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In the framework of risk management, for the study of the sensitivity of pricing and
hedging in stochastic financial models to changes of parameters and to perturbations
of the stock prices, we propose an error calculus which is an extension of the Malliavin
calculus based on Dirichlet forms. Although useful also in physics, this error calculus is
well adapted to stochastic analysis and seems to be the best practicable in finance.

This tool is explained here intuitively and with some simple examples.
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1. INTRODUCTION

Once a model is chosen to price contingent claims and to hedge a position, the
actual questions obviously are : what is the exposure to errors on the model and to
changes in the market ? This risk assessment is usually done in terms of sensitivity
of the portfolio to variations of numerical financial quantities and parameters of the
model. Now the theory of Dirichlet forms allows to extend this sensitivity calculus
to perturbations of functional quantities like stochastic processes. The method
is an extension of Malliavin calculus. The errors are thought to be infinitesimal
random quantities with biases, variances and covariances.

Among the promising clues of application of error calculus to finance, let us
mention some directions : to manage the precision of numerical methods used to
implement the stochastic theory ; to obtain new integration by parts formulas to
speed up Monte Carlo simulations ; to study how depends the solution of an ODE
or of an SDE on a functional coefficient like the level-type volatility. We sketch
these two last directions at the end of the article.

Our presentation starts from the basic ideas and goes until examples of com-
pletely tractable computations.

2. PRESENTATION OF THE METHOD

Several technics are available to represent errors mathematically and to compute
them with formulas. The method of Dirichlet forms is based on some major his-
torical ideas which are the easiest way to penetrate it.



2.1. Propagation of errors : error calculus a la Gauss

After his argument showing the importance of the normal law ( Theoria motus cor-
porum coelestium 1809), Gauss was interested in the propagation of errors ( Theoria
Combinationis 1821). Given a quantity U = F(V;, V4, ...) function of other erro-
neous quantities Vi, V5, ... he states the problem of computing the quadratic error
to fear on U knowing the quadratic errors 0%, 03,... on Vi, Vs, ..., these errors
being supposed small and independent. His answer is the following formula

(2.1) 0[2]2(—) i + ( )2(7§_|_...

Vs
he gives also the covariance between the error on F' and the error of an other
function of the V;’s.

Formula (2.1) possesses a property which makes it highly better, in several
questions, than other formulas used here and there in textbooks during the 19th
and 20th centuries. It is a coherence property. By lack of place we refer to Bouleau
(2001) §1 for the reason of this coherence property.

In the calculus a la Gauss the errors on Vi, V5, ... are not necessarily supposed
to be independent nor constant, they can depend on V4, V5, ... : Let be given a field
of symmetric positive matrices (0;;(vy, v, . ..)) on IR? representing the conditional
variances and covariances of the errors on Vi, V5, ... given the values v, vy, ... of

Vi, Vs, ... then the error on U = F(Vy, Vs, ...) is

(22) 0'12; = Zij 375;(1)1, Vo, . . .)%(Ul, Vo, .. -)O-ij(vh Vo, . . )

which depends solely on F' as mapping.
2.2. First order and second order calculus

The following remark, although very simple, is important to understand the
role of the error calculus a la Gauss that will be used in the sequel in the extended
form allowed by Dirichlet forms.

Let us start with a quantity « with a small centred error €Y', on which acts a
non-linear regular function f. Thus we have at the beginning a random variable
written x + €Y', it has no bias (centred at the true value z) and its variance is
e20l.

After having applied the function f, using Taylor formula shows that the error
is no more centred. The bias has the same order of magnitude as the variance.
Then applying new regular non-linear functions f, gives a transport formula which
shows how errors propagate : biases and variances keep permanently the same
order of magnitude

bias,41 = bias,f, 1 (x,) + svariance, fil, | (z,) + €30(1)
variance,,; = variance, )2, 1(z,) + €30(1)

(it could be easily extended to applications from IR to IR?, for the general formulas
on the bias and the variance of the error under regular mappings see Bouleau and
Hirsch (1991) chapter I §6 corollaries 6.1.3 and 6.1.4).



We see that the calculus on the biases is a second order calculus involving the
variance. Instead, the calculus on the variances is a first order calculus not involv-
ing the biases. Surprisingly, the calculus on the second order moments of errors is
indeed simpler than the calculus on the first moments. Thus, the error calculus
on the variances appears to be necessarily the first step in an analysis of errors
propagation based on differential methods and supposing small errors.

2.3. Extended error calculus using Dirichlet forms
The error calculus of Gauss has the limitation that it has no mean of extension.

If the error on (Vi, V5, V3) is known it gives the error on any differentiable function
of (Vi, Vs, V3) but that’s all.

Now, in the usual probabilistic situations where a sequence of quantities X, Xo, ...

is given and where the errors are known on the regular functions of a finite number
of them, we would like to deduce the error on a function of an infinite number of
the X;’s or at least on some such functions.

It is actually possible to reinforce this error calculus giving it a powerful ex-
tension tool and preserving the coherence property. In addition, it will give us the
comfortable feature to handle Lipschitz functions as well.

