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Short introduction to engineering asset management
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Systems of interest in this work

• From 2 to 80 components of a hydroelectric power plant: turbines, generators,
transformers

• Common stock of spares, initial stock with a low number of parts

• Horizon of study: 40 years
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Maintenance strategies and dynamics of the industrial system
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Order of magnitude of costs

• Costs of maintenance and forced outage have different order of magnitude:

• Preventive maintenance: ∼ 100 k€
• Corrective maintenance: ∼ 500 k€
• Forced outage: ∼ 30000 k€/month

• Failures of the components are random events⇒ LCC is a random variable
• Expected cost of a strategy estimated with Monte Carlo scenarios

400 500 600 700 800 900 1000 1100
Cost (k€)

0

10

20

30

N
u

m
b

er
of

sc
en

ar
io

s Mean of the reference strategy

Mean of the preventive strategy

Reference strategy

Preventive strategy

30000 30100

Scenario with
a forced outage
of 1 month

Histogram of the cost generated by two different maintenance strategies

4/43



Industrial context Blackbox methods Decomposition by prediction Conclusion

Order of magnitude of costs

• Costs of maintenance and forced outage have different order of magnitude:

• Preventive maintenance: ∼ 100 k€
• Corrective maintenance: ∼ 500 k€
• Forced outage: ∼ 30000 k€/month

• Failures of the components are random events⇒ LCC is a random variable

• Expected cost of a strategy estimated with Monte Carlo scenarios

400 500 600 700 800 900 1000 1100
Cost (k€)

0

10

20

30

N
u

m
b

er
of

sc
en

ar
io

s Mean of the reference strategy

Mean of the preventive strategy

Reference strategy

Preventive strategy

30000 30100

Scenario with
a forced outage
of 1 month

Histogram of the cost generated by two different maintenance strategies

4/43



Industrial context Blackbox methods Decomposition by prediction Conclusion

Order of magnitude of costs

• Costs of maintenance and forced outage have different order of magnitude:

• Preventive maintenance: ∼ 100 k€
• Corrective maintenance: ∼ 500 k€
• Forced outage: ∼ 30000 k€/month

• Failures of the components are random events⇒ LCC is a random variable
• Expected cost of a strategy estimated with Monte Carlo scenarios

400 500 600 700 800 900 1000 1100
Cost (k€)

0

10

20

30

N
u

m
b

er
of

sc
en

ar
io

s Mean of the reference strategy

Mean of the preventive strategy

Reference strategy

Preventive strategy

30000 30100

Scenario with
a forced outage
of 1 month

Histogram of the cost generated by two different maintenance strategies

4/43



Industrial context Blackbox methods Decomposition by prediction Conclusion

Main goal and challenges

Industrial goal
For a given system, find the deterministic (open loop) maintenance strategy that
minimizes the expectation of the LCC.

Optimization challenges:

• Large-scale optimization problem (up to 80 components)

• Expected LCC computed with the simulation model VME:
blackbox objective function

• VME uses Monte-Carlo simulations to estimate the expected LCC: no access to the
true value of the objective but only noisy evaluations

• Evaluations of the objective function are expensive
Industrial case with 80 components: ∼ 30 min for one evaluation
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Outline

1 Blackbox methods for optimal maintenance scheduling

2 A decomposition by prediction for the maintenance problem

3 Contributions on the stochastic Auxiliary Problem Principle

4 Conclusion
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Overview of kriging a.k.a. Gaussian process regression I

Goal
Predict the values of a function f : Uad → R on Uad from its values on an initial
design of experiments Uo = {u1, . . . , ul} ∈ Uad , where Uad is a subset of a Hilbert
space U.

Assumption
f is the realization of a Gaussian process Z = {Zu : Ω→ R}u∈Uad characterized by:

• its mean function µ : u ∈ Uad 7→ E (Zu) ∈ R

• its covariance function k : (u, v) ∈ Uad ×Uad 7→ Cov(Zu ,Zv) ∈ R
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Overview of kriging a.k.a. Gaussian process regression II

Consider the event Al :
{

Zu1 = f (u1), . . . ,Zul = f (ul)
}
, then:

[Zu | Al ] ∼ N (ml(u), s2
l (u)), u ∈ Uad

The kriging mean ml(u) and the kriging variance s2
l (u) can be computed analytically.

