
B) Error structures

- Languages with or without extension tool : 

the example of probability theory



Parenthesis :
	 the role of   sigma -additivity 
	 in probability theory

s

measure theory (Lebesgue) +

Borel
Steinhaus

Fréchet
Paul Lévy

Kolmogorov (1933) Grungbegriffe 
der Wahrscheinlichkeitsrechnung

Popper

Let us mention that Karl Popper, who has
an education of psychologist, is still in 1955
not convinced of the interest of
embedding probability into measure theory :
"Kolmogorov's system can be taken,
however, as one of the interpretations 
of mine"



       

0.1 Extension tool using Dirichlet forms

The error calculus of Gauss has the limitation that it has no mean of

extension. If the error on (V1, V2, V3) is known it gives the error on any

differentiable function of (V1, V2, V3) but that’s all.

Now, in the usual probabilistic situations where a sequence of quantities

X1, X2, . . . , Xn, . . . is given and where the errors are known on the regular

functions of a finite number of them, we would like to deduce the error

on a function of an infinite number of the Xi’s or at least on some such

functions.

It is actually possible to reinforce this error calculus giving it a powerful

extension tool and preserving the coherence property. In addition, it will

give us the comfortable possibility to handle Lipschitz functions as well.

For this we come back to the idea that the erroneous quantities are

themselves random, as Gauss had supposed for his proof of the ‘law of

errors’, say defined on (Ω,A, IP). The quadratic error on a random variable

X is then itself a random variable that we will denote by Γ[X ]. Intuitively

we still suppose the errors are infinitely small although this doesn’t appear

in the notation. It is as we had an infinitely small unit to measure errors

fixed in the whole problem. The extension tool is the following, we assume

that if Xn → X in L2(Ω,A, IP) and if the error Γ[Xm−Xn] on Xm−Xn

can be made as small as we want in L1(Ω,A, IP) for m,n large enough,

then the error Γ[Xn −X ] on Xn −X goes to zero in L1.

It is a reinforced coherence principle since this means that the error on

a random variable X is attached to X and that furthermore if the sequence

of pairs (Xn, error on Xn) converges in a suitable sense, it converges nec-

essarily to (X, error on X).
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1ERROR STRUCTURES
Main definition . An error structure is a term

(Ä,A, IP, ID, 0)
where (Ä,A, IP) is a probability space, and:
(1) ID is a dense subvector space of L2(Ä,A, IP) (also denoted L2(IP));
(2) 0 is a positive symmetric bilinear application from ID × ID into L1(IP)satisfying “the functional calculus of class C1 ∩ Lip”. This expressionmeans

∀u ∈ IDm, ∀v ∈ IDn, ∀F : IRm → IR, ∀G : IRn → IR
with F , G being of class C1 and Lipschitzian, we have F(u) ∈ ID,G(v) ∈ ID and

0[F(u),G(v)] =∑
i, j
∂F
∂xi (u)

∂G
∂x j (v)0

[ui , v j] IP-a.s.;
(3) the bilinear form E[u, v] = 12IE[0[u, v]] is “closed”. This means thatthe space ID equipped with the norm

‖u‖ID =
(
‖u‖2L2(IP) + E[u, u])1/2

is complete.
If, in addition

(4) the constant function 1 belongs to ID (which implies 0[1] = 0 by prop-erty 2), we say that the error structure is Markovian.

We will always write E[u] for E[u, u] and 0[u] for 0[u, u].With this definition, the form E is a Dirichlet form.To this Dirichlet form corresponds a Dirichlet operator A (generator of theassociated symmetric semi-group) which satisfies (with some hypotheses) :
A[F ◦ u] =∑

i
F ′i ◦ u A[ui ]+ 12

∑

i, j
F ′′i j ◦ u 0[ui , u j ] IP-p.s..
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Example 1.

Ä= IR
A= Borel σ -field B(IR)
IP=N (0, 1) reduced normal law

ID = H 1(N (0, 1))= {u ∈ L2(IP), u′ in the distribution
sense belongs to L2(IP)}

0[u]= u′2
then, (IR,B(IR),N (0, 1), H 1(N (0, 1)), 0) is an error structure. We also obtained the gen-erator:

DA = { f ∈ L2(IP) : f ′′ − x f ′ in the distribution sense ∈ L2(IP)}
and

A f = 12 f ′′ − 12 I · f ′
where I is the identity map on IR.
Example 2.

Ä= [0, 1]
A= Borel σ -field
IP= Lebesgue measure
ID= {u ∈ L2([0, 1], dx) : the derivative u′ in the distribution

sense over ]