For this we come back to the idea that the erroneous quantities are themselves
random, as Gauss had supposed for his proof of the ‘law of errors’, say defined on
(2, A,IP). The quadratic error on a random variable X is then itself a random
variable that we will denote by I'[X]. Intuitively we still suppose the errors are
infinitely small although this doesn’t appear in the notation. It is as if we had an
infinitely small unit to measure errors fixed in the whole problem. The extension
tool is the following, we assume that if X,, — X in L?(Q2, A, IP) and if the error
['[X,, — X,] on X,, — X,, can be made as small as we want in L'(Q, A, TP) for m,n
large enough, then the error I'[X,, — X] on X,, — X goes to zero in L'.

This can be axiomatized as follows : we call error structure a probability space
equipped with a local Dirichlet form possessing a carré du champ.

DEFINITION 2.1. An error structure is a term (S, A, IP,ID,T") where (2, A,IP) is
a probability space, satisfying the four properties :

1.) D is a dense subvectorspace of L*(2, A, TP).

2.) T is a positive symmetric bilinear map from ID x D into L'(IP) fulfilling the
functional calculus of class C* N Lip, what means that if u € ID™ and v € D™ for
F and G of class C' and Lipschitz from R™ [resp. R"] into R, one has Fou € ID
and Gov € ID and

[L[Fou,Gov] =3, F(u)G(v)u;,v;]  P-p.s..

3.) the bilinear form E[f, g| = IET'[f, g] is closed, i.e. ID is complete under the

norm || lp = (- 172y + €[, - ])Z.
4.)1eDD and I'[1,1] = 0.
We always write E[f] for E[f, f] and T'[f] for ['[f, f].

With this definition, the form £ defined at point 3.) is a Dirichlet form. This
notion has been introduced by A. Beurling and J. Deny as a tool in potential theory,
see Beurling and Deny (1958-59), and also Fukushima, Oshima and Takeda (1994).



The operator I' is the carré du champ or squared field operator associated with &,
it has been studied by several authors in more general contexts, see Dellacherie and
Meyer (1987), Bouleau and Hirsch (1991). Here we refer to I' as the quadratic error
operator of the error structure. Its intuitive meaning is the conditional variance of
the error.

ExAMPLE 2.1. A simple example of error structure is the term

(R, B(R), m, H'(m),7)
where m is the normal law N (0, 1) and
H'(m) = {f € L*(m) : f" in the sense of distributions € L*(m)}

with v[f] = f for f € H'(m). This structure is associated to the real valued
Ornstein-Uhlenbeck process. It models an erroneous quantity, say X, with nor-
mal law whose error does not depends on the value of X. Instead, the operator

Y[f1(z) = f?(x)x* would model an error proportional to X, that is, in the sense
of physicists, a constant proportional error. The intuitive relation giving the in-
terpretation of the quadratic error operator - is

A1f](x) = E[(error on f(X))2|X =a].

2.4. How proceeds an error calculation

Let us suppose we are drawing a triangle with a graduated rule and a protractor:
we take the polar angle of OA say #,, we put OA = /1, then we take the angle
(OA, AB) say 0,, and we put AB = /(5.

1) Choose hypotheses on errors

(1, Uy and 61, 65 and their errors can be modeled by the following probability
space and operator : :

((0, L)% x (0,7)2,B((0, L)? x (0,7)?), % dad% d% T T

where ID = {f € L?(4hdadhdlay . DL 8L 0L DB ¢ [2(dhdhdidl)y apg

_1_2 aty ata
L L w =« 0010 Oy 0617 009 L L © =

2] o] e}
PUT = GGE? + gl o, + GEE? + GR + Lok + GL)

It is easily checked that assumptions 1) 2) 3) 4) of definition 2.1 are fulfilled.
2) Compute the errors on significant quantities using the functional calculus on

r
For the coordinates of the point B for example we have :

X = 61 COS Ql + 62 COS(91 + 92) YB = 51 sin 61 + 62 SiIl(Ql + 92)
L[Xp] = 2+ {1ls(cos by + 2sin 0y sin(0y+603)) + (3(1 + 2sin? (6, +65))
[[Yg] = €2 + {1ly(cos Oy + 2 cos by cos(0;+05)) + €3(1 + 2 cos? (0, +65))
[XB, YB] = —6162 Sil’l<2(91 —|—62> — f% Sln(261—|—292)

Then, according to the problem, we can for example compute the covariance of
the errors on the area and on the perimeter of the triangle, etc., or obtain that the
proportional error on the area I'[area]/area? is maximal for 6, = /2, etc.



REMARK 2.1. If we limit our investigation to variances of the errors, that is to
computation with I', then the choice of the a priorilaws is not so crucial as it could
be thought because these computations are done almost surely (using property 2
of definition 2.1. If we are, instead, interested also in biases, then the a priori laws
are precisely relevant. Biases are represented by an operator which is the genera-
tor of the semi-group canonically associated with the error structure (see Bouleau
and Hirsch (1991) chapter I). In example 2.1 it is A[u](z) = 2u”(z) — szu/(z). If
we change the probability measure m into f.m (f regular), v being unchanged,
then the operator A becomes Au] = Afu] + év[f, u]. The operator u — ﬁy[f, ul
is first order. Absolutely continuous changes of the probability measure m corre-

spond to changes of the drift of the bias operator A, a variant of Girsanov theorem.
2.5. Comparison of approaches

Before looking at the infinite dimensional examples needed in finance, let us
try to give an outlook over the different approaches to error calculus.