The kriging prediction for f (u) is ml(u) with a confidence interval of level α given by:

[ml(u)− Φ−1(1− α/2)sl(u) , ml(u) + Φ−1(1− α/2)sl(u)]

0 2 4 6 8 10
u

−10

0

10

20 f (u) = u sin(u)

Observations

Prediction ml

95% prediction interval The conditional Gaussian process
characterized by ml and sl is the

kriging metamodel.
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The Efficient Global Optimization (EGO) algorithm [JSW98]

Goal: Solve the minimization problem:

min
u∈Uad

f (u)

Idea
Take advantage of the kriging prediction to smartly choose the successive evaluation
points of f .

Initial design of experiments (DOE)
Uo = {u1, . . . , ul}

Evaluate f on Uo

Compute the first metamodel ml , sl

Choose a new evaluation point ul+1 by
maximizing an acquisition function

Evaluate f (ul+1)

Update the metamodel ml+1 , sl+1

l ← l + 1

Common acquisition function:
Expected Improvement
EIl(u) = E[Il(u)|Al ]

with

Il(u) =
(

min
1≤i≤l

f (ui)− Zu

)+

We set:

ul+1 ∈ argmax
u∈Uad

EIl(u)
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Illustration of an EGO iteration
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On the importance of the initial design of experiments (DOE) for kriging

Accuracy of kriging depends on the initial DOE: Example with the Ackley function
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The initial DOE in EGO

In the literature, the initial DOE for EGO is a fixed-size space-filling design:

• Minimax or maximin designs

• Optimal LHS designs
Initial design of experiments (DOE)

Uo = {u1, . . . , ul}

Evaluate f on Uo

Compute the first metamodel ml , sl

Choose a new evaluation point ul+1 by
maximizing an acquisition function

Evaluate f (ul+1)
Update the metamodel ml+1 , sl+1

l ← l + 1

Characteristics:

1. The size l of the initial DOE only depends on the dimension of the input space.
2. The location of the l points is determined simultaneously.
3. The design does not depend on the underlying function f we minimize.

⇒ No guarantee on the accuracy of the initial metamodel in the EGO algorithm.
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Outline

1 Blackbox methods for optimal maintenance scheduling
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Introduction to FSSF (Fully Sequential Space-Filling) designs

Contributions

• Use a FSSF (Fully Sequential Space-Filling) initial design [SA20] that is adapted to
the difficulty of the underlying optimization problem

• Ensure that the metamodel is accurate before launching the infill step of EGO

→ The EGO-FSSF algorithm

Characteristics of FSSF designs:

• Fully sequential: Points are added one-at-a-time. For m < n, the design with
m points is a subset of the design with n points.

• Space-filling: At each new added point, the design retains good space-filling
properties.
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Examples of FSSF designs
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Description of the EGO-FSSF algorithm

Goal: Solve the minimization problem min
u∈Uad

f (u)

Recall the EGO algorithm:

Fixed-size initial DOE
Uo = {u1, . . . , ul}

Evaluate f on Uo

Compute the first metamodel ml , sl

Choose a new evaluation point ul+1 by
maximizing an acquisition function

Evaluate f (ul+1)

Update the metamodel ml+1 , sl+1

l ← l + 1
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Metamodel validation

Introduce {v1, . . . , vp} ⊂ Uad : Test sample disjoint from the DOE Uo = {u1, . . . , ul}

• The predictivity coefficient Q2 (the higher, the better):

Q2 = 1−
∑p

i=1 (f (vi)−ml(vi))
2∑p

i=1

(
f (vi)− 1

p
∑p

j=1 f (vj)
)2

→ Quantifies the predictive performance of the metamodel

• The Predictive Variance Adequacy PVA (the lower, the better):

PVA =

∣∣∣∣∣log10

(
1
p

p∑
i=1

(f (vi)−ml(vi))
2

s2
l (vi)

)∣∣∣∣∣
→ Quantifies the accuracy of the prediction intervals given by the metamodel

In the EGO-FSSF algorithm

• User-defined thresholds Q2
min < 1 and PVAmax > 0

• Metamodel is accurate enough if Q2 > Q2
min and PVA < PVAmax

• Q2 and PVA computed by cross-validation
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The blackbox algorithm MADS (Mesh Adaptive Direct Search) [AD06]

Goal: Solve the minimization problem min
u∈Uad

f (u)

ul

u4
l

u5
l

u6
l

u1
l

u2
l

u3
l

At iteration l:

• Current iterate ul

• Mesh Ml

• Mesh Ml : Points defined by the intersection of the lines

• Search points are in blue

• Poll points are in red
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Convergence result
Under mild assumptions, MADS converges to a stationary point of f .
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Description of the industrial system

UnitComp 1Comp 1 Comp 2Comp 2
PM 1 PM 2

CM 1 CM 2Stock

Parameter Value

Number of components n 2, 3, 5 or 10
Initial number of spare parts b n

5 c
Horizon 40 years
Forced outage cost 30000 ke/ month

Comp. 1 Comp. 2 Comp. i ≥ 3

PM cost 50 ke 50 ke 50 ke
CM cost 100 ke 250 ke 200 ke
Failure distribution Weib(2.3, 10) Weib(4, 20) Weib(3, 10)
Mean time to failure 8.85 years 18.13 years 8.93 years
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The industrial maintenance optimization problem

Industrial problem
Find the periodic maintenance strategy that minimizes the expected Life Cycle Cost
(LCC) of the system:

min
u∈Uad

E
(
j(u,W )

)

• u = (u1, . . . , un) ∈ Uad = [0,T ]n , where T is the time horizon (40 years)

• W : random variable on a probability space (Ω,A,P), models the failures of the
components

• j : Uad × Ω→ R: LCC of the system

• We solve a Monte-Carlo approximation of the problem:

min
u∈Uad

1
p

p∑
i=1

j(u,wi)

with w1, . . . ,wp being realizations of the random variable W
• Objective function evaluated with the blackbox software VME
• MADS, EGO and EGO-FSSF plugged on VME to perform optimization
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Results on the industrial problem
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Conclusion of the computational tests

• EGO-FSSF more efficient than MADS in the first iterations

• MADS eventually outputs a better solution than EGO with more evaluations

• Striking difference in running times (given for the 10-component case):

EGO MADS
Running time ∼ 10h ∼ 1min
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Outline

1 Blackbox methods for optimal maintenance scheduling
1.1 Review of kriging and the EGO algorithm

1.2 The EGO-FSSF algorithm

1.3 The MADS algorithm

1.4 Computational results

1.5 Conclusion on blackbox methods

2 A decomposition by prediction for the maintenance problem

3 Contributions on the stochastic Auxiliary Problem Principle

4 Conclusion
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Conclusion on the optimization with blackbox methods

Contributions

1. Improvement of the initial design step within EGO: the EGO-FSSF algorithm

2. Comprehensive benchmark of EGO, EGO-FSSF and MADS (not in the talk)

3. Benchmark of solvers for the EI maximization within EGO (not in the talk)

4. Application of EGO-FSSF and MADS on a maintenance optimization problem

We have tackled periodic maintenance problems with up to 10 components:

→ Industrial application for common maintenance operations
(e.g. lubrication of the components)
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Towards maintenance optimization for the most demanding cases at EDF

What we have done:

• Periodic maintenance strategies

• Up to 10 components

Ultimate goal:

• General maintenance strategies

• Up to 80 components:
most demanding cases at EDF

Limits of blackbox methods:

• Large instances intractable with EGO

• MADS may not be able to efficiently explore the search space in high dimension

Decomposition method !
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Philosophy behind the decomposition approach

UnitComp 1Comp 1 Comp 2Comp 2
PM 1 PM 2

CM 1 CM 2Stock

1. The industrial system is a structured physical system.
• Several similar components
• Coupled by a common stock of spare part

Step 1
Analytical formulation of the dynamics → We open the blackbox!

2. Take advantage of the structure of the system to efficiently perform the
maintenance optimization.

Step 2
Design of a decomposition-coordination method
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Some important variables to characterize the system

UnitComp 1: X1,tComp 1: X1,t Comp 2: X2,tComp 2: X2,t

PM 1: u1,t PM 2: u2,t

CM 1 CM 2Stock: St

Component i at time t characterized by Xi,t = (Ei,t ,Ai,t) where:

Ei,t ∈ {0, 1}: Regime of the component

• Ei,t = 1: Healthy

• Ei,t = 0: Broken

Ai,t ∈ R:

• Age for a healthy component

• Time since last failure for a broken
component

• St ∈ N: Number of spare parts in the stock at time t

• ui,t ∈ {0, 1}: Control on component i at time t

• ui,t = 0: No preventive maintenance

• ui,t = 1: Preventive maintenance
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Dynamics of the components

• Time discretized with time step ∆t

• Dynamics of a component from time step t to t + 1:

(1, Ai,t)

Healthy, age Ai,t

(0, Ai,t)

Broken for a time Ai,t

ui,t = 1
PM

ui,t = 0
No PM

(1, 0)
As good as new

(1, Ai,t + ∆t)
Ageing

(0, 0)
Failure

(1, 0)
Replacement

(0, Ai,t + ∆t)
Stays broken

St ≥
∑i

j=1(1 − Ej,t) ?
Enough spare parts ?

