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All the results of the preceding lecture show that the ratioσ/
√
N governs the accuracy of

a Monte-Carlo method withN simulations. An obvious consequence of this fact is that one
always has interest to rewrite the quantity to compute as theexpectation of a random variable
which has a smaller variance : this is the basic idea of variance reduction techniques. For
complements, we refer the reader to [?],[?],[?] or [?].

Suppose that we want to evaluateE (X). We try to find an alternative representation for this
expectation as

E (X) = E (Y ) + C,

using a random variableY with lower variance andC a known constant. A lot of techniques are
known in order to implement this idea. This paragraph gives an introduction to some standard
methods.

1 Control variates

The basic idea of control variate is to writeE(f(X)) as

E(f(X)) = E(f(X) − h(X)) + E(h(X)),

whereE(h(X)) can be explicitly computed and Var(f(X)−h(X)) is smaller than Var(f(X)).
In these circumstances, we use a Monte-Carlo method to estimateE(f(X) − h(X)), and we
add the value ofE(h(X)). Let us illustrate this principle by several financial examples.

Using call-put arbitrage formula for variance reduction Let St be the price at timet of a
given asset and denote byC the price of the European call option

C = E
(

e−rT (ST −K)+

)

,

and byP the price of the European put option

P = E
(

e−rT (K − ST )+
)

.

There exists a relation between the price of the put and the call which does not depend on the
models for the price of the asset,namely, the “call-put arbitrage formula” :

C − P = E
(

e−rT (ST −K)
)

= S0 −Ke−rT .

This formula (easily proved using linearity of the expectation) can be used to reduce the variance
of a call option since

C = E
(

e−rT (K − ST )+

)

+ S0 −Ke−rT .

The Monte-Carlo computation of the call is then reduced to the computation of the put option.
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Remark 1.1 For the Black-Scholes model explicit formulas for the variance of the put and the
call options can be obtained. In most cases, the variance of the put option is smaller than the
variance of the call since the payoff of the put is bounded whereas the payoff of the call is not.
Thus, one should compute put option prices even when one needs a call prices.

Remark 1.2 Observe that call-put relations can also be obtained for Asian options or basket
options.

For example, for Asian options, setS̄T = 1
T

∫

0
Ssds. We have :

E

(

(

S̄T −K
)

+

)

− E

(

(

K − S̄T

)

+

)

= E
(

S̄T

)

−K,

and, in the Black-Scholes model,

E
(

S̄T

)

=
1

T

∫ T

0

E(Ss)ds =
1

T

∫ T

0

S0e
rsds = S0

erT − 1

rT
.

The Kemma and Vorst method for Asian options The price of an average (or Asian) put
option with fixed strike is

M = E

(

e−rT

(

K − 1

T

∫ T

0

Ssds

)

+

)

.

Here(St, t ≥ 0) is the Black Scholes process

St = x exp

((

r − σ2

2

)

t+ σWt

)

.

If σ andr are small enough, we can hope that

1

T

∫ T

0

Ssds “is not too far from”exp

(

1

T

∫ T

0

log(Ss)ds

)

.

This heuristic argument suggests to useY

Y = e−rT (K − exp(Z))+ ,

with Z = 1
T

∫ T

0
log(Ss)ds as a control variate. As the random variableZ is Gaussian, we can

explicitly compute

E

(

e−rT
(

K − eZ
)

+

)

.

This is done by using the formula

E

(

(

K − eZ
)

+

)

= KN(−d) − eE(Z)+ 1
2
Var(Z)N(−d −

√

Var(Z)),

whered = E(Z)−log(K)√
Var(Z)

. For a proof of this formula, see exercise??, and use the call put parity

relation.
This method is proposed in [?] and is very efficient whenσ ≈ 0.3 by year,r ≈ 0.1 by year

andT ≈ 1 year. Of course, if the value ofσ andr are larger, the gain obtained with this control
variate is less significant but this method may remain useful.
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Basket options. A very similar idea can be used for pricing basket options. Assume that, for
i = 1, . . . , d

Si
T = xie

(

r − 1

2

p
∑

j=1

σ2
ij

)

T +

p
∑

j=1

σijW
j
T

,

whereW 1, . . . ,W p are independent Brownian motions. Letai, 1 ≤ i ≤ p, be positive real
numbers such thata1 + · · ·+ ad = 1. We want to compute a put option on a basket

E ((K −X)+) ,

whereX = a1S
1
T + · · ·+ adS

d
T . The idea is to approximate

X

m
=
a1x1

m
erT+

Pp
j=1 σ1jW j

T + · · ·+ adxd

m
erT+

Pp
j=1 σdjW j

T

wherem = a1x1 + · · ·+ adxd, by Y
m

whereY is the log-normal random variable

Y = me
Pd

i=1
aixi
m (rT+

Pp
j=1 σijW j

T ).

