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All the results of the preceding lecture show that the ratie/N governs the accuracy of
a Monte-Carlo method wittV simulations. An obvious consequence of this fact is that one
always has interest to rewrite the quantity to compute agxipectation of a random variable
which has a smaller variance : this is the basic idea of veeiaeduction techniques. For
complements, we refer the reader @[?],[?] or [?].

Suppose that we want to evaludé X ). We try to find an alternative representation for this
expectation as

E(X)=E({)+C,

using a random variablg with lower variance and’ a known constant. A lot of techniques are
known in order to implement this idea. This paragraph giveswroduction to some standard
methods.

1 Control variates

The basic idea of control variate is to wrii f (X)) as
E(f(X)) = E(f(X) = M(X)) + E(h(X)),

whereE(h(X)) can be explicitly computed and @{ X ) — h(X)) is smaller than Varf (X)).
In these circumstances, we use a Monte-Carlo method to asthi f (X) — h(X)), and we
add the value oE(h(X)). Let us illustrate this principle by several financial exesp

Using call-put arbitrage formula for variance reduction Let S; be the price at time of a
given asset and denote bythe price of the European call option

C=E( " (Sr—K),),
and byP the price of the European put option

P=E (e (K—-Sr),).

There exists a relation between the price of the put and thevba&ch does not depend on the
models for the price of the asset,namely, the “call-putteabe formula” :

C—P=E( " (Sr—K)) =5 —Ke .

This formula (easily proved using linearity of the expeicta} can be used to reduce the variance
of a call option since
C=E (e_TT (K - ST)+) + Sy — Ke T,

The Monte-Carlo computation of the call is then reduced ¢octbmputation of the put option.

1



Remark 1.1 For the Black-Scholes model explicit formulas for the vaca of the put and the
call options can be obtained. In most cases, the variandeegbut option is smaller than the
variance of the call since the payoff of the put is boundedre&® the payoff of the call is not.
Thus, one should compute put option prices even when onesrzeeall prices.

Remark 1.2 Observe that call-put relations can also be obtained foaM\sptions or basket
options. B
For example, for Asian options, s&f = %fo S,ds. We have :

E((Sr—K),)-E((K-5r),) =E(Sr) - K,
and, in the Black-Scholes model,

_ 1 erT_l

T 1 T
E(ST):T/O E(Ss)ds:T/O Soe"*ds = So——.

The Kemma and Vorst method for Asian options The price of an average (or Asian) put

option with fixed strike is
1 T
M:E<e—"T <K——/ Ssds) )
T J, N

Here(S;,t > 0) is the Black Scholes process

o2
S; = xexp ((T— ?) t—l—O’Wt) .

If o andr are small enough, we can hope that

I I
— / Ssds “is not too far from”exp <— / log(Ss)ds> :
T 0 T 0

This heuristic argument suggests to t5e
Y =T (K —exp(2)), ,
with Z = 1 fOT log(Ss)ds as a control variate. As the random variablés Gaussian, we can
explicitly compute
E (e‘TT (K — eZ)+) )

This is done by using the formula

E ((K - eZ)+) = KN(—d) — EONID N (g Nar(Z)),

whered = E(Z)-log(K) lOg(K). For a proof of this formula, see exerci?g® and use the call put parit
vVar(z) y
relation.

This method is proposed ir?]and is very efficient when ~ 0.3 by year,r ~ 0.1 by year
andT ~ 1 year. Of course, if the value efandr are larger, the gain obtained with this control
variate is less significant but this method may remain useful
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Basket options. A very similar idea can be used for pricing basket optionssuhse that, for

i=1,...,d
1 p p )
(r - 52022]) T+ ZaijW%
Sk = me j=1 j=1 ,
whereW?!, ... WP are independent Brownian motions. Let 1 < i < p, be positive real
numbers such that, + - - - + a; = 1. We want to compute a put option on a basket
E ((K - X)-‘r) )

whereX = a; 5% + - - - + a4S$. The idea is to approximate

m m m

X _ 0 i sy oy wih L 8T Ty oW

wherem = a;xy + - - - + aqxq, DY % whereY is the log-normal random variable

d ;
Y = meZizl a::Z (TT+Z§:1 Uz‘jW:f">

As we can compute an explicit formula for
E[(K-Y),],

one can to use the control variate= (K —Y'), and sampl¢ X — X), — (K —Y),.