(Ei,t ,Ai,t) (Ei,t+1,Ai,t+1)

pi(Ai,t)

1 − pi(Ai,t)

Yes

No
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Maintenance optimization problem

min
(X,S,u)∈X×S×U

E

( n∑
i=1

Maintenance cost ji(Xi ,ui)︷ ︸︸ ︷
T∑

t=0
ji,t(Xi,t , ui,t) +

Forced outage cost jFO(X1,...,Xn)︷ ︸︸ ︷
T∑

t=0
jFO
t (X1,t , . . . ,Xn,t)

)
s.t. Xi,t+1 = f X

i (Xi,t ,St , ui,t ,Wi,t+1)︸ ︷︷ ︸
Dynamics of component i

, Xi,0 = xi ∀t, ∀i

St+1 = f S(X1,t , . . . ,Xn,t ,St)︸ ︷︷ ︸
Dynamics of the stock

, S0 = s ∀t

where (Wi,t)
i=1,...,n
t=1,...,T are random variables that model failure scenarios.

• Maintenance cost: additive in time and components

• Forced outage cost: additive in time, coupling the components
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Sketch of a decomposition method by component

General idea
Use a decomposition by interaction prediction [MMT70] to iteratively find the best
maintenance policy separately for each component and coordinate the components.

Constraint allocation

Subproblem on
comp 1: X1, u1

Subproblem on
comp 1: X1, u1

Subproblem on
comp 2: X2, u2

Subproblem on
comp 2: X2, u2

Subproblem on
the stock S

Optimal strategy:
u# = (u#

1 , u#
2 )

St+1 = f S(X1,t ,X2,t ,St)

X1,t+1 = f X
1 (X1,t ,St , u1,t ,W1,t+1) X2,t+1 = f X

2 (X2,t ,St , u2,t ,W2,t+1)
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X1,t+1 = f X
1 (X1,t ,St , u1,t ,W1,t+1) X2,t+1 = f X

2 (X2,t ,St , u2,t ,W2,t+1)

St+1 = f S(X l
1,t ,X

l
2,t ,St)

Multiplier ΛS

X1,t+1 = f X
1 (X1,t ,S l

t , u1,t ,W1,t+1)

Multiplier Λ1

X2,t+1 = f X
2 (X2,t ,S l

t , u2,t ,W2,t+1)

Multiplier Λ2

(Λl
1,Λ

l
2)X l

1,X
l
2

S l

(Λl
2,Λ

l
S)

S l

(Λl
1,Λ

l
S)
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t+1 = f S(X l

1,t ,X
l
2,t ,S

l+1
t )

Optimal multiplier Λl+1
S

X l+1
1,t+1 = f X

1 (X l+1
1,t ,S l

t , u
l+1
1,t ,W1,t+1)

Optimal multiplier Λl+1
1

X l+1
2,t+1 = f X

2 (X l+1
2,t ,S l

t , u
l+1
2,t ,W2,t+1)

Optimal multiplier Λl+1
2

Λl+1
SS l+1

X l+1
1

Λl+1
1

X l+1
2

Λl+1
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The auxiliary problem principle [Coh80] for a decomposition by component

• Choice of an auxiliary problem that is decomposable into independent subproblems

• Subproblem on component i at iteration l + 1:

min
(Xi ,ui)∈Xi×Ui

E
(

ji(Xi , ui) + jFO(X l
1, . . . ,Xi , . . . ,X l

n)
)

+ coordination terms(
Λl

1,...,Λ
l
i−1,Λ

l
i+1,...,Λ

l
n ,Λ

l
S

)
s.t. Xi,t+1 = f X

i (Xi,t ,S l
t , ui,t ,Wi,t+1), ∀t

• Subproblem on the stock S :

min
S∈S

coordination terms
(
Λl

1,...,Λ
l
n

)
s.t. St+1 = f S(X l

1,t , . . . ,X
l
n,t ,St), ∀t
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Fixed point algorithm for the decomposition by component