As we can compute an explicit formula for

E
[

(K − Y )+

]

,

one can to use the control variateZ = (K − Y )+ and sample(K −X)+ − (K − Y )+.

A random volatility model. Consider the pricing of an option in a Black and Scholes model
with stochastic volatility. The price(St, t ≥ 0) is the solution of the stochastic differential
equation

dSt = St (rdt+ σ(Yt)dWt) , S(0) = x,

whereσ is a bounded function andYt is solution of another stochastic differential equation

dYt = b(Yt)dt+ c(Yt)dW
′
t , Y0 = y,

where(Wt, t ≥ 0) et (W ′
t , t ≥ 0) are two independent Brownian motions. We want to compute

E
(

e−rTf(ST )
)

.

If the volatility of the volatility (i.e. c(Yt)) is not too large,σt remains near its initial valueσ0.
This suggests to use the control variatee−rTf(S̄T ) whereS̄T is the solution of

dS̄t = S̄t (rdt+ σ0dWt) , S(0) = x,

sinceE
(

e−rTf(S̄T )
)

can be obtained by an explicit Black and Scholes formula, andto sample

e−rTf(ST ) − e−rTf(S̄T ).

It is easy to check by simulation, using the standard estimate for the variance, that this procedure
actually reduce the variance.
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Using the hedge as a control variate. Another idea is to use an approximate hedge of the
option as a control variate. Let(St, t ≥ 0) be the price of the asset. Assume that the price of
the option at timet can be expressed asC(t, St) (this fact is satisfied for Markovian models).
Assume that, as in the previous example, an explicit approximationC̄(t, x) of C(t, x) is known.
Then one can use the control variate

Y =

N
∑

k=1

∂C̄

∂x
(tk, Stk)

((

Stk+1
− Stk

)

− E
(

Stk+1
− Stk

))

.

If C̄ is closed toC and if N is large enough, a very large reduction of the variance can be
obtained.

2 Importance sampling

Importance sampling is another variance reduction procedure. It is obtained by changing the
sampling law.

We start by introducing this method in a very simple context.Suppose we want to compute

E(g(X)),

X being a random variable following the densityf(x) onR, then

E(g(X)) =

∫

R

g(x)f(x)dx.

Let f̃ be another density such thatf̃(x) > 0 and
∫

R
f̃(x)dx = 1. Clearly one can writeE(g(X))

as

E(g(X)) =

∫

R

g(x)f(x)

f̃(x)
f̃(x)dx = E

(

g(Y )f(Y )

f̃(Y )

)

,

whereY has densitỹf(x) underP. We thus can approximateE(g(X)) by

1

n

(

g(Y1)f(Y1)

f̃(Y1)
+ · · ·+ g(Yn)f(Yn)

f̃(Yn)

)

,

where(Y1, . . . , Yn) are independant copies ofY . SetZ = g(Y )f(Y )/f̃(Y ). We gave decreased
the variance of the simulation if Var(Z) < Var(g(X)). It is easy to compute the variance ofZ
as

Var(Z) =

∫

R

g2(x)f 2(x)

f̃(x)
dx− E(g(X))2.

From this and an easy computation it follows that ifg(x) > 0 andf̃(x) = g(x)f(x)/E(g(X))
then Var(Z) = 0! Of course this result cannot be used in practice as it relieson the ex-
act knowledge ofE(g(X)), which is the exactly what we want to compute. Nevertheless,it
leads to a heuristic approach : choosef̃(x) as a good approximation of|g(x)f(x)| such that
f̃(x)/

∫

R
f̃(x)dx can be sampled easily.

4



An elementary financial example Suppose thatG is a Gaussian random variable with mean
zero and unit variance, and that we want to compute

E (φ(G)) ,

for some functionφ. We choose to sample the law ofG̃ = G + m, m being a real constant to
be determined carefully. We have :

E (φ(G)) = E

(

φ(G̃)
f(G̃)

f̃(G̃)

)

= E

(

φ(G̃)e−mG̃+ m2

2

)

.

This equality can be rewritten as

E (φ(G)) = E

(

φ(G+m)e−mG−m2

2

)

.

Suppose we want to compute a European call option in the Blackand Scholes model, we have

φ(G) =
(

λeσG −K
)

+
,

and assume thatλ << K. In this case,P(λeσG > K) is very small and unlikely the option
will be exercised. This fact can lead to a very large error in astandard Monte-Carlo method. In
order to increase to exercise probability, we can use the previous equality

E

(

(

λeσG −K
)

+

)

= E

(

(

λeσ(G+m) −K
)

+
e−mG−m2

2

)

,

and choosem = m0 with λeσm0 = K, since

P
(

λeσ(G+m0) > K
)

=
1

2
.