At the extreme right-hand side of the table we have the usual probability
calculus in which the errors are random variables. The knowledge of the joint laws
of the quantities and their errors is supposed to be yielded by statistical methods.
The errors are finite, the propagation of the errors needs computation of image
probability laws.

deterministic probabilistic approaches

approach

Sensitivity Extended error calculus using Probability

calculus: Dirichlet forms
derivation with || first order calcu- | second order cal- theory
respect to the || lus only dealing | culus with vari-
parameters  of | with variances ances and biases
the model

infinitesimal errors finite errors

Table 2.1: Main classes of error calculi

At the extreme left-hand side the usual sensitivity calculus consists of comput-
ing derivatives with respect to parameters. Let us remark that it applies also to
functional coefficients using Fréchet or Gateaux derivatives.

Between these two purely probabilistic and purely deterministic approaches
lies the extended error calculus based on Dirichlet forms. It supposes the errors
infinitely small but takes in account some features of the probabilistic approach
allowing to put the computations and the arguments inside a powerful mathemati-
cal theory: the theory of Dirichlet forms. In the same framework can be performed
either a first order calculus on variances which is simple and significant enough for
most applications or a second order calculus dealing with both variances and biases.

2.6. Main features of the method

As above in the finite dimensional case of the triangle, the construction of an
error structure on an infinite dimensional stochastic model is done in two steps



1) If there are, as usually, deterministic parameters which can be erroneous
or with respect to which a sensitivity is wished, these parameters have to be
randomized with a priori laws.

2) Errors operators must be chosen to act on random quantities (initially ran-
dom or randomized parameters) in order to describe errors, in such a way that we
obtain mathematically an error structure.

Several properties of error structures make it easier such a construction.

1) The operation of taking the image of an error structure by a mapping is quite
natural and gives an error structure as soon as the mapping, even non injective,
satisfies some rather weak conditions. In particular if (2, 4,1P,ID,T") is an error
structure and if X is a random variable with values in IR whose components are
in D, (R% B(R%),IPyx,IDx,T'x) is an error structure where Py is the law of X

nd
* IDX = {f€L2(IP)()ZfOX€ID}
Pxlf] = E[[foX][X=a], feD

2)If f € D and F'is Lipschitz from IR to IR then Fof € ID and I'[Fo f] < kI'[f].

For example the structure of example 1 (IR, B(IR), m, H'(m), v) possesses an image

by the map & — |sin/1 + |z|| which is an error structure on [0,1]. Such a use
of non injective functions is tricky in the deterministic sensitivity calculus. More
generally if F is a contraction from IR¢ into IR in the following sense

|[F(z) = F(y)l < =L |2 — il

then for fi, fo,..., fa € ID one has F(f1, fa,..., fa) € ID and

F[F<f1’f27 s ’fd)]% S Zgle[fz]%

This property allows to consider more general images with values in metric spaces
as soon as a suitable density property is preserved, see Bouleau-Hirsch (1991)
chapter V §1.3 p 197.

3) The product of two or countably many error structures is an error structure.
It is the mathematical expression of the independence of the random variables and
the non-correlation of the errors. By this way error structures on infinite dimen-
sional spaces are easily obtained, e.g. on the Wiener space, as we will see in the
next part, or on the general Poisson space or other spaces of stochastic processes,
see Bouleau and Hirsch (1991), Ma and Roeckner (1992), Bouleau (1995).

For later reference we give the following statement.
THEOREM 2.1. Product structures

Let S, = (Qy, Frymp, D, T',), n >0 be error structures.

The term S = (0, F,m,ID,I") defined below is an error structure denoted S =
[172, Sy and called the product structure of the S,,:

(Qv]:> m) = (HZO:() O, Z‘Lo fn,HZO:o mn)

D= {f e L*m): VYn, for m-a.e. w= (wp,ws,...)
the function x — f(wo,...,Wn_1,%,Wnt1,...) € D,
and [, Tulf] dm < +oo}

and for f €D T[f] =X, Tulf]-



Thanks to these properties, is possible the construction of a variety of error
structures on a given probabilistic model. Now for a rational treatment of a practi-
cal case these error hypotheses should be obtained by statistical methods. This is
connected with the Fisher information theory, see Bouleau (2001). Anyhow, these
statistical methods are not yet sufficiently studied to be exposed here, especially
in the infinite dimensional case we have to use in finance. Thus we limit ourselves
to error computations with a priori errors chosen the most likely we can. We will
see that it is significant already.

3. ERROR STRUCTURES ON THE WIENER SPACE

Let us first recall the classical construction of the Brownian motion using the
Wiener integral.