• Original problem: dimension nT
• Decomposition: n problems of dimension T per iteration

Algorithm 1 Fixed point algorithm

Start with (X0,S0, u0) and Λ0 , set l = 0

At iteration l + 1:
• For component i = 1, . . . ,n do:

• Solve

min
(Xi ,ui)∈Xi×Ui

E
(

ji(Xi , ui) + jFO
(X l

1, . . . , Xi , . . . , X l
n)

)
+ coordination terms

s.t. Xi,t+1 = f X
i (Xi,t, Sl

t , ui,t, Wi,t+1), ∀t

with any method (here with the blackbox optimization algorithm MADS [AD06]),
solution (X l+1

i , ul+1
i )

• Compute an optimal multiplier Λl+1
i for the constraint using the adjoint state

• Similarly for the stock, solution S l+1 and optimal multiplier Λl+1
S

Stop if max number L of iterations reached, else l ← l + 1 and start new iteration
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Fixed point algorithm for the decomposition by component

• Original problem: dimension nT
• Decomposition: n problems of dimension T per iteration
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Using a variational method in a discrete case

The fixed point algorithm is based on variational techniques:

• Gradient of the system dynamics appears in the coordination terms
• Gradient of the cost appears in the multiplier update step

But the system is characterized by integer variables, they are relaxed:

• Regime of the component: Ei,t ∈ [0, 1]
• Number of spare parts: St ∈ R+

• Controls: ui,t ∈ [0, 1]

The dynamics is non-smooth, it is also relaxed:

• Relaxation controlled by a parameter α

Example for the assertion:
If the component is
broken

0 1
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Parameter tuning: procedure description

Industrial goal
Apply the decomposition method on a maintenance problem with 80 components

Some parameters need to be tuned:

• Relaxation controlled at iteration l by a parameter αl

• Update of the relaxation parameter at each iteration: αl+1 = αl +∆α

As α→∞, the relaxed dynamics converges to the real one.

• Need to tune α0 and ∆α

• Other parameters to tune: γ0,∆γ, rx , rs (not detailed in the talk)

Tuning procedure for the vector of parameters p = (α0,∆α, γ0,∆γ, rx , rs):

• Define bounds for the values of the parameters: α0 ∈ [2, 200], ∆α ∈ [0, 200], …

• Draw 200 values of p with an optimized Latin Hypercube Sampling [DCI13]

• Optimization with each of the sampled values (i.e. 200 runs) on a smaller test
case (10 components): computation time ∼ 4h
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• Other parameters to tune: γ0,∆γ, rx , rs (not detailed in the talk)

Tuning procedure for the vector of parameters p = (α0,∆α, γ0,∆γ, rx , rs):

• Define bounds for the values of the parameters: α0 ∈ [2, 200], ∆α ∈ [0, 200], …

• Draw 200 values of p with an optimized Latin Hypercube Sampling [DCI13]

• Optimization with each of the sampled values (i.e. 200 runs) on a smaller test
case (10 components): computation time ∼ 4h
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Using sensitivity analysis to tune an optimization algorithm I

Qualitative approach: Cobweb plots

→ Visualize the best combinations of parameters for the optimization

γ0
u

∆γ
rx
rs

α0

∆α

Output cost

Conclusion
No clear result, except for ∆γ and rx
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Using sensitivity analysis to tune an optimization algorithm II

Quantitative approach: the Morris method [Mor91]

→ Screening method: sensitivity of the optimization quantified by elementary effects
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Morris elementary effects

• Mean of the elementary effects µ:

→ Quantifies the influence of a param-
eter on the result of the optimization

• Standard deviation σ of the elemen-
tary effects:

→ Measures the non-linear effects and
the interactions between parameters
on the result of the optimization

Conclusion
No screening possible, all inputs are influential with non linear/interaction effects
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Parameter tuning: conclusion

Tuning procedure for the vector of parameters p = (α0,∆α, γ0,∆γ, rX , rS):

• Define bounds for the values of the parameters: α0 ∈ [2, 200], ∆α ∈ [0, 200], …

• Draw 200 values of p with an optimized Latin Hypercube Sampling

• Optimization with each of the sampled values (i.e. 200 runs) on a smaller test
case (10 components): computation time ∼ 4h

Final choice
For the 80-component case, we use the value of p that gives the best results on the
10-component case.
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Outline