A random volatility model. Consider the pricing of an option in a Black and Scholes model
with stochastic volatility. The pric¢S;,¢t > 0) is the solution of the stochastic differential
equation

dSy = S; (rdt + o(Y;)dW,), S(0) = x,

whereos is a bounded function ang is solution of another stochastic differential equation
dY, = b(Yy)dt + c(Y,)dW,, Yy = v,
where(W;,t > 0) et (W}, t > 0) are two independent Brownian motions. We want to compute
E (e f(Sr)) .

If the volatility of the volatility (i.e. c(Y;)) is not too largeg; remains near its initial value,.
This suggests to use the control variaté” f(Sr) whereSy is the solution of

dgt = St (’f’dt + UQth) s S(O) =,
sinceE (" f(Sr)) can be obtained by an explicit Black and Scholes formula tarsample
e_’”Tf(ST) — e_’”Tf(ST).

Itis easy to check by simulation, using the standard eséfioathe variance, that this procedure
actually reduce the variance.



Using the hedge as a control variate. Another idea is to use an approximate hedge of the
option as a control variate. Léb;,t > 0) be the price of the asset. Assume that the price of
the option at time¢ can be expressed @4, S;) (this fact is satisfied for Markovian models).
Assume that, as in the previous example, an explicit apprationC (¢, z) of C(t, z) is known.
Then one can use the control variate

Y oC
' kz: %(tk’ Stk) ((St’““ o Stk) -E (Sthrl - Stk)) :
=1

If C'is closed toC and if N is large enough, a very large reduction of the variance can be
obtained.

2 Importance sampling

Importance sampling is another variance reduction praeedit is obtained by changing the
sampling law.
We start by introducing this method in a very simple cont&tppose we want to compute

E(9(X)),

X being a random variable following the densjtyr) on R, then
E(9(X)) = [ gla)f(o)dr
R

Let f be another density such th&tr) > 0 ande x)dx = 1. Clearly one can writ&(g(X))

as
Blo(0) = [ 228D fayar - (L),

whereY has densityf (x) underP. We thus can approximai&(¢g(X)) by

1 gM)f™) o 9 f(v)
n( oy T T )

where(Y;, . ..,Y,) are independant copies bt SetZ = ¢(Y)f(Y)/f(Y). We gave decreased
the variance of the simulation if V&%) < Var(g(X)). It is easy to compute the variance 2f
as
2 2
var(Z) :/ I 40 B e(x)2.

R f(2)
From this and an easy computation it follows thaj(f) > 0 and f(z) = g(z) f(z)/E(g(X))
then ValZ) = 0! Of course this result cannot be used in practice as it relieshe ex-
act knowledge of(g(X)), which is the exactly what we want to compute. Nevertheliss,
Ieads to a heuristic approach : chog4e) as a good approximation ¢§(z) f(x)| such that

z)/ [ f(x)dz can be sampled easily.



An elementary financial example Suppose thatr is a Gaussian random variable with mean
zero and unit variance, and that we want to compute

E(0(G)),

for some functionp. We choose to sample the law 6f= G + m, m being a real constant to
be determined carefully. We have :

(G ) —E (¢(C¥)e_mé+m72) .

-

~

G

~—

E(¢(G)) =E <¢(G>
This equality can be rewritten as
E(6(G)) = B (6(G +m)e ™% ).

Suppose we want to compute a European call option in the BladkScholes model, we have

5(6) = (3 — )

+ Y

and assume that << K. In this caseP(\e’® > K) is very small and unlikely the option
will be exercised. This fact can lead to a very large error stemdard Monte-Carlo method. In
order to increase to exercise probability, we can use thequre equality

E (()\eUG _ K)+) —E ((Aea(G+m) k), e‘mG—%2> |

and choosen = mg with \e?™ = K, since
1
P (Ae7@tmo) > K) = .
(re ) =5

This choice ofm is certainly not optimal; however it drastically improvéetefficiency of the
Monte-Carlo method wheh << K (see exercis@?for a mathematical hint of this fact).