3.1. The Wiener space as Gaussian product space

Since we aim here at applications we will consider only the case where a mea-
sured space (E, £, p) is given which is either (R, B(IR,), dt) or ([0, 1], B([0, 1]), dt)
and a one-dimensional Brownian motion (for the abstract Wiener space setting see
Bouleau and Hirsch (1991)).

Let (x») be an orthonormal basis of L*(E, &, 1) and let (g,) be a sequence of
i.i.d. reduced Gaussian variables defined on a probability space (€2, A, IP). To each
f e L*(E, &, n) we associate I(f) € L*(Q, A, TP) by

I(f) =3, < f:Xn > Gn-

then I is an isometric homomorphism from the Hilbert space L*(E, &, i) into the
Hilbert space L?(2, A, TP). If f and g are orthogonal in L*(E, &, i), I(f) and I(g)
are independent Gaussian random variables and putting

(31) B=>,< ].[07,5},)(11 > gn (t S [O, 1] orte ]1:{4_)

defines a Gaussian stochastic process which is easily shown to be a standard Brow-
nian motion. By extending the case where f is a step function, the random variable
I(f) is denoted by [f(s) dBs and defines the Wiener integral of f. In this con-
struction we can suppose the space (€2, A, IP) be a product space:

(Q, A, P) = (R,B(R),m)Y  m=N(0,1)

and the g,,’s be the coordinate mappings. Thus w = (wp, . ..,wy,...) and g,(w) =
W -

By the functional calculus, as soon as ID and I' define an error structure on
(Q, A, 1P), say (2, A,IP,ID,T") for which the g,’s are in ID, this structure is deter-
mined by the quantities

(3.2) L[ff(s) dBs] f € Dy dense in L?[0, 1] (resp. L*[IR.])
because it follows that if F € C* N Lip(IR")

L[F(f f1dB, ..., [ frdB)] =
SE L F([ fidB,...) Fi(f fidB,..)Ulf fidB, [ f;dB]



and the random variables F([ fidB, ..., [ fudB) for F € C'NLip(IR¥) and f; € D,
are a dense subspace of L?(IP).

3.2. The Ornstein-Uhlenbeck structure

Taking T[f f(s) dBs] = ||f||3: and Dy = L*0,1] gives a closable structure
which is of the form

(Q7 .A, P, D, F) = ;:O:O((IRv B<IR)7 m, dp, 7n>

where each factor (IR, B(IR), m,d,,,) is here a copy of (IR, B(IR), m, H'(m),~)
the Ornstein-Uhlenbeck structure of example 2.1. This error structure is induced
by the following perturbation of the Brownian path :

(3.3) w(t) — Vel w(t) + /1 —e=? &(t)

where @ is an independent Brownian motion and 6 a vanishing parameter.
3.3. Finer structures of product type

Taking T'[f f(s) dBs] = ||f'||3: and Dy = C*[0, 1] or more generally for ¢ € IN*
(or even ¢ € RY) T[[ f(s) dBs] = |92 and Dy = C7[0,1] give also closable
structures. For a suitable choice of the basis (x,) they are also of the form

(Q,AP,D,T) =12, (R, B(IR), m,dy, V).

3.4. Error structures of generalised Mehler type

Let p; be a strongly continuous symmetric contraction semi-group on L?(IR, dt)
with generator (a, Da) (a being a non necessarily local operator), let us consider the
associated closed positive quadratic form (e, D(y/—a)) defined by [f] = ||v/—af]?
(a non necessarily Dirichlet form), then the structure on the Wiener space induced
by the formula

Lo f(s) dB] =elf],  feD(/(-a))

is closable and thus defines an error structure.
It corresponds to the semigroup P, on L*(9, A, IP) given by

PF=B[F ([l dBa+ [ (/T=pilp,)@) dB,)]

where /I — p, is the positive square root of the positive operator I — p, on
L*(R4,dt) and B is an auxiliary independent Brownian motion.

REMARK 3.1. When a financial model is studied by means of a development in
series with respect to a small random change in the coefficients (like small noise
expansion of a stochastic volatility) it is possible to induce from the perturbation
an error structure which manages the variances and the biases at the limit when
the perturbation is infinitely small. We cannot describe the details here of this
standard method. That yields often error structures outside the class of general-
ized Mehler type, but still defined by the quantities (3.2).



3.5. The gradient operator and the derivative

In any error structure whose space ID is separable, we can define a gradient
operator D on ID with values in L?*(IP, H) where H is an auxiliary Hilbert space:
D is a continuous application from ID into L?(IP, H) such that

1)vu,VvelD <DUDV >y=T[UV]

2) VE € C'NLip(RY), VX € D D(FoX)=Y% FoXDX; IP-as.
Then if U,V € ID N L* which is an algebra, it holds D(UV') = DU.V + U.DV.
For example in the case of the Ornstein-Uhlenbeck structure, taking H = L*(IR.,)
gives

. Vh e L*(IRy) D,.[f h(s)dBs] = h

. with suitable hypotheses on the adapted processe H; (see Nualart (1995))

D, [[ Hs dBy)(t) = Hy + [(Dy Hy)(t) dBs

. If U € ID,, the Clark formula

U = U + J3° E[D,,U(t)| 5] dB:.
Now a slight variant of the gradient operator, the notion of ‘derivative’, is useful
when computing errors on solutions of stochastic differential equations thanks to
the tool of Ito’s formula (this notion has been used and studied by Feyel and la
Pradelle (1989)).
DEFINITION 3.1. Let (Bt)tZO be an auziliary independent Brownian motion. For
U € ID the derivative U* is a random variable depending on w and & defined by

U# = [*°(DyU)(w,t) dB;.