This choice ofm is certainly not optimal; however it drastically improves the efficiency of the
Monte-Carlo method whenλ << K (see exercise?? for a mathematical hint of this fact).

The multidimensional case Monte-Carlo simulations are really useful for problems with
large dimension, and thus we have to extend the previous method to multidimensional setting.
The ideas of this section come from [?].

Let us start by considering the pricing of index options. Letσ be an × d matrix and
(Wt, t ≥ 0) ad-dimensional Brownian motion. Denote by(St, t ≥ 0) the solution of







dS1
t = S1

t (rdt+ [σdWt]1)
. . .

dSn
t = Sn

t (rdt+ [σdWt]n)

where[σdWt]i =
∑d

j=1 σijdW
j
t .

Moreover, denote byIt the value of the index

It =

n
∑

i=1

aiS
i
t ,
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wherea1, . . . , an is a given set of positive numbers such that
∑n

i=1 ai = 1. Suppose that we
want to compute the price of a European call option with payoff at timeT given by

h = (IT −K)+ .

As

Si
T = Si

0 exp

((

r − 1

2

d
∑

j=1

σ2
ij

)

T +
d
∑

j=1

σijW
j
T

)

,

there exists a functionφ such that

h = φ (G1, . . . , Gd) ,

whereGj = W j
T/

√
T . The price of this option can be rewritten as

E (φ(G))

whereG = (G1, . . . , Gd) is ad-dimensional Gaussian vector with unit covariance matrix.
As in the one dimensional case, it is easy (by a change of variable) to prove that, ifm =

(m1, . . . , md),

E (φ(G)) = E

(

φ(G+m)e−m.G− |m|2

2

)

, (1)

wherem.G =
∑d

i=1miGi and |m|2 =
∑d

i=1m
2
i . In view of ??, the varianceV (m) of the

random variable
Xm = φ(G+m)e−m.G−

|m|2

2

is
V (m) = E

(

φ2(G+m)e−2m.G−|m|2
)

− E (φ(G))2 ,

= E

(

φ2(G+m)e−m.(G+m)+
|m|2

2 e−m.G−
|m|2

2

)

− E (φ(G))2 ,

= E

(

φ2(G)e−m.G+
|m|2

2

)

−E (φ(G))2 .

The reader is refered to [?] for an almost optimal way to choose the parameterm based on this
representation.

We now extend this sort of techniques to the case of path dependent options. We use the
Girsanov theorem.

The Girsanov theorem and path dependent options Let (St, t ≥ 0) be the solution of

dSt = St (rdt+ σdWt) , S0 = x,

where(Wt, t ≥ 0) is a Brownian motion under a probabilityP. We want to compute the price
of a path dependent option which payoff is given by

φ(St, t ≤ T ) = ψ(Wt, t ≤ T ).

Common examples of such a situation are
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• Asian options whose payoff is given byf(ST ,
∫ T

0
Ssds),

• Maximum options whose payoff is given byf(ST ,maxs≤T Ss).

We start by considering an elementary importance sampling technique. It is a straightforward
extension of the technique used in the preceding example. For every real numberλ define the
process(W λ

t , t ≤ T ) as
W λ

t := Wt + λt.

According to Girsanov theorem(W λ
t , t ≤ T ) is a Brownian motion under the probability law

P
λ defined by

P
λ(A) = E(Lλ

T1A), A ∈ FT ,

whereLλ
T = e−λWT−λ2T

2 . DenoteEλ the expectation under this new probabilityP
λ. For every

bounded functionψ we have

E (ψ(Wt, t ≤ T )) = E
λ
(

ψ(W λ
t , t ≤ T )

)

= E
(

Lλ
Tψ(W λ

t , t ≤ T )
)

,

and thus
E (ψ(Wt, t ≤ T )) = E

(

e−λWT−λ2T
2 ψ(Wt + λt, t ≤ T )

)

.

For example, if we want to compute the price of fixed strike Asian option given by

P = E

(

e−rt

(

1

T

∫ T

0

xe

“

r−σ2

2

”

s+σWsds−K

)

+

)

,

we can use the previous equality to obtain

P = E

(

e−rt−λWT−λ2T
2

(

1

T

∫ T

0

xe

“

r−σ2

2

”

s+σ(Ws+λs)
ds−K

)

+

)

.

This representation can be used in case of a deep out of the money option (that is to say,x <<
K). Thenλ is chosen such that

x

T

∫ T

0

e

“

r−σ2

2

”

s+σλs
ds = K.