The multidimensional case Monte-Carlo simulations are really useful for problemshwit
large dimension, and thus we have to extend the previousanéthmultidimensional setting.
The ideas of this section come frorf [

Let us start by considering the pricing of index options. kebe an x d matrix and
(W, t > 0) ad-dimensional Brownian motion. Denote by;, ¢ > 0) the solution of

dS! = S!(rdt+ [odWy,)
dSp = Si(rdt+ [ocdW])

whereodW,], = Y7, o;dW7.
Moreover, denote by; the value of the index

n

]t = Z aiSti,

i=1
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whereaq,, ..., a, is a given set of positive numbers such thaf  a, = 1. Suppose that we
want to compute the price of a European call option with pegtimeT” given by

h=(Ir — K), .
As

d d
i i 1 2 j
Sk = Sj exp ((r ~3 ;Uij) T+ 2. aijW%> ,

there exists a function such that
h=¢(G,...,Gq),
whereG; = W%/\/T. The price of this option can be rewritten as
E (¢(G))

whereG = (G, ..., G,) is ad-dimensional Gaussian vector with unit covariance matrix.
As in the one dimensional case, it is easy (by a change ofhlajio prove that, ifn =

(my,...,mg),

E($(G)) = E (¢<G ' m)e—mG—%Q) , o

wherem.G' = ¢ m,G; and|m|?> = 2% m?. In view of ??, the variancé/(m) of the
random variable )
Xon = (G + m)e ™6~
Vim) = E(6*(G+m)e 0" ) K (9(G)),
= B (G + mememe s eme ) L g6

_ E ¢2<G>e-m-G+¥2)—E<¢<G>>2.

The reader is refered t@] for an almost optimal way to choose the parametdrased on this
representation.

We now extend this sort of techniques to the case of path digp¢mptions. We use the
Girsanov theorem.

The Girsanov theorem and path dependent options Let (S;,¢ > 0) be the solution of
dSt = St (Tdt + O'th) s S() =T,

where(W;,t > 0) is a Brownian motion under a probabili. We want to compute the price
of a path dependent option which payoff is given by

Common examples of such a situation are



¢ Asian options whose payoff is given by .Sz, fOT S,ds),
e Maximum options whose payoff is given .S, max,<r S5).

We start by considering an elementary importance sampdicignique. It is a straightforward
extension of the technique used in the preceding exampleevesy real numbek define the
proces§W), t < T) as

W} =W, + A\t

According to Girsanov theoreifiv}, ¢ < T') is a Brownian motion under the probability law
P* defined by
PA(A) = E(L%]_A), Ae Fr,

A2

whereL) = ¢=2"r—"3_ DenoteE* the expectation under this new probabil®y'. For every
bounded function) we have
E ()(We.t < T)) = B (W(W)t < 7)) = B (L} (Wt < 7))

and thus ,
E (0(Wi,t <T)) = B (M5 p(W+ Mt < T)).

For example, if we want to compute the price of fixed strikeafdsbption given by

1 T r—22)sto
PzE(e‘”(—/ xe( 2)+Wsd8—K> >,
T Jo +

we can use the previous equality to obtain

T »2
P=E <e_’"t_’\WT_AzTT (l/ xe<r_7>s+o(ws+/\s)ds — K) ) .
T Jo +

This representation can be used in case of a deep out of theynoption (that is to say; <<
K). Then\ is chosen such that

T
£/ 6<T_§)S+U’\sds = K.
0

T

3 Antithetic variables
The use of antithetic variables is widespread in Monte-&sirhulation. This technique is often

efficient but its gains are less dramatic than other variaadection techniques.
We begin by considering a simple and instructive examplé. Le

[= /0 1 g(x)da.

If U follows a uniform law on the interval, 1], thenl — U has the same law d$, and thus

1= [ 6@+ 90 = hds = B (00 + o1 - 1))
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Therefore one can draw independent random variablés, . . ., U, following a uniform law
on [0, 1], and approximaté by

We need to compare the efficiency of this Monte-Carlo methitkd the standard one witbn
drawings
15, = 5 (9(U0) +g(U2) + -+ g(Uzn1) + 9(Usn))
= 5 (309(0) +g(U2)) + - + 3(g(Uzn—1) + 9(Uz0))) -

We will now compare the variances &f, and 9 . Observe that in doing this we assume that
most of numerical work relies in the evaluation oaind the time devoted to the simulation of
the random variables is negligible. This is often a reaiasumption.

An easy computation shows that the variance of the standéirdaor is

Var(13,) = 5 Var (¢(01)),

whereas

Var(Iy,) = %Var (%(Q(Ul) +g(1 — U1)))

: (Var(g(U1)) + Var(g(1 — Uy)) + 2Cov(g(Uh), g(1 — Uh)))

" an

1
= 5, (Var(g(th) + Cov(g(Uh), g(1 = Uh))) .

