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These lectures propose tools for studying sensitivity of models to scalar or functional parameters. A Dirichlet
forms based language is developed in order to manage the propagation of the variances and the biases of errors
through mathematical models. Examples will be given in physics, numerical analysis and finance.

In the two first lectures, the intuitive calculus of Gauss for the propagation of errors will be connected with
the rigorous mathematical framework of error structures. Then the main features of error structures will be
studied until infinite products in order to construct error structures on functional spaces and on the Monte Carlo
space.

The third lecture will be devoted to error calculus on the Wiener space with the classical Ornstein-Uhlenbeck
structure or generalized Mehler-type structures with applications to SDE and finance.

In the fourth lecture will be tackled the question of identifying an error structure. The main role of the Fisher
information will be exposed and also other methods based on asymptotic Hopf-type theorems or based on
Donsker invariance theorem.

Reference : N. Bouleau, Error Calculus for Finance and Physics, De Gruyter 2003.



First lecture Propagation of errors : from Gauss to Dirichlet forms

A) Propagation of errors
- 1 Historical outlook (or landscape)
- the propagation calculus of Gauss
- its coherence property, non coherence of other formulae
- 2 The propagation of errors
- by non linear maps : variances and bias
- bias by quadratic map
- intuitive error calculus
- 3 Examples of propagation calculations
- Gaussian variables
- triangle
- oscillographe
- 4 Examples of dynamical systems sensitivity analysis
- Feigenbaum transition
- piecewise linear system
- Lorenz attractor
B) Error structures

- Languages with or without extension tool : the example of probability theory
- Adding an extension tool to the language of Gauss : the idea

- Definition of error structures

- Examples

- Comparison of approaches

Second lecture Error structures and sensitivity analysis

C) Properties of error structures
- recalling the definition
- Lipschitzian calculus
- images
- densities and Dloc
- finite and infinite products
- the gradient and the sharp
- Integration by part formulae

D) Application in simulation : error calculus on the Monte Carlo space
- structures with or without border terms
- Sensitivity analysis of a Markov chain

E) Application in numerical analysis ' -
- sensitivity of an ODE to a functional coefficient
- comments on finite elements methods



Third lecture New tools for finance

F) Error structures on the Wiener space

Q) error structures on the Poisson space

H) sensitivity analysis of an SDE, application to finance

I) A non classical approach to finance

Fourth lecture Links with statistics and empirical data
J) Identifying an error structure

- The link with the Fisher information and its stability

- Natural error structures for some dynamical systems, extension of the "arbitrary functions method"
K) Convergence in Dirichlet law and transition from finite to infinite dimension

- Central limit theorem

- Convergence of an erroneous random walk to the erroneous Brownian motion :

extension of Donsker theorem and applications.
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Twelve years after his argument showing the importance of the normal law
as probability law for the errors ( Theoria motus corporum coelestium 1809),
Gauss was interested in the propagation of errors (Theoria Combinationis

1821).

Given a quantity
U = F(V1,Vs,...) function of other erroneous quantities Vi, V4, . ..
he states the problem of computing the quadratic error to fear on U knowing

the quadratic errors 0%, 05,...on V4, Vs, . .., these errors being supposed small
and independent. His answer is the following formula
OF oF
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he gives also the covariance between the error on F' and the error of an other
function of the V,’s.
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Formula (1) possesses a property which makes it highly better, in several
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questions, than other formulas used here and there in textbooks during the
19th and 20th centuries. It is a coherence property. With a formula such that
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errors can depend on the manner the function F' is written : in dimension 2

(2) oy = | |2 + .

already composing an injective linear map with its inverse leads with formula (2)
to the fact that the identity map increases the errors what is hardly acceptable.



This doesn’t happen in Gauss’ calculus. Introducing the operator
1 5 07 L 82
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and supposing the functions smooth, we remark that formula (1) can be written

of = LF* —2FLF

L_

and the coherence of this calculus comes from the coherence of the transport
of a differential operator by a function : if L is such an operator, v and v
injective regular maps, denoting the operator ¢ — L(p o u) ou™t by 6,L we

have 0, L = 6,(0,L).