3 Antithetic variables

The use of antithetic variables is widespread in Monte-Carlo simulation. This technique is often
efficient but its gains are less dramatic than other variancereduction techniques.

We begin by considering a simple and instructive example. Let

I =

∫ 1

0

g(x)dx.

If U follows a uniform law on the interval[0, 1], then1 − U has the same law asU , and thus

I =
1

2

∫ 1

0

(g(x) + g(1 − x))dx = E

(

1

2
(g(U) + g(1 − U))

)

.
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Therefore one can drawn independent random variablesU1, . . . , Un following a uniform law
on [0, 1], and approximateI by

I2n = 1
n

(

1
2
(g(U1) + g(1 − U1)) + · · · + 1

2
(g(Un) + g(1 − Un))

)

= 1
2n

(g(U1) + g(1 − U1) + · · · + g(Un) + g(1 − Un)) .

We need to compare the efficiency of this Monte-Carlo method with the standard one with2n
drawings

I0
2n = 1

2n
(g(U1) + g(U2) + · · ·+ g(U2n−1) + g(U2n))

= 1
n

(

1
2
(g(U1) + g(U2)) + · · · + 1

2
(g(U2n−1) + g(U2n))

)

.

We will now compare the variances ofI2n andI0
2n. Observe that in doing this we assume that

most of numerical work relies in the evaluation off and the time devoted to the simulation of
the random variables is negligible. This is often a realistic assumption.

An easy computation shows that the variance of the standard estimator is

Var(I0
2n) =

1

2n
Var(g(U1)) ,

whereas

Var(I2n) =
1

n
Var

(

1

2
(g(U1) + g(1 − U1))

)

=
1

4n
(Var(g(U1)) + Var(g(1 − U1)) + 2Cov(g(U1), g(1 − U1)))

=
1

2n
(Var(g(U1) + Cov(g(U1), g(1 − U1))) .

Obviously, Var(I2n) ≤ Var(I0
2n) if and only if Cov(g(U1), g(1 − U1)) ≤ 0. One can prove that

if f is a monotonic function this is always true (see?? for a proof) and thus the Monte-Carlo
method using antithetic variables is better than the standard one.

This ideas can be generalized in dimension greater than1, in which case we use the trans-
formation

(U1, . . . , Ud) → (1 − U1, . . . , 1 − Ud).

More generaly, ifX is a random variable taking its values inR
d andT is a transformation ofRd

such that the law ofT (X) is the same as the law ofX, we can construct an antithetic method
using the equality

E(g(X)) =
1

2
E (g(X) + g(T (X))) .

Namely, if(X1, . . . , Xn) are independent and sampled along the law ofX, we can consider the
estimator

I2n =
1

2n
(g(X1) + g(T (X1)) + · · · + g(Xn) + g(T (Xn)))

and compare it to

I0
2n =

1

2n
(g(X1) + g(X2)) + · · ·+ g(X2n−1) + g(X2n)) .

The same computations as before prove that the estimatorI2n is better than the crude one if and
only if Cov(g(X), g(T (X))) ≤ 0. We now show a few elementary examples in finance.
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A toy financial example. LetG be a standard Gaussian random variable and consider the call
option

E

(

(

λeσG −K
)

+

)

.

Clearly the law of−G is the same as the law ofG, and thus the functionT to be considered is
T (x) = −x. As the payoff is increasing as a function ofG, the following antithetic estimator
certainly reduces the variance :

I2n =
1

2n
(g(G1) + g(−G1) + · · · + g(Gn) + g(−Gn)) ,

whereg(x) = (λeσx −K)+.

Antithetic variables for path-dependent options. Consider the path dependent option with
payoff at timeT

ψ (Ss, s ≤ T ) ,

where(St, t ≥ 0) is the lognormal diffusion

St = x exp

(

(r − 1

2
σ2)t+ σWt

)

.

As the law of(−Wt, t ≥ 0) is the same as the law of(Wt, t ≥ 0) one has

E

(

ψ

(

x exp

(

(r − 1

2
σ2)s+ σWs

)

, s ≤ T

))

= E

(

ψ

(

x exp

(

(r − 1

2
σ2)s− σWs

)

, s ≤ T

))

,

and, for appropriate functionalsψ, the antithetic variable method may be efficient.

4 Stratification methods

These methods are widely used in statistics (see [?]). Assume that we want to compute the
expectation

I = E(g(X)) =

∫

Rd

g(x)f(x)dx,

whereX is aR
d valued random variable with densityf(x).