Obviously, Va(1,,) < Var(12)) if and only if Coug(U;), g(1 — Uy)) < 0. One can prove that
if fis a monotonic function this is always true (s&&for a proof) and thus the Monte-Carlo
method using antithetic variables is better than the staholae.

This ideas can be generalized in dimension greater thanwhich case we use the trans-
formation

(Ul,...,Ud) — (1—U1,...,1—Ud).

More generaly, ifX is a random variable taking its valuesRY and7" is a transformation oR?

such that the law of'(X) is the same as the law of, we can construct an antithetic method
using the equality

B(9(X)) = 5B (9(X) +9(T(X))).

Namely, if (X;,. .., X,,) are independent and sampled along the lai pive can consider the
estimator

o = 5 (g(X0) + g(T(XD) + -+ 9(X,) + 9(T(X,))

and compare it to
1

The same computations as before prove that the estimgt better than the crude one if and
only if Cov(g(X), ¢(T(X))) < 0. We now show a few elementary examples in finance.
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A toy financial example. LetG be a standard Gaussian random variable and consider the call

option
E (()\GUG —K)+) .

Clearly the law of—G is the same as the law 6f, and thus the functiof’ to be considered is
T(z) = —z. As the payoff is increasing as a function@f the following antithetic estimator
certainly reduces the variance :

1
Ion = 5 (9(G1) +9(=G1) + -+ 9(Gn) + 9(=Gn)),
whereg(z) = (Ae?® — K) ..
Antithetic variables for path-dependent options. Consider the path dependent option with

payoff at timeT’
Y (Ss,s <T),

where(S;, t > 0) is the lognormal diffusion
1 2
Sy =xexp | (r— 57 e+ oW ).

As the law of(—W,, t > 0) is the same as the law 0f;, ¢t > 0) one has

E <¢ (x exp ((r — %02)5 + UWS) s < T))
& (4 (o (1 - b o2 o 27)).

and, for appropriate functionals, the antithetic variable method may be efficient.

4 Stratification methods

These methods are widely used in statistics (§8e [Assume that we want to compute the
expectation

I=B(x) = | o)

whereX is aR¢ valued random variable with densifyx).
Let (D;,1 <i < m) be a partition oR?. I can be expressed as

m

1= B(lixeny9(X)) = 3 E(g(X)[X € D)P(X € D,),

i=1 =1

where
E(1{xen;9(X))
P(XecD,)

E(g(X)|X € D,) =



Note thatE(g(X)|X € D;) can be interpreted a&(g(X*)) where X" is a random variable
whose law is the law ok conditioned byX belongs taD;, whose density is

1
ml{r@i}f (2)da

Remark 4.1 The random variablé&® is easily simulated using an acceptance rejection proce-
dure. But this method is clearly unefficient whB0X € D;) is small.

When the numbers; = P(X € D;) can be explicitly computed, one can use a Monte-Carlo
method to approximate each conditional expectafjoa E(g(X)|X € D;) by

Fo= L (g(XH) - g(X0))

{

where(Xi,..., X} ) are independent copies &F. An estimatorf of I is then
=2 nk:
Of course the samples used to compljtare supposed to be independent and so the variance

of I is
N
E pi 27
- ny;
i=1

whereo? be the variance of(X?).
Fix the total number of simulations;" , n;, = n. This minimization the variance above,

one must choose
Pi0;

Z;‘il pioi.

For this values of;, the variance of is given in this case by

m 2
% <; pi0i> .

Note that this variance is smaller than the one obtainedowttbtratification. Indeed,

n,=mn

Var(¢(X)) = E (g(X)Q) —E (9(X)) ,
= Zpl ‘X c D (sz |X € D))

= ZpZVar X)|X € D;) +Zp2 (X)|X € D;)*

<Zpl |X€D)> .

10



Using the convexity inequality for? we obtain(3.7", pa;)” < 320 pia2 if 327" p; = 1, and
the inequality

Var (g(X)) > Zinar(g(X)\X eD;) > (me) ;

follows.

Remark 4.2 The optimal stratification involves thg’s which are seldom explicitly known. So
one needs to estimate thesé& by Monte-Carlo simulations.

Moreover note that arbitrary choices of may increase the variance. Common way to
circumvent this difficulty is to choose

The corresponding variance
I~
E Zpigi )
i=1

is always smaller than the original one®§" | p;07 < Var(g(X)). This choice is often made
when the probabilities; can be computed. For more considerations on the choice of dued
also, for hints on suitable choices of the sBtssee ).