1 Blackbox methods for optimal maintenance scheduling

2 A decomposition by prediction for the maintenance problem
2.1 Formalization of the maintenance optimization problem

2.2 A decomposition method component by component

2.3 Computational results on the 80-component industrial case

3 Contributions on the stochastic Auxiliary Problem Principle

4 Conclusion
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Description of the industrial case

Parameter Value

Number of components n 80
Initial number of spare parts S0 16
Horizon T 40 years
Time of supply for the spare parts 2 years
Discount factor 0.08
Yearly forced outage cost 10000 ke/ year

Comp. 1 Comp. 2 Comp. i ≥ 3

PM cost 50 ke 50 ke 50 ke
CM cost 100 ke 250 ke 200 ke
Failure distribution Weib(2.3, 10) Weib(4, 20) Weib(3, 10)
Mean time to failure 8.85 years 18.13 years 8.93 years

1 maintenance decision each year for each component:

⇒ Problem in dimension 80× 40 = 3200

Reference algorithm : MADS applied directly to the original optimization problem
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Sample Average Approximation

Original problem:
min

(X,S,u)∈X×S×U
E (j(X , u))

s.t. Θ(X ,S, u,W ) = 0

• j(X , u) represents the overall maintenance and forced outage costs

• Θ(X ,S, u,W ) represents the dynamics of the system

Sample Average Approximation with p Monte-Carlo scenarios ω1, . . . , ωp :

min
(X,S,u)∈X×S×U

1
p

p∑
k=1

j(X(ωk), u)

s.t. Θ(X(ωk),S(ωk), u,W (ωk)) = 0 ∀k
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Comparison of the Life Cycle Cost

Only CMs MADS Decomposition

Expected cost (ke) 46316 12902 11483

Gap MADS / Decomposition: 11%
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Analysis of the maintenance strategies

Decomposition MADS

Mean number of PMs/component 5.6 7.0
Mean time between PMs 6.1 years 5.0 years
Mean number of failures/component 1.40 1.18
Number of forced outages 63/10000 1/10000
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MADS: 558 PMs
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Outline

1 Blackbox methods for optimal maintenance scheduling

2 A decomposition by prediction for the maintenance problem

3 Contributions on the stochastic Auxiliary Problem Principle

4 Conclusion
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Work summary: Blackbox methods and decomposition approach

Blackbox optimization

• Use the simulation model VME: blackbox

• Contributions:

1. The EGO-FSSF algorithm: EGO with a
sequential initial design and
metamodel validation

2. Comparison with MADS:
• On an academic benchmark
• On an industrial maintenance problem
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+ Plug and play: no modelling effort
- Small space of maintenance strategies
- System with few components

Stochastic optimal control
• Analytical expression of the dynamics

→ We open the blackbox!

• Contributions in [BCCL20]:

1. Modelling of the maintenance problem

2. Resolution with a decomposition
method

Coordination

Comp 1Comp 1 Comp 2Comp 2

Stock

- Problem-specific: modelling required
+ General maintenance strategies
+ Large-scale systems
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Different optimization methods for different use cases

Blackbox optimization

• Periodic maintenance strategies

• Up to 10 components

→ Adapted for small systems when considering common maintenance operations
such as lubrication

Decomposition method

• General maintenance strategies

• Scalable method

→ Adapted for large systems when considering exceptional maintenance operations
(replacement of a large-size, expensive component)
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Conclusion

Perspectives:

• Combine MADS and EGO for a more efficient blackbox method

• Solve more complex problems: add a control for the stock management strategy,
consider degraded states for the component

• Try a stochastic approximation algorithm: the stochastic APP

• Could we apply the decomposition methodology in a robust optimization
framework?
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Benchmark of EGO and MADS on the COCO platform
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Morris method cheat sheet

Denote by p = (p1, . . . , pl) the vector of parameters

• n randomized one-at-a-time experiments
• Elementary effect while perturbating pi in experiment j:

d(j)
i (p(j)) =

A(p(j) + δei)−A(p(j))

δ

with p(j) the value of the vector of parameters in the j-th experiment, A the
model output (the optimization output in our case) and ei the i-th vector of the
canonical basis of Rl .

We define two indices for each parameter pi :

• Mean index:

µi = E
(
|d(j)

i |
)
'

1
n

n∑
j=1
|d(j)

i |

• Standard deviation index:

σi =

√
Var

(
d(j)

i

)
'

√√√√√ 1
n

n∑
j=1

d(j)
i −

1
n

n∑
j=1

d(j)
i

2
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