From the properties of the gradient one gets
. T[U] = E[U#?]
. For F € C'n Lip (FoU)*=F oU.U#
(f HydB,)* = [ H,dB, + [ H* dB,.

3.6. The weighted Ornstein-Uhlenbeck case

Its meaning for financial models is to consider non necessarly time translation
invariant perturbations of the underlying stock price. It is a special case of the
generalised Mehler type:

C[f f(t)dBy] = [a(t)f*(t)dt  fe€D(R;)  « measurable >0

. Vhe LX(Ry, (L+a)dt) D[ h(s)dBy] = \Ja(t)h

. ([ h(s)dBy)# = [ y/a(t) h(t) dB,
. with suitable hypotheses on the adapted processe H,

D[[ H,dB,](t) = \/a(t)H, + [(DH,)(t) dB

([ H,dB,) fH./ s)dB, +fH#dB
MU eDn ]D,m DU = \/_DOUU
The generator (A, DA) of this structure can easily be seen to verify

Al[ fdB] = = [a(s)f(s)dBs  f € D(Ry)

which permits (see formula (6.1) in the concluding remarks) to compute A on a
dense part of DA.



In the sequel, we focuse on the Ornstein-Uhlenbeck case, but the two following
lemmas are also valid in the weighted Ornstein-Uhlenbeck case, and part III and
IV extend to that case with only minor changes.

LEMMA 3.1.The conditional expectation operators IE[.|F;| are orthogonal projec-
tors in ID on errors sub-structures (closed sub-vector-spaces of ID stable by Lipschitz
functions).

LEMMA 3.2.Under the same hypotheses, let I'y be defined from T by

DS f(s) dBs)] = TI(J 1.0/ (s) dBs)]
and let U — U™t the derivation operator associated with Ty, then for U € D:
(E[U|F])" = BU|F].
4. APPLICATION TO FINANCIAL MODELS

4.1. The Black-Scholes case

Notation

The interest rate for the bond is constant, the asset (S;):>o is modeled as the
solution of the equation dS; = S;(udt + 0dBy). For a European option of the form
f(S7), T fixed deterministic time (see Lamberton and Lapeyre (1997)), the value
at time ¢ € [0, 7] of the option is V; = F(t, S¢, 0,7) with

_y_
2

NoT.

If f is Borel with linear growth, the function F'is C' in ¢t € [0, T[, C? and Lipschitz
in z €]0, oo, let us put

(41) F(t,.f,O" 7”) — e—T(T—t) Af(xe( )(T t)-l—oy\/_)

delta; = 25(t, Sy, 0,7) gamma, = 8:02 L(t,S;,0o,7)
I satisfies the equation %—f + - 22 %jf; + TJZ —rEF=0.

Hypotheses

Our choice is governed by an aim of simplicity.

a) The error on (B;):>o is represented by the Ornstein-Uhlenbeck error struc-
ture.

b) The errors on the initial value Sy, on the volatility o, on the rate r are
‘constant proportional errors’ in the sense of physicists :

¢) We chose a priori laws : lognormal laws on Sy and o, an exponential law on

d) We suppose (By);>0 and the randomized quantities are independent and
their errors uncorrelated. (In a more complete study, these independence and



uncorrelation assumptions would have to be relaxed, in particular to express links
between errors on the asset (S;) and on the volatility o).

In other words, the error on a regular function F((Bi)i>0, So,0,7) will be rep-
resented by the product error structure i.e.

L[F((Bt)iz0, S0, 0,7)] = TouF (., So,0,7)] + FE S5 + Fo® + F*r?

where I',, is the Ornstein-Uhlenbeck quadratic error operator.

Actually, the theory tells us that hedging and pricing formulas do not involve
the drift coefficient p. So we may take y = r, i.e. we work under the probability
IP such that S; = e~"'S,, the discounted stock price, is a martingale. Since S; =

Soe”B“”(T_g)t we have
[[S,] = S*Ho? [T a(s)ds + (B, — ot)?c? + 2},
4.2. Errors on the value and the hedge of a European option
Let us consider an option of the form f(Sr) where f is Lipschitz.

