The multidimensional Black-Scholes model

LAPEYRE Bernard

February 2, 2007

Basket options and control variates

We consider a *d*-dimensional basket model.

In order to correlate the assets we assume that $(W_t^1, \ldots, W_t^d, t \ge 0)$ is a vector of independent Brownian motions, that Σ is a $d \times d$ matrix, and we define σ_i by

$$\sigma_i = \sqrt{\sum_{j=1}^d \Sigma_{ij}^2},$$

and \bar{W}^i by

$$\bar{W}_t^i = \frac{[\Sigma W_t]_i}{\sigma_i} = \frac{\sum_{j=1}^d \Sigma_{ij} W_t^j}{\sigma_i}.$$

 $(\bar{W}_t^i, t \ge 0)$ is then a Brownian motion and we assume that each of the d assets has a price S_t^i given by a Black-Scholes model driven by the Brownian motion \bar{W}^i

$$\frac{dS_t^i}{S_t^i} = rdt + \sigma_i d\bar{W}_t^i, S_0^i = x_i.$$

In the numerical examples we will set d = 10 and $x_i = 100$.

Note that $\mathbf{E}\left(\bar{W}_{t}^{i}\bar{W}_{t}^{j}\right) = \rho_{ij}t$, where

$$\rho_{ij} = \frac{\sum_{k=1}^{d} \sum_{ik} \sum_{jk}}{\sigma_i \sigma_j}$$

In the numerical examples, we will assume that ρ is given by ρ^0 where $\rho_{ij}^0 = 0.5$ for $i \neq j$ and $\rho_{ii}^0 = 1$.

1. Propose a simulation methods for the vector $(\bar{W}_T^1, \ldots, \bar{W}_T^d)$ and (S_T^1, \ldots, S_T^d) .

Solution

2. We consider a basket call option on an index I_t given by

$$I_t = a_1 S_t^1 + \dots + a_d S_t^d$$

where $a_i > 0$ and $\sum_{i=1}^{d} a_i = 1$ (in numerical applications we will take $a_1 = \cdots = a_d = 1/d$).

Compute, using a Monte-Carlo method, the price of a call whose payoff is given at time T by

$$(I_T-K)_+$$

and give an estimate of the error for various values of K ($K = 0.8I_0$, $K = I_0$, $K = 1.2I_0$, $K = 1.5I_0$).

Do the same computation for an index put whose payoff is given by $(K - S_T)_+$.

Solution

3. Prove that $\mathbf{E}(I_T) = I_0 \exp(rT)$. How to use I_T as a control variate ? Relate this method to the call-put arbitrage relation. Test the efficiency of the method for various values of K.

Solution

4. When r and σ are small, justify the approximation of $\log(I_t/I_0)$ by

$$Z_T = \frac{a_1 S_0^1}{I_0} \log(S_t^1 / S_0^1) + \dots + \frac{a_d S_0^d}{I_0} \log(S_t^d / S_0^d).$$

Prove that Z_T is Gaussian with mean

$$T\sum_{i=1}^{d} \frac{a_i S_0^i}{I_0} \left(r - \sigma_i^2/2\right)$$
 and variance $T\frac{1}{I_0^2} \sum_{i=1}^{d} \sum_{j=1}^{d} J_i \rho_{ij} J_j$

where $J_i = a_i S_0^i \sigma_i$.

We recall the following formula (Black-Scholes formula, exercise)

$$\mathbf{E}\left(\left(e^{Z}-K\right)_{+}\right) = e^{\mathbf{E}(Z) + \frac{1}{2}\mathbf{Var}(Z)}N\left(d + \sqrt{\mathbf{Var}(Z)}\right) - KN(d)$$
$$\frac{\mathbf{E}(Z) - \log(K)}{\sqrt{\mathbf{Var}(Z)}}.$$

where $d = \frac{\mathbf{E}(Z) - \log(K)}{\sqrt{\operatorname{Var}(Z)}}$.

Use this formula to give an explicit expression to $\mathbf{E}\left(\left(e^{Z_T}-K\right)_+\right)$ and propose a control variate technique for the computation of the call option.

Compare this method to the standard one for different values of K.

Solution

Black-Scoles model and importance sampling

We consider now the one-dimensional Black-Scholes model

$$S_t = S_0 \exp\left(\left(r - \frac{\sigma^2}{2}\right)t + \sigma W_t\right).$$

Let $S_0 = 100$, $\sigma = 0.3$ (annual volatility) and r = 0.05 (annual exponential interest rate).

1. We are interested in the computation of the price of a call option when K is large with respect to S_0 .

Prove, using simulation, that the relative precision of the computation decrease when K increase. Take $S_0 = 100$ and K = 100, 150, 200, 250. What happen when K = 400?

Solution

2. Prove that :

$$\mathbf{E}(f(W_T)) = \mathbf{E}\left(e^{-\lambda W_T - \frac{\lambda^2 T}{2}}f(W_T + \lambda T)\right).$$

Assume $S_0 = 100$ and K = 150, propose a value for λ allowing to reduce variance. Check it simulation.

Solution