A toy example in finance In the standard Black and Scholes model the price of a calbiopt

is
E(( - K),).
log(K /A

It is natural to use the following strata féf : eitherG < d = ) or G > d. Of course the
variance of the stratury < d is equal to zero, so if you follow the optimal choice of number
you do not have to simulate points in this stratum : all polrege to be sampled in the stratum
G > d! This can be easily done by using the (numerical) invers@éefistribution function of
a Gaussian random variable.

Of course, one does not need Monte-Carlo methods to compliteptions for the Black
and Scholes models; we now consider a more convincing exampl

Basket options Most of what follows comes from?]. The computation of an European
basket option in a multidimensional Black-Scholes modallmaexpressed as

E(h(G)),

for some functionk and forG = (G4, ...,G,,) a vector of independent standard Gaussian
random variables. Choose a vector R" such thatu| = 1 (note that< u, G >= u1G1+-- -+
u, G, is also a standard Gaussian random variable.). Then chomssition (B;,1 < i < n)
of R such that
P(<u,G >€ B;) =P(G, € B;) =1/n.

This can be done by setting

B; =IN“}((i = 1)/n), N™*(i/n)],
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where N is the distribution function of a standard Gaussian randanable andV—" is its
inverse. We then define the strata by setting

D, ={<u,z>€ B;}.
In order to implement our stratification method we need teesblo simulation problems
e sample a Gaussian random variakle, G > given that< u, G > belongs taB;,
e sample a new vectar knowing the value< u, G >.

The first problem is easily solved since the law of

(1 —1 U
N1<N +N), )

is precisely the law a standard Gaussian random variablditcmmed to be inB;.
To solve the second point, observe that

G—<u,G>u

is a Gaussian vector independentof:, G > with covariance matriX — v ® v’ (whereu ® v’
denotes the matrix defined By ® u’);; = u,;u;). LetY be a copy of the vectar. Obviously
Y— < u,Y > wuisindependent off and has the same law &5- < u, G > u. So

G=<u,G>u+G—<u,G>vand <u,G>u+Y—<uY >u,

have the same probability law. This leads to the followingudation method of+ given <
u, G >=\:

e samplen independent standard Gaussian random variables
e setG =X u+Y—-<uY >u.

To make this method efficient, the choice of the veetds crucial : an almost optimal way to
choose the vectar can be found in7].

5 Mean value or conditioning

This method uses the well known fact that conditioning redue variance. Indeed, for any
square integrable random varialffewe have

E(Z) = E(E(Z]Y)),

whereY is any random variable defined on the same probability space # is well known
thatE(Z|Y") can be written as
E(Z]Y) = o(Y),
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for some measurable functi@n Suppose in addition thét is square integrable. As the condi-
tional expectation is &2 projection

E (¢(Y)?) < E(Z%),

and thus Vap(Y)) < Var(Z2).

Of course the practical efficiency of simulatingY’) instead ofZ heavily relies on an ex-
plicit formula for the functions. This can be achieved wheéh= f(X,Y’), whereX andY are
independent random variables. In this case, we have

E(f(X,V)Y) = ¢(Y),

whereg(y) = E(f(X,v)).

A basic example. Suppose that we want to compu?g X < Y') whereX andY are inde-
pendent random variables. This situation occurs in finamben one computes the hedge of an
exchange option (or the price of a digital exchange option).

Using the preceding, we have

P(X<Y)=E(F(Y)).

whereF' is the distribution function o'. The variance reduction can be significant, especially
when the probability? (X < Y) is small.

A financial example : a stochastic volatility model. Let (WW;,¢ > 0) be a Brownian motion.
Assume thafS;, t > 0) follows a log-normal model with random volatility

dSt = St (Tdt + Utthl) ,SO =x,

where(o,,t > 0) is a given continuous stochastic process independent &rthenian motion
(Wi, t > 0). We want to compute the option price

E (e f(Sr))

wheref is a given function. Clearly can be expressed as

T T
ST = wexp (rT - / ol /2dt + / Utthl) .
0 0

As the processes,,t > 0) and(WW;, t > 0) are independent, we have

T T
. . 1
/ o dW, is equal in Iawtq/?/ oZdt x Wr.
0 0

Conditioning with respect to the processwe obtain

E (T f(Sr)) = B (b(01.0 < £ < T)).