By the independence hypothesis, the errors on B, Sy, o, r can be managed
separately. Let us denote I'g, I'g, I',, I, the corresponding quadratic operators.

a) Error on the value of the option

The value of the option is V; = F (¢, S;, 0,r) with F' given by (4.1)
al)Error due to B

B being present only in S;, we have I'g[V}] = (%—i(t, Sy, 0,7))*T'g[S;] so

Ip[V)] = delta,® T'5[S)]

(4.2) TplVi,Vi] = deltadelta; T'5[S,, S.]

with T'g[Ss, Si] = SsSio? (sAt).
PRoOPOSITION 4.1. If f is Lipschitz, V; is in IDg and when t TT
Vi =F(t,St,0,1) — f(Sr) inIDp and P — a.s.
I3[V = (delta,)*T'[S;] — f2(Sp)Ts[Sr] in L' and IP — a.s.

proof. Let us suppose first f € C' N Lip. By the relation
V, = Ble " £(Sr)| 7]

it follows that V; — f(Sr) in LP 1 <p < oo and a.s.
A computation that we shall do in a more general framework later, and that
we do not repeat here, gives

‘/;5# = e_T(T_t)]E[f,(ST>ST|ft]UEt

thus ) A
Vi* — f(Sr)SroBr in L*(IP, L*(Q, IP))

and thanks f(S7)# = f/(Sr)SroBr we obtain
Vi — f(Sr) inIDp and IP — a.s.



and
PpVi] = e TO(E[f'(Sr)Sr|F)) ot — f2(Sr)Ts[S7]
in L' and IP-a.s. O
The case f only Lipschitz comes from a special property of the one-dimentional
functional calculus in error structures (see Bouleau and Hirsch (1991) chapter IIT
prop. 2.1.5), the preceding argument still remains valid.

a2) Error due to o.
We suppose here f € C' N Lip. As V; = F(t,S;,0,7)

Lo Vi = {EL((t, St oy r) Gt + Fo((t, Si,0,1)} 0

and the computation can be done using the integral representation (4.1), puting
F(t, z,0) =" TVEt, 2e™ @0 o 1)
and remarking that by (4.1) we have

oF a?x? 92°F _ OF _ _ 2(T—t) 9F oF _ _ 20°F
ot T 2 guz =0 o0 o ot 5 = (I' = t)oz* 53

and we obtain

[,[Vi] = {(T —t)oS?gamma, + S;(B; — ot)delta,}* o
(4.3) = {vega, + S;(B; — ot)delta,}* o*

One gets immediately, for example, the well-known fact that for two European op-
tions of payoffs f(1)(Sr) and f(2)(Sr), an option with payoff ai f(1)(St) + as f(2)(St)
would have a value Vy at ¢ = 0 insensitive to o, i.e. I';[Vy] = 0, as soon as
a; gamma(()l) + as gamma((f) = 0.
a3) Error due to r.

We have similarly

I Vi) = A{F((t, 5, 0, r)% + F((t, Sy, 0,7)} 1?

thus
(4.4) I,[Vi] = {tS.delta, + rho,}* r*.
As a consequence, given several options of payoffs f;)(Sr), i =1,...,k, the option

of payoff 3, a; f(;(Sr) has a value at t =0 insensitive to both o and r (i.e. I';[Vj] =
[, [Vo] = 0) if the vector a = (a;) is orthogonal to the two vectors (gamma(()i)) and
(rho((f)).

b) Error on the hedging portfolio

Here we limit ourselves to the error due to (B;). We suppose f and f’ in
C' N Lip. The hedging equation is

e " F(t, Sy, 0,1) = F(0,Sy,0,7) + [ H, dS,

where the adapted process H; is the quantity of stock in the portfolio :

F 1
H, = delta, = a—(t, Sy, o,1) = 6’T(T*t)]E[f’(ST)ST\ft]—.
ox St



By the same method as for V; we obtain

(4 5) FB [Ht] - (gammat)2FB [St]
' I'p[Hs, H;] = gamma,gamma,l'5[Ss, S

PROPOSITION 4.2. If f, f' € C* N Lip, then H, € D and ast T T

Hy — f'(Sr) in IDg and a.s.
Up[H] — [f"(Sr)Ts[Sr] in L'(IP) and a.s.

REMARK 4.1. These results show that the Greeks introduced by practioners have
a direct sense as sensitivity of the value V; and of the hedging H; to perturbations.
This is of course not surprising, the method makes more precise the correlations
of errors. It gives also a tool to study the absolute continuity of joint laws as we
explain now.

The preceding computations show easily that in the Black-Scholes model, if U,
and U, are two random variables taken among the following quantities defined at
a fixed instant t: Sy, Vi(f1), Vi(f2), Hi(f1), Hi(f2), then the matrix I'[U;, U;] is
singular: the errors on these quantities are linked. This comes from the fact that
the law of e.g. the pair (V;(f1), Vi(f2)) is carried by the A-parametrized curve:

y= exp—r(T —t)Pr_+fi(N)
r= exp—r(T —t)Pr_ifo(N)

where (P;) is the transition semigroup of (S5;). The same phenomenon happens in
any more general Markovian model.

