \mathcal{E} \mathcal{X}', \mathcal{X} \to \mathcal{X} \)

Sur \(\mathcal{X}' \), on peut définir différentes topologies:

- celle définie par \(\mathcal{M} ||.,|| = \sup_{X \in \mathcal{M}} ||\mathcal{X}'|| \)

- topologie faible \((\mathcal{C}, (X', X')) \) sur \(\mathcal{X}' \)

\[\mathcal{X}' \to \mathcal{X}, \mathcal{X}' \ni \mathcal{X}' (X) : \mathcal{X}' \to \mathcal{X}, \mathcal{X}' \ni \mathcal{X}' (X) \to \mathcal{X}' (X) \quad \forall X \in \mathcal{X} \]

- topologie faible \((\mathcal{C}, (X', X)) \)

\[\mathcal{X}' \to \mathcal{X}, \mathcal{X}' \ni \mathcal{X}' (X) \to \mathcal{X}' (X) \quad \forall X \in \mathcal{X} \]

Por construction, \(\forall X \in \mathcal{X} \) \(\mathcal{X}' \to \mathbb{R} \) est continu

\[\mathcal{X}' \to \mathbb{R} \to \mathcal{X}' \]

\(\exists \mathcal{X} \) \(\mathcal{X} \to \mathbb{R} \to \mathcal{X}' \)

\(\mathcal{X} \to \mathbb{R} \to \mathcal{X}' \)

\[\exists \mathcal{X} \mathcal{C} \mathcal{I} \to \mathbb{R} \to \mathcal{X}' \mathcal{X} \to \mathcal{X} \]
Théo : Banach - Aboglu

\[\ell \in \mathcal{X}, \|\ell\| \leq \varepsilon \] est faiblement compact.

Théo : Krech - Smolien

Si \(C \) ensemble convexe de \(\mathcal{X} \), alors \(C \) fermé pour la topologie faible \(\sigma \).

\[\forall \varepsilon > 0 \quad C \cap \{ \ell \in \mathcal{X} : \|\ell\| \leq \varepsilon \} \text{ fermé dans } \sigma(\mathcal{X}, \mathcal{X}) \]

Dans le cas où \(\mathcal{X} = L^\infty \), \(\mathcal{X} = L^1 \),

fermé si

\[C \cap \{ \ell \in \mathcal{X} L^\infty : \|\ell\| \leq \varepsilon \} \text{ fermé dans } L^1 \text{ pour } \ell. \]

Dualité : Fonctions mesurables bornées / finiment additives

\((\mathcal{F}, \mathcal{G}) \) mesurable, (nouveau)

\[\mathcal{H} = \{ F : (\mathcal{F}, \mathcal{G}) \rightarrow \mathbb{R} \text{ mesurable bornée} \} \]

c'est un énu \[\|F\| = \sup_{w \in \mathcal{G}} |F(w)| \rightarrow \text{Banach} \]

\[(\mathcal{F}, \mathcal{G}) \] espace mesurable

\(\mu : \mathcal{G} \rightarrow \mathbb{R} \) est finiment additive

\[\mu(\emptyset) = 0 \]

\[A_1, \ldots, A_n \in \mathcal{G} \implies \mu(\bigcup A_n) = \sum \mu(A_i) \text{ Ai disjoint.} \]

\(\text{fini \& démontrée.} \)
La variation totale d'une fonction finiment additive est définie par :

\[||\mu||_{\text{var}} = \sup \left\{ \sum |\mu(A_i)|, \forall A_i \in \mathcal{F}, A_i \text{ disjointe} \right\}. \]

On note \(\mu_A(x, \xi) = \mu \text{ finiment additive}, \quad ||\mu||_{\text{var}} < \infty \)

\[\forall \xi, \mu (\xi, \xi') = \mu \text{ finiment additive, positive, et } \mu(\mathcal{F} \xi) \]

Rq

\[\text{Pour } \nu \in (\mathcal{F} \xi, \mathcal{F}), \quad \nu \in H, \quad \nu(\mathcal{F}) = 1 \]

et \(\forall \nu \in \mathcal{H}, ||\nu||_{\text{var}} = 1. \)

S : \(F \in \mathcal{F} \text{ est un ensemble fini disjoint, } E \).

\[\lambda \ldots \xi \in \mathbb{R}. \]

\[F(\omega) = \sum_{i=1}^{n} \lambda_i \cdot \mu_i A(\omega) \]

On définit :

\[F \cdot \mu = \sum_{i=1}^{n} \lambda_i \cdot \mu(A_i) \]

\[\left| F \cdot \mu \right| \leq \left| H \cdot \mu \right| \cdot ||\mu||_{\text{var}} \]

\[\sum_{i=1}^{n} \lambda_i \cdot \mu_i A(\omega) \]

Fqeq.

\[F_n(\omega) = \frac{2^{-n+1}}{\omega} \cdot \sum_{i=1}^{2^n} \frac{1}{2^n} F(\omega) \in \mathbb{C}, \quad \frac{i}{2^n}, \quad \frac{1}{2^n} \mathbb{I}. \]
Pour $n \geq 1$, on a :

$$0 \leq \lim_{n \to \infty} F_n \leq \frac{1}{2^n}.$$

La fonction F définit une mesure, en particulier :

$$\int_{F_n} d\mu = \lim_{n \to \infty} \int F_n d\mu.$$

\[\|F_n\|_{L^1} \leq \|F\|_{L^1} \|\mu\|_{\text{Var}}\]

\[\|F\|_{L^1} \leq \|F\|_{L^1} \|\mu\|_{\text{Var}}\]

Théorème

\[\mu \to \mathbb{R}^+ \text{ AL T}^*\]

\[\exists \int \mu \in \mathcal{B} \left(\mathbb{R}, \mathbb{R}^+\right) / \int F = \int F d\mu.\]

Donc, si μ est finiment additive, alors $\int F d\mu = \int F d\mu$.\]
Il s'agit de montrer \(x(F) = \int F d\mu \).

Filtre fini (fini de \(\mathcal{G} \))

Si \(\{ F_n \rightarrow F \text{ filtrante} \}

\[x(F) - x(F_n) = \left((x(F) - x(F_n)) \right) \delta \]

\[\int_{x(F) - x(F_n)} = \int_{F} d\mu. \]

\[\lim_{n \to \infty} x(F_n) = x(F). \]

Ainsi, les \(\mu \) finiment additives décrivent les H \(\mathbb{C} \)
de \(\chi \rightarrow \mathbb{R} \).

Re notation. Si \(\mu \in \mathcal{M}_{\mathbb{R}} \), on note \(E_{\mu} (F) = \int F d\mu \).

Conséquence

\(\chi : \chi : (\mathbb{R}^N, \mathcal{B}) \rightarrow \mathbb{R} \text{ mesurable borne \(\mathbb{R} \)-valée} \)

\(\mu \) de \(\|F\| = \sup_{x \in \mathbb{R}^N} |F(x)|, \quad x' = \beta (x, \mathcal{B}) \)

Si \(\chi : \chi \rightarrow \mathbb{R} \) est ac ; \(\|x\| \), convexe propre.

\(\forall x \in \chi \)

\(\chi(x) = \sup_{\chi \in \chi} \int x d\mu - \chi(x) \)

\(\sup_{\chi \in \chi} \int x d\mu = \sup_{x \in \chi} \chi(x) \)

où \(\chi : \chi \rightarrow \mathbb{R} \) est convexe propre.