Let (Di, 1 ≤ i ≤ m) be a partition ofRd. I can be expressed as

I =
m
∑

i=1

E(1{X∈Di}g(X)) =
m
∑

i=1

E(g(X)|X ∈ Di)P(X ∈ Di),

where

E(g(X)|X ∈ Di) =
E(1{X∈Di}g(X))

P(X ∈ Di)
.
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Note thatE(g(X)|X ∈ Di) can be interpreted asE(g(X i)) whereX i is a random variable
whose law is the law ofX conditioned byX belongs toDi, whose density is

1
∫

Di
f(y)dy

1{x∈Di}f(x)dx.

Remark 4.1 The random variableX i is easily simulated using an acceptance rejection proce-
dure. But this method is clearly unefficient whenP(X ∈ Di) is small.

When the numberspi = P(X ∈ Di) can be explicitly computed, one can use a Monte-Carlo
method to approximate each conditional expectationIi = E(g(X)|X ∈ Di) by

Ĩi =
1

ni

(

g(X i
1) + · · ·+ g(X i

ni
)
)

,

where(X i
1, . . . , X

i
ni

) are independent copies ofX i. An estimator̃I of I is then

Ĩ =
m
∑

i=1

piĨi.

Of course the samples used to computeĨi are supposed to be independent and so the variance
of Ĩ is

m
∑

i=1

p2
i

σ2
i

ni
,

whereσ2
i be the variance ofg(X i).

Fix the total number of simulations
∑m

i=1 ni = n. This minimization the variance above,
one must choose

ni = n
piσi

∑m
i=1 piσi

.

For this values ofni, the variance of̃I is given in this case by

1

n

(

m
∑

i=1

piσi

)2

.

Note that this variance is smaller than the one obtained without stratification. Indeed,

Var(g(X)) = E
(

g(X)2
)

−E (g(X))2

=
m
∑

i=1

piE
(

g2(X)|X ∈ Di

)

−
(

m
∑

i=1

piE (g(X)|X ∈ Di)

)2

=
m
∑

i=1

piVar(g(X)|X ∈ Di) +
m
∑

i=1

piE (g(X)|X ∈ Di)
2

−

(

m
∑

i=1

piE (g(X)|X ∈ Di)

)2

.
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Using the convexity inequality forx2 we obtain(
∑m

i=1 piai)
2 ≤

∑m
i=1 pia

2
i if
∑m

i=1 pi = 1, and
the inequality

Var(g(X)) ≥
m
∑

i=1

piVar(g(X)|X ∈ Di) ≥

(

m
∑

i=1

piσi

)2

,

follows.

Remark 4.2 The optimal stratification involves theσi’s which are seldom explicitly known. So
one needs to estimate theseσi’s by Monte-Carlo simulations.

Moreover note that arbitrary choices ofni may increase the variance. Common way to
circumvent this difficulty is to choose

ni = npi.

The corresponding variance
1

n

m
∑

i=1

piσ
2
i ,

is always smaller than the original one as
∑m

i=1 piσ
2
i ≤ Var(g(X)). This choice is often made

when the probabilitiespi can be computed. For more considerations on the choice of theni and
also, for hints on suitable choices of the setsDi, see [?].

A toy example in finance In the standard Black and Scholes model the price of a call option
is

E

(

(

λeσG −K
)

+

)

.

It is natural to use the following strata forG : eitherG ≤ d = log(K/λ)
σ

orG > d. Of course the
variance of the stratumG ≤ d is equal to zero, so if you follow the optimal choice of number,
you do not have to simulate points in this stratum : all pointshave to be sampled in the stratum
G ≥ d! This can be easily done by using the (numerical) inverse of the distribution function of
a Gaussian random variable.

Of course, one does not need Monte-Carlo methods to compute call options for the Black
and Scholes models; we now consider a more convincing example.

Basket options Most of what follows comes from [?]. The computation of an European
basket option in a multidimensional Black-Scholes model can be expressed as

E(h(G)),

for some functionh and forG = (G1, . . . , Gn) a vector of independent standard Gaussian
random variables. Choose a vectoru ∈ R

n such that|u| = 1 (note that< u,G >= u1G1+· · ·+
unGn is also a standard Gaussian random variable.). Then choose apartition(Bi, 1 ≤ i ≤ n)
of R such that

P(< u,G >∈ Bi) = P(G1 ∈ Bi) = 1/n.

This can be done by setting

Bi =]N−1((i− 1)/n), N−1(i/n)],

11



whereN is the distribution function of a standard Gaussian random variable andN−1 is its
inverse. We then define the strata by setting

Di = {< u, x >∈ Bi} .

In order to implement our stratification method we need to solve two simulation problems

• sample a Gaussian random variable< u,G > given that< u,G > belongs toBi,

• sample a new vectorG knowing the value< u,G >.