13



where, for a fixed volatility patliw,,0 <t < T,

?/)(Ut, 0<t< T) =E (6_TTf (:L'QTT_IOT 2tdt+\/mXWT>)

1 T
:¢ TA 'Utzdt )

whereg(o) is the price of the option in the standard Black and Scholedehwith volatility o,

that is
¢(c) =E <e—7"Tf (xexp <(7‘ — “;) T+0WT>)) .

6 Exercises and problems

Exercise 6.1Let Z be a Gaussian random variable a@kidh positive real number.

1. Letd = B& 1) vrove that

S Naro)
E (175108()(€?) = B4 +3Varz <d+ \/\/ar7>
2. Prove the formula (Black and Scholes formula)
E((e - K), ) = POV (a4 Nar(Z)) - K

Exercise 6.2 Consider the case of a European call in the Black and Schotetelnwith a
stochastic interest rate. Suppose that the price of th& s$at, and the option price at time
0 is givenE(Z) with Z defined by

T T o2
Zo= I3 rod0 [ J redo— % T+oWr _ K] ‘
+

1. Prove that the variance &fis bounded byEe—"7+20Wr,

2. Prove thale 27"+ "Wr — 1, and deduce an estimate for the varianc¢ of

Exercise 6.3Let A andK be two real positive numbers such that K and.X,, be the random
variable

Xy = (AC+™ K emE

We denote its variance by?. Give an expression for the derivative ®f with respect to
m as an expectation, then deduce thitis a decreasing function of: whenm < m, =

log(K/\)/o.

Problem 6.4 The aim of this problem is to prove that the antithetic vdeabethod decreases
the variance for a function which is monotonous with respeetach of its arguments.
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1. Let f andg be two increasing functions frolR to R. Prove that, ifX andY” are two real
random variables then we have

E(f(X)g(X)+E(f(Y)g(Y)) > E(f(X)g(Y)) + E(f(Y)g(X)).
2. Deduce that, if\ is a real random variable, then
E (f(X)g(X)) = E(f(X))E (9(X)).
3. Prove thatifX;, . .., X, aren independent random variables then
E(f(X1, ..., X)g(X1, ..., X)) X,) = 6(X,),

whereg is a function which can be computed as an expectation.

4. Deduce from this property that jf and g are two increasing (with respect each of its
argument) functions then

E(f(X1,...,X)9(X1, ... X))
>E (X, X)) E (9(X1,. ... X))

5. Leth be a function from0, 1]* in R which is monotonous with respect to each of its
arguments. Let/, ..., U, ben independent random variables following the uniform law
on [0, 1]. Prove that

Cov(h(Uy,...,U)h(1 =Uy,...,1 =U,)) <0,
and deduce that in this case the antithetic variable methorkdses the variance.

Problem 6.5 Let W; = (W}, W2) is a pair of independent Brownian motions,,«s,B;,B>
and A be regular functions fromR* in R and leto be the2 x 2-matrix given by

011 012
021 022 '
Assume that the price of a financial asSetan be writen as
St = exXp (At + Bl(t)th -+ Bg(t)th) s

whereX; = (X!, X?) is a solution of

()

The aim of this problem is to compute

dX, = < on(t) ) dt + odW,. Xy = 0.

Vo=E (e h X p(s)).
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1. Prove that/, can be expressed as
Vo= B (o7 0 Wit W (1, Y, W) ).

Give an expression fox;,\, and¢.

2. Prove that/, can be expressed & = «(0, 0, 0), whereu(t, z1, z2) iS a regular solution
of a parabolic equation.

3. Compute the law of the p rfOT Wlds, WT1> and deduce a simulation method for it.

4. Propose a Monte-Carlo method for the computatioiof

5. Propose a quasi-Monte-Carlo method for the same probéémg Iy —*, the inverse of the
repartition function of a standard Gaussian random vagiabl

6. Let f andg be two continuous functions. Compute the law of

( / F(s)aw: / (s)dW;)

and propose a simulation method for this pair.

7. We assume now thatis a deterministic matrix which depends orConstruct a Monte-
Carlo method for the computation &f, avoiding the simulation of the trajectory of the
procesg X, s > 0).

Problem 6.6 Let X andY be independent real random variables. Eeand G be the distri-
bution functions ofX and G respectively We want to compute by a Monte-Carlo method the
probability

0=P(X+Y <t).