Now, it is clear that if the errors are correlated, GGauss

formula becomes

: OF OF
O = Y ——=——0j

and in general 0;; depend on the values of the V}’s, so

that we obtain the general formula

, OF OF

Oy = avavo-w(‘/la‘/%"')



2. The propagation of errors

Let us consider an erroneous quantity with a centered error and

let us apply successively non-linear applications
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We observe the following properties
e The error doesn't remain centered : a bias appears

o The variances transmit with a first order differential calculus
2 2 2
Gn—l—l = fn+1<xn) Gn

¢ The biases and the variances keep (except special case)
the same order of magnitude

¢ The biases follow a second order differential calculus involving
the variances

bias, | = fé+1<xn)biasn + f +1<5Bn)
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Intuitive notion of error structure

The preceding example shows that the quadratic error operator I" naturally polarizesinto
abilinear operator (asthe covariance operator in probability theory), which isafirst-order
differential operator.

1. We thus adopt the following temporary definition of an error structure:
An error structure is aspace equipped with an operator I" acting upon
real functions

(€2, T)
and satisfying the following properties:
a) Symmetry
I'[F, G] =T[G, F];
b) Bilinearity
r |:Z)\i Fi,ZMjGj:| = Z)‘iﬂjr[Fiij];
i j ij
c) Positivity

I'[F] =T[F, F] =0
d) Functional calculus on regular functions
F[®(Fy, ..., Fp), ¥(Gy1,...,Gyq)]
= Z@{(Fl,... Fp)W[(Gy,...,GT[Fi, Gjl.
i

2. Inorder to take in account the biases, we also have to introduce a bias operator A,
a linear operator acting on regular functions through a second order functional calculus
involving T :
A@(F1.....Fpl= > ®(F1 ..., FpAF]
i

1
+§i2j:<b{/j(F1, ..., Fp)T[Fi, Fj]



Example
Let us consider the usual way of simulating two normal random variables

X = Rcos27V
Y = Rsin27V

R2

with R = +/—2logU in other words U = e~ 2.

Then (X,Y) is a reduced normal pair when U and V' are independent uniformly dis-
tributed on [0,1]. Let us suppose that the variances of the errors on U and V are such
that

i) Iy,v)=1
i) T[R,R]=4n?R?
iii) TV,R]=0.

hypothesis i) means that the error on V' does’nt depend on V',
hypothesis ii) means that the proportional error on R is constant, it is equivalent, by the
functional calculus, to the hypothesis T/, U] = 1672U? log® U,
and hypothesis iii) means that the errors on V and R are uncorrelated.
Then supposing I satisfies the functional calculus, we get

X, X] =cos?27V.I'R, R] + R?47?sin? 27V = 47 R?
IY,Y] =4n?R?
I[X,Y] =cos2nVsin2nV.I'R, R] + 472 R?(—sin 27V cos27V) =0

With these hypotheses on U and V' and their errors, we can conclude that the variances of
the errors on X and Y depend only on the radius R and the co-error on X and Y vanishes.

If we think (U,V) or (R,V) as the data of the model and (X,Y") as the output, we
see that this error calculus may be seen as a sensitivity analysis but dealing with more
information than simple derivation since we obtain co-sensitivity as well.



error calculation for a triangle

. Suppose we are drawing a triangle with a graduated rule and pro-
tractor: we take the polar angle of O A, say 6;, and set OA = {;; next
we take the angle (O A, AB), say 6;,and set AB = {,.
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01
(0] X

1) Select hypotheses on errors
£, 4, and 0y, 6, and their errors can be modeled as follows:

dlt,d¥l,db, db
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This quadratic error operator indicates that the errors on lengths ¢;, ¢,
are uncorrelated with those on angles 6;, 6, (i.e. no term in g{; géf ). Such
a hypothesis proves natural when measurements are conducted using

different instruments. The bilinear operator associated with I" is

of ag 1 <8f 8g+8f ag)_'_e 2 0f 9g
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2) Compute the errors on significant quantities using functional cal-
culuson I
Take point B for instance:

Xp=4~1c080) + £rcos(0) + 6,), Yp =4£;sin6; + £, sin(0; + 6;)
T[X ] = €3 + £,£5(cos 6 + 2 sin B sin(@; + 6,))
+ 05(1 4 2sin*(8; + 6,))
T[Yg] = £ + £1£2(cos 6, + 2 cos Oy cos(0; + 65))
+ £5(1 + 2 cos* (6 + 6,))
T[Xp, Yp] = —£1£ysin(20; + 65) — £5sin(20; + 26,).