The first problem is easily solved since the law of

N−1

(

i− 1

N
+
U

N

)

, (2)

is precisely the law a standard Gaussian random variable conditioned to be inBi.
To solve the second point, observe that

G− < u,G > u

is a Gaussian vector independent of< u,G > with covariance matrixI − u⊗ u′ (whereu⊗ u′

denotes the matrix defined by(u ⊗ u′)ij = uiuj). Let Y be a copy of the vectorG. Obviously
Y− < u, Y > u is independent ofG and has the same law asG− < u,G > u. So

G =< u,G > u+G− < u,G > u and < u,G > u+ Y− < u, Y > u,

have the same probability law. This leads to the following simulation method ofG given<
u,G >= λ :

• samplen independent standard Gaussian random variablesY i,

• setG = λu+ Y− < u, Y > u.

To make this method efficient, the choice of the vectoru is crucial : an almost optimal way to
choose the vectoru can be found in [?].

5 Mean value or conditioning

This method uses the well known fact that conditioning reduces the variance. Indeed, for any
square integrable random variableZ, we have

E(Z) = E(E(Z|Y )),

whereY is any random variable defined on the same probability space asZ. It is well known
thatE(Z|Y ) can be written as

E(Z|Y ) = φ(Y ),

12



for some measurable functionφ. Suppose in addition thatZ is square integrable. As the condi-
tional expectation is aL2 projection

E
(

φ(Y )2
)

≤ E(Z2),

and thus Var(φ(Y )) ≤ Var(Z).
Of course the practical efficiency of simulatingφ(Y ) instead ofZ heavily relies on an ex-

plicit formula for the functionφ. This can be achieved whenZ = f(X, Y ), whereX andY are
independent random variables. In this case, we have

E(f(X, Y )|Y ) = φ(Y ),

whereφ(y) = E(f(X, y)).

A basic example. Suppose that we want to computeP (X ≤ Y ) whereX andY are inde-
pendent random variables. This situation occurs in finance,when one computes the hedge of an
exchange option (or the price of a digital exchange option).

Using the preceding, we have

P (X ≤ Y ) = E (F (Y )) ,

whereF is the distribution function ofX. The variance reduction can be significant, especially
when the probabilityP (X ≤ Y ) is small.

A financial example : a stochastic volatility model. Let (Wt, t ≥ 0) be a Brownian motion.
Assume that(St, t ≥ 0) follows a log-normal model with random volatility

dSt = St

(

rdt+ σtdW
1
t

)

, S0 = x,

where(σt, t ≥ 0) is a given continuous stochastic process independent of theBrownian motion
(Wt, t ≥ 0). We want to compute the option price

E
(

e−rTf(ST )
)

,

wheref is a given function. ClearlyST can be expressed as

ST = x exp

(

rT −
∫ T

0

σ2
t /2dt+

∫ T

0

σtdW
1
t

)

.

As the processes(σt, t ≥ 0) and(Wt, t ≥ 0) are independent, we have

∫ T

0

σtdWt is equal in law to

√

1

T

∫ T

0

σ2
t dt×WT .

Conditioning with respect to the processσ, we obtain

E
(

e−rTf(ST )
)

= E (ψ(σt, 0 ≤ t ≤ T )) ,

13



where, for a fixed volatility path(vt, 0 ≤ t ≤ T ),

ψ(vt, 0 ≤ t ≤ T ) = E

(

e−rTf

(

xerT−
R T

0

v2
t
2

dt+
q

1
T

R T

0 v2
t dt×WT

))

= φ





√

1

T

∫ T

0

v2
t dt



 ,

whereφ(σ) is the price of the option in the standard Black and Scholes model with volatilityσ,
that is

φ(σ) = E

(

e−rTf

(

x exp

((

r − σ2

2

)

T + σWT

)))

.

6 Exercises and problems

Exercise 6.1LetZ be a Gaussian random variable andK a positive real number.

1. Letd = E(Z)−log(K)√
Var(Z)

, prove that

E
(

1Z≥log(K)(e
Z
)

= eE(Z)+ 1
2
Var(Z)N

(

d+
√

Var(Z)
)

.

2. Prove the formula (Black and Scholes formula)

E

(

(

eZ −K
)

+

)

= eE(Z)+ 1
2
Var(Z)N

(

d+
√

Var(Z)
)

−KN(d),

Exercise 6.2Consider the case of a European call in the Black and Scholes model with a
stochastic interest rate. Suppose that the price of the stock is 1, and the option price at time
0 is givenE(Z) with Z defined by

Ze−
R T

0 rθdθ
[

e
R T

0 rθdθ−σ2

2
T+σWT −K

]

+
.