On the contrary the random quantities involving several different instants have
generally non-linked errors. Thus for example if U; = Sp and U = fOT e *HySsds
(discounted immobilization of the portfolio) the matrix I'[U;, U,] is a.s. regular as
soon as f is not constant, hence, by the absolute continuity criterion (Bouleau and
Hirsch (1986) or Nualart (1995) thm 2.1.2) the law of the pair (Sz, [y e *H,S,ds)
possesses a density.

c) More general errors on (By)

The relations (4.2) (4.3) (4.4) (4.5) still hold in the weighted Ornstein-Uhlen-
beck case, and also, with suitable hypotheses, if we consider more general error
structures on the Wiener space. Let us consider, as mentioned above, a structure
induced by a closed positive quadratic form € on L?(IR,, dt) with

Ul f dB] = elf]

for f in the domain of £ with, for example,

) elf] = 5 S (f(s) — F(1)B(s)B(E) dsdt
i) elf] = i (F9(s))ds

where @ is the fractional derivative of order g,

then the formulas
FB[‘/;] = (deltat)Q FB [St]

Ip[H)] = (gamma,)’T'5[S]



remain valid as soon as S; € D i.e.
in case i) if 8 € L'(IR,dt) and T'5[S;] = 52 22 [ B(s)ds [, B(s)ds
in case ii) if ¢ € (0,3) and T'p[S)] = SPo? 3202, %m.

Now in the case

iii) elf] = oo (Zi= 1az(3)f(i)(3))2 ds

we do not have anymore 1y € dom(e), hence B; doesn’t belong to ID. Such error
structures are more convenient to model errors on processes with finite variation.

5. MODELS WITH LEVEL DEPENDENT VOLATILITY

We will display the method in the case of a complete market, the probability being
a martingale measure and for a simple one-dimensional diffusion model.
The stock is supposed to be the solution of the equation

dXt = XtO'(t7 Xt) dBt + Xt?"(t) dt.

We limit the study to the error due to (B;) which is defined by an Ornstein-Uhlen-
beck structure:

DU h(s) dBy) = 52 h(s) ds.
The rate is deterministic, the function o(t,z) will be supposed bounded with

bounded derivative in z uniformly for ¢ € [0, T7.
Let f(Xr) be a European option. Its value at time ¢ is

Ve = Elexp(~ [ r(s)ds) f(Xr)|F]

the hedging portfolio is given by the adapted process H; which satisfies
(5.1) Vi = exp(— [{r(s)ds)V, = Vi + [ Hy dX,
where X, = exp(— [ r(s)ds)X,.

We proceed as follows: from the equation

X, = X0+/X<73XdB+/ §)X,ds

we obtain
Xj:/u( (sX)+Xa(sX))X#dB+/XasX dB+/ ) X#ds
0

this equation is solved by putting

Ky, = o(s, Xs) + Xs0o(s, Xs)
My = exp{f¢ K.dB, — 3§ ¢ K2ds + [ r(s)ds}

and remarking that

XO'SX)

X# =M, / B,

S

a) Let us first suppose f € C'N Lip and let us define Y = exp(— [ r(s)ds) f(X7).
To compute (IE[Y|F;])# we apply the second lemma of section 3:

Y# — exp<— ﬁTT(S)dS)f,<XT)X#t



and
(B[Y |F])#* = exp(— [ (s)ds)E[f'(Xr) X7*| Fi]

Xso(s, X
— exp(— 7 (s)as L () Myl ] [ o7
and the second lemma gives

[[Vi] = TE[Y|F]] 22
= exp(=2 [ r(s)ds) (E[f (Xz) Mr| F])? f§ 262D ds

this yields also the cross error of V; and V; which is usefull to compute errors on

random variables such that [j h(s)dVs or [} h(s)Vids.

L[V, Vil = exp(— [, r(s)ds — J, r(s)ds)
(5.3) E[f'(Xr) Mz |FJELf (X7) Mr|F]

sAt X202 (u,Xu)
o g du.

dB,

(5.2)

With our hypotheses as t T T
S R
0

in L'(IP) and a.s.
b) Now to deal with Hy, let us remark first that H, is easily obtained by the Clark
formula. The formula 5.1 gives

Huexp(— J{ r(s)ds) Xio(Xe) = Daalexp(— i v(s)ds) f(X1)
where D, 4 is the adapted O-U-gradient defined by
Dl Z)(t) = E[DZ(1) ).
Since
Dlexp(— [y r(s)ds) f(Xr)] = exp(— Jy r(s)ds)f'(X7)(DXr)(1)

we have from the computation done for V;

XtO'(t, Xt)

Dlexp(— Jy r(s)ds)f(Xr)] = exp(— Jy r(s)ds)E[f'(Xr) Mz |F)] M,

Thus
H; = exp(— [ r(s)ds)E [f(XT)MT|ft]

Now supposing f and f' € C' N Lip we apply the same method as for obtaining
['[V;] which leads to

['[H] = exp(—thTr(s)ds)

(5.4 (B0 e v+ 60217

t

t Xgaz(u, Xu)

e du

T T
with 27 = / L.dB, — / K,LM.,ds
t t

and K, = o(s,X,)+ Xs0.(s,X;)
Ly = 20(s,X,) + Xs002(s, X).