For the area of the triangle, the formula area(O AB) = %6162 sin 6,
yields:

1
['[area(O AB)] = Ze?zg(l + 25sin’ 6,).

The proportional error on the triangle area

(T[area(OABD'? (1 2
area(O AB) - (sin2 6, + 2) = V3

reaches a minimum at 6, = 7 when the triangle is rectangular. From
O B? = {2 + 2¢,¢, cos 0, + {5, we obtain
T[OB*1 =4[(£] + £3)° + 3(£] + €5)£1€; cos 6 + 20745 cos” 6, ]
=40B?*(OB?* — 0,4, cos 6,)

and by I'[OB] = N we have:

40B% ?
I'[OB] _1 {14, cos 6,
OB? O B2

thereby providing the result that the proportional error on OB is

. . . . 1/2
minimal when ¢; = ¢, and 6, = 0 and in this case % = @



e Cathodic tube

An oscillograph is modeled in the following way. After accelera-
tion by an electric field, electrons arrive at point O; at a speed vy > 0
orthogonal to plane P;. Between parallel planes P, and P, a mag-
netic field B orthogonal to O O; is acting; its components on O,x
and O,y are (Bl, Bz).
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Equation of the model. The physics of the problem is classical.
The gravity force is negligible, the Lorenz force gv A Bis orthogonal
to v such that the modulus |v| remains constant and equal to vg, and
the electrons describe a circle of radius R = %.

If 6 is the angle of the trajectory with O; O, as it passes through
P>, we then have:

o a
6 = arcsin —
R

|0,A] = R(1 — cos )

and
B, By
A=||OA|—, —|0A| =] .
| B| |B|
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Figure in the plane of the trajectory



The position of M is thus given by:

M=(X,Y)

v B
X=<m_,0 )TZ

e|B] |B|
] (mv ) B, (1)

Y =— —

e|B) |B|
6 = arcsin —|B|

mbuvg

To study the sensitivity of point M to the magnetic field E, we as-
sume that B varies in [—A, A]? , equipped with the error structure

(1=, A1, B([=A, A1), P, ID, u — u? +u5).
We can now compute the quadratic error on M, i.e. the matrix

2 2 98X 9Y | X 3Y
LM, M= ( Xyl O Y]) = <(331) i (aBZ) 98,98, 1 98,95,

X 3Y X 3Y 2 2
F[X’ Y] F[Y] 0B 0B + 0B, 0B (831) T (8B2)

Using some approximations to simplfy the calculations, we obtain

LM, M']= 2

} (4,32312322 + (o + BB} +3BB3)°  —2BBiBa(e + 3p(B] + B)) )
~2BBBy(o +3B(B+ B2))  4B*BIB2+ (o + B2 +3BB?)

It follows in particular, by computing the determinant, that the law
of M is absolutely continuous.



If we now suppose that the inaccuracy on the magnetic field stems
from a noise in the electric circuit responsible for generating B and
that this noise is centered: A[Bl] = A[Bz] = 0, we can compute
the bias of the errorson M = (X, Y)

AlX]= 182XF[B]+182 I[B;]
20B? 20B;3
10%Y 10%Y

Y —TI[B]+-—=TI|[B

A= 29B? [ ]+2aB2 [52]

which yields

A[X]=48B,
A[Y]=—48B,.

By comparison with (2), we can observe that:

8

A[OsM] = ———— 03M.
2
a + B|B|
y
3
Q X

The appearance of biases in the absence of bias on the hypotheses
is specifically due to the fact that the method considers the errors,
although infinitesimal, to be random quantities. This feature will be
highlighted in the following table.



	bias by quadratic function: 