1. Prove that the variance ofZ is bounded byEe−σ2T+2σWT .

2. Prove thatEe−
1
2
γ2T+γWT = 1, and deduce an estimate for the variance ofZ

Exercise 6.3Letλ andK be two real positive numbers such thatλ < K andXm be the random
variable

Xm =
(

λeσ(G+m) −K
)

+
e−mG−m2

2 .

We denote its variance byσ2
m. Give an expression for the derivative ofσ2

m with respect to
m as an expectation, then deduce thatσ2

m is a decreasing function ofm whenm ≤ m0 =
log(K/λ)/σ.

Problem 6.4 The aim of this problem is to prove that the antithetic variable method decreases
the variance for a function which is monotonous with respectto each of its arguments.
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1. Letf andg be two increasing functions fromR to R. Prove that, ifX andY are two real
random variables then we have

E (f(X)g(X)) + E (f(Y )g(Y )) ≥ E (f(X)g(Y )) + E (f(Y )g(X)) .

2. Deduce that, ifX is a real random variable, then

E (f(X)g(X)) ≥ E (f(X))E (g(X)) .

3. Prove that ifX1, . . . , Xn aren independent random variables then

E (f(X1, . . . , Xn)g(X1, . . . , Xn)|Xn) = φ(Xn),

whereφ is a function which can be computed as an expectation.

4. Deduce from this property that iff andg are two increasing (with respect each of its
argument) functions then

E (f(X1, . . . , Xn)g(X1, . . . , Xn))

≥ E (f(X1, . . . , Xn))E (g(X1, . . . , Xn)) .

5. Let h be a function from[0, 1]n in R which is monotonous with respect to each of its
arguments. LetU1, . . . , Un ben independent random variables following the uniform law
on [0, 1]. Prove that

Cov(h(U1, . . . , Un)h(1 − U1, . . . , 1 − Un)) ≤ 0,

and deduce that in this case the antithetic variable method decreases the variance.

Problem 6.5 Let Wt = (W 1
t ,W

2
t ) is a pair of independent Brownian motions,α1,α2,B1,B2

andA be regular functions fromR+ in R and letσ be the2 × 2-matrix given by
(

σ11 σ12

σ21 σ22

)

.

Assume that the price of a financial assetSt can be writen as

St = exp
(

At +B1(t)X
1
t +B2(t)X

2
t

)

,

whereXt = (X1
t , X

2
t ) is a solution of

dXt =

(

α1(t)
α2(t)

)

dt+ σdWt, X0 = x0.

The aim of this problem is to compute

V0 = E

(

e−
R T

0
X1

s dsf(ST )
)

.
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1. Prove thatV0 can be expressed as

V0 = E

(

e−λ1

R T

0 W 1
s ds−λ2

R T

0 W 2
s dsφ(T,W 1

T ,W
2
T )
)

.

Give an expression forλ1,λ2 andφ.

2. Prove thatV0 can be expressed asV0 = u(0, 0, 0), whereu(t, x1, x2) is a regular solution
of a parabolic equation.

3. Compute the law of the pair
(

∫ T

0
W 1

s ds,W
1
T

)

and deduce a simulation method for it.

4. Propose a Monte-Carlo method for the computation ofV0.

5. Propose a quasi-Monte-Carlo method for the same problem usingN−1, the inverse of the
repartition function of a standard Gaussian random variable.

6. Letf andg be two continuous functions. Compute the law of

(
∫ T

0

f(s)dW 1
s ,

∫ T

0

g(s)dW 1
s

)

and propose a simulation method for this pair.

7. We assume now thatσ is a deterministic matrix which depends ont. Construct a Monte-
Carlo method for the computation ofV0, avoiding the simulation of the trajectory of the
process(Xs, s ≥ 0).

Problem 6.6 Let X andY be independent real random variables. LetF andG be the distri-
bution functions ofX andG respectively We want to compute by a Monte-Carlo method the
probability

θ = P (X + Y ≤ t) .

1. Propose a variance reduction procedure using a conditioning method.

2. We assume thatF andG are (at least numerically) easily invertible. Explain how to
implement the antithetic variates methods. Why does this method decrease the variance
in this case ?

3. Assume thath is a function such that
∫ 1

0
|h(s)|2ds < +∞. Let (Ui, i ≥ 1) be a se-

quence of independent random variates with a uniform distribution on[0, 1]. Prove that
1

N

∑N
i=1 h ((i− 1 + Ui) /n) has a lower variance than

1

N

∑N
i=1 h (Ui) .

Problem 6.7 This problem presents methods to compute the price of a two-asset option, when
the correlation depends on time.