If we introduce the following notation which, in our present Markovian model,
gives the probabilistic interpretation of the usual Greeks

delta, = Hy = exp(— [, r(s)d s)IE(f’ (Xr) Mz | F 5,
gamma, = exp(— f;' r(s)ds)E [Mz(f"( )+ Mgf(XT)ZtT\ft]

we can summarize some formulas of this case with level dependent volatility by

Vi# = delta, X[

IV = delta;T[X,] [[V,,Vi] = deltadelta,I[X,, X;]

Ht# = gammatXt ['[Hg, Hi) = gamma,gamma,l'[ X, X;]
[[H) = gamma’T[X;] T[V,,H] = delta,gamma,'[X,, X;]
[[X,] = M? twdu I[X,, X = MM, [; sAt Wdu

6. CONCLUDING REMARKS

The error calculus based on Dirichlet forms begins at present to be used by mod-
elisators in economics and finance. It is too early to give an account of its ap-
plications. What we have done is just presentating how this tool runs through
stochastic models including SDE’s.

Among the directions of research let us mention that this approach yields new
integration by parts formulas which have been shown to be useful to compute the
Greeks by Monte Carlo methods. Also, it allows to perform Malliavin calculus on
the Monte Carlo sample space, that is after discretization instead of before. Let
us indicate briefly the idea :

Consider the error structure

(QvA>IP71DaF) = (( ) (O )7 513, dL V)N*
d= {u € L?(0,1) (1 —z)u'(z) € Hy(0,1)}
Yu)(z) = 2%(1 — 2)*u(2).

Let us denote U, the coordinate maps, taking H = ¢? this structure admits the
following gradient : if F' = f(Uy,Us,...,U,,...) belongs to ID

DF = (f/(Uy,Usy ..., Uy, .. JUL(1 = Up) )1

and if a € /2 we have the following integration by parts formula
[E[< DF,a >p] = —IE[F Y2 a,(1 —2U,)].

Let us take for example the following discrete approximation of an SDE:
Spt1 =Sn +0(Sn)(Yos1 — Ya) So =z,

where Y, 11 — Y, = A &(n+1,U,41), we get easily under regularity assumptions on
¢ and o :

%IE)[\II(SN)] = E[¥(Sy)(¢ “’UIS(%?@(?fSUl ’)Ul)) — %)
KEN(SN)] = —E[(Sy) S g g




As a second direction of research, let us sketch how to do a sensitivity analysis
of the solution of an SDE with respect to a functional coefficient.
Let us consider that the level dependent volatility of section 5 is a function in
a vector space €); equipped with an error structure (£24,.4;, P1,IDq,T';) such that
IP;-almost every function in €; be of class C' and Lipschitz, and that the linear
form V, defined by
Va(o) = o(x)

belong to ID;. Defining the notation o# by o#(z) = (V,)# (o) we can show that if
Y is an erroneous independent random variable defined on an other error structure,
the following formula holds

(c(Y)* =o® (V) + (Y)Y,

Then similar computations to those of section 5 can be done. For example suppose
o is represented for numerical evaluation as

o(t,z) =) ap,tPz?
pq

) : _ 2 — 3
where the a,,’s are random and erroneous with I'lay] = a2, Tlay,ay] = 0 if

(p,q) # (i,7), we obtain that the error on o transfers to X; in the following way:

F[Xt] = Mt2 Z

p.q

Pq

t op X aqt+1 2
( > 5\2 (dB, — K, ds)) a2
where M,;, K; have the same meaning as in section 5.

Because estimates of biases are important in financial models especially for
pricing, see e.g. Hull and White (1988), let us mention shortly what would be
the second order calculus with variances and biases mentionned above in the table
2.1 of section 2. In an error structure (2, A,IP,ID,T") the bias of the error on a
random variable X (i.e. the conditional expectation of the error) is represented by
the generator A of the semi-group canonically associated with the error structure
acting on X, see Bouleau and Hirsch (1991). It has a domain DA smaller than ID.
The functional calculus on A follows the following rules: for all F' € C*(IRY), Vf;
locally in DA, i =1,...,d, then F(fy,..., fs) is locally in DA and

d

(61) AR = S FUDAL + 5 3 FATIf £

i=1 i,j=1

On the Black-Scholes model, with the O-U hypotheses and concerning solely the
error due to (B;), we obtain :

CBl=t, TS =S, A[B))= -B,,
AlS] = —SioB; + %O‘QStt, AV, = delta, A[S| + %gammatF[St],
A[H,]= gamma, A[S,] + 1 2F (¢ S, 0, 7)T[S,].

Except at time ¢ = 0 (since the perturbation 3.3 doesn’t move at t = 0 but we
can imagine it starts farther in the past) we see that an error on the path of the
stock (S¢):>0 induces biases on the price V; and on the hedge H; (involving the
‘Greek’ %). May these biases due to a fuzzy stock price be an interpretation of the



bid-ask 7 This interesting question needs certainly more complete investigations
since when a transaction occurs the price is erroneous while the amount of stock
which is bought or sold is not. Anyhow it is an auspicious project to understand
and to take in account the consequences of the bid-ask on pricing and hedging
procedures of tractable financial models with the help of the error calculus on
variances (operator I') and biases (operator A).
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