1. Propose a variance reduction procedure using a conigitjonethod.

2. We assume that' and G are (at least numerically) easily invertible. Explain haw t
implement the antithetic variates methods. Why does thihatedecrease the variance
in this case ?

3. Assume that is a function such thafo1 |h(s)|?ds < +oo. Let(U;,i > 1) be a se-
1

Ui,
qguence of independent random variates Wlth a unlform distion on[0, 1]. Prove that
i)

% SV h((i — 1+ U;) /n) has a lower variance thaﬂ SV R (U,

Problem 6.7 This problem presents methods to compute the price of a ssetaption, when
the correlation depends on time.
We denote bys! andS? the prices of two assets being the solutions of

dSt = S} (rdt + Uldwl) Sy =y,
d52 52 (rdt + o2dW?) , S8 = 5.
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wherer, oy, 09, 71, 7 are real numbers. Moreover, we assume that, t > 0) are(W2,t > 0)
two Brownian motions with respect to a given filtratigf;, ¢ > 0), such that

d< W W?>,= p(t)dt.
Herep(t) is a deterministic function such that

()] < po < 1.

We want to compute the price at timef the option with payoffi(S!, 52, s < T'), given by

S R

V,=E (e " h(SL, 82, s < T)|F).

S R

1. Let(W/,t > 0) and(W7?,t > 0) be two independent Brownian motions with respect to
(F:,t > 0). Explain how to construct two Brownian motiobig! and1/? satisfying the
previous assumptions.

2. Compute the law offOT p(s)dwl Wl) and deduce an efficient simulation method for
this vector. What happens whef¥) does not depend arn?

3. Explain how to efficiently simulate the vectg$1., S2). Propose a Monte-Carlo method
to compute the price of an option with payoff at tifie f (S5, 5%).

Problem 6.8 This exercise prove (part of) Girsanov theorem. 8,0 < t < T) be a
Brownian motion. Defind.; by
Ly — o AWr= AT

1. Prove that
E (Lrf(Wp + AT)) = E (f(Wr))

2. DefineP on all setd in Fr = o (W;,t < T) by
P(A)=E(Lr1A).
Prove thatP define a probability and that
E(X)=E (LX)
for every F--measurable bounded random variakile

3. Prove that the law of’; = Wy + AT under the probabilit;l5 is identical to the one of
Wz underP.

4. What is the law ofV, underP?
5. Compute the law of iV, W — IW,), then the law of IW,, W) underP.

6. More generally show that the law 6V, , ..., W, ) underP is the same as the law of
(Wi ..., Wy,) underP.
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Problem 6.9 Let Z be a random variable given by
7 — )\1651X1 + )\2652)(2,

where (X, X,) is a couple of real random variables akd \,, 5, and 3, are real positive
numbers. This problem studies various methods to compatpribe of an index option given
byp=P((Z>1).

1. In this question, we assume thaf,, X,) is a Gaussian vector with me@nsuch that
Var(X;) = Var(X,) = 1 and Co¥ X, X5) = p, with [p| < 1. Explain how to simulate
random samples along the law6f Describe a Monte-Carlo method allowing to estimate
p and explain how to estimate the error of the method.

2. Explain how to use low discrepancy sequences to compute

3. We assume that; and.X, are two independent Gaussian random variables with rhean
and variancé. Letm be a real number. Prove thatan be written as

p=E |o(Xy, XQ)1{)\18[11(X1+m)+)\2e[i2(X2+m)Zt}] )

for some functiony. How can we choose: such that

P()\leﬁl(XH'm) + A2 (Xatm) > t) > 1?
-4

Propose a new Monte-Carlo method which allows to computExplain how to check
on the drawings that the method does reduce the variance.

4. Assuming now thaf; and X, are two independent random variables with distribution
functionsF; (z) and F»(z) respectively. Prove that

P = E [1 - G2 (t - )\1651)(1)} >
whereG,(x) is a function such that the variance of
1-— G2 (t - )\16>\1X1) y

is always less than the variance b{heﬁlxl PhaeheXani): Propose a new Monte-Carlo
method to computg.

5. We assume again th@t’;, X,) is a Gaussian vector with me&rmnd such that VarX,) =
Var(X,) = 1 and Coy X, X5) = p, with |[p| < 1. Prove thap = E[1 — F;, (¢(X4))]
whereF, is the repartition function ok, and¢ a function to be computed.

Deduce a variance reduction method computing
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