We denote byS1
t andS2

t the prices of two assets being the solutions of
{

dS1
t = S1

t

(

rdt+ σ1dW̄
1
t

)

, S1
0 = x1,

dS2
t = S2

t

(

rdt+ σ2dW̄
2
t

)

, S2
0 = x2.
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wherer, σ1, σ2, x1, x2 are real numbers. Moreover, we assume that(W̄ 1
t , t ≥ 0) are(W̄ 2

t , t ≥ 0)
two Brownian motions with respect to a given filtration(Ft, t ≥ 0), such that

d < W̄ 1, W̄ 2 >t= ρ(t)dt.

Hereρ(t) is a deterministic function such that

|ρ(t)| ≤ ρ0 < 1.

We want to compute the price at timet of the option with payoffh(S1
s , S

2
s , s ≤ T ), given by

Vt = E
(

e−r(T−t)h(S1
s , S

2
s , s ≤ T )|Ft

)

.

1. Let (W 1
t , t ≥ 0) and(W 2

t , t ≥ 0) be two independent Brownian motions with respect to
(Ft, t ≥ 0). Explain how to construct two Brownian motions̄W 1 andW̄ 2 satisfying the
previous assumptions.

2. Compute the law of(
∫ T

0
ρ(s)dW 1

s ,W
1
T ) and deduce an efficient simulation method for

this vector. What happens whenρ(t) does not depend ont ?

3. Explain how to efficiently simulate the vector(S1
T , S

2
T ). Propose a Monte-Carlo method

to compute the price of an option with payoff at timeT , f(S1
T , S

2
T ).

Problem 6.8 This exercise prove (part of) Girsanov theorem. Let(Wt, 0 ≤ t ≤ T ) be a
Brownian motion. DefineLT by

LT = e−λWT−λ2

2
T ,

1. Prove that
E (LTf(WT + λT )) = E (f(WT ))

2. DefineP̃ on all setA in FT = σ (Wt, t ≤ T ) by

P̃ (A) = E (LT 1A) .

Prove thatP̃ define a probability and that

Ẽ (X) = E (LTX)

for everyFT -measurable bounded random variableX.

3. Prove that the law of̃WT = WT + λT under the probabilitỹP is identical to the one of
WT underP.

4. What is the law ofW̃t underP̃?

5. Compute the law of(W̃t, W̃T − W̃t), then the law of(W̃t, W̃T ) underP̃.

6. More generally show that the law of(W̃t1 , . . . , W̃tn) underP̃ is the same as the law of
(Wt1 , . . . ,Wtn) underP.
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Problem 6.9 LetZ be a random variable given by

Z = λ1e
β1X1 + λ2e

β2X2,

where(X1, X2) is a couple of real random variables andλ1, λ2, β1 andβ2 are real positive
numbers. This problem studies various methods to compute the price of an index option given
by p = P (Z > t) .

1. In this question, we assume that(X1, X2) is a Gaussian vector with mean0 such that
Var(X1) = Var(X2) = 1 and Cov(X1, X2) = ρ, with |ρ| ≤ 1. Explain how to simulate
random samples along the law ofZ. Describe a Monte-Carlo method allowing to estimate
p and explain how to estimate the error of the method.

2. Explain how to use low discrepancy sequences to computep.

3. We assume thatX1 andX2 are two independent Gaussian random variables with mean0
and variance1. Letm be a real number. Prove thatp can be written as

p = E

[

φ(X1, X2)1{λ1eβ1(X1+m)+λ2eβ2(X2+m)≥t}
]

,

for some functionφ. How can we choosem such that

P(λ1e
β1(X1+m) + λ2e

β2(X2+m) ≥ t) ≥ 1

4
?

Propose a new Monte-Carlo method which allows to computep. Explain how to check
on the drawings that the method does reduce the variance.

4. Assuming now thatX1 andX2 are two independent random variables with distribution
functionsF1(x) andF2(x) respectively. Prove that

p = E
[

1 −G2

(

t− λ1e
β1X1

)]

,

whereG2(x) is a function such that the variance of

1 −G2

(

t− λ1e
λ1X1

)

,

is always less than the variance of1{λ1eβ1X1+λ2eλ2X2>t}. Propose a new Monte-Carlo

method to computep.

5. We assume again that(X1, X2) is a Gaussian vector with mean0 and such that Var(X1) =
Var(X2) = 1 and Cov(X1, X2) = ρ, with |ρ| ≤ 1. Prove thatp = E [1 − F2 (φ(X1))]
whereF2 is the repartition function ofX2 andφ a function to be computed.

Deduce a variance reduction method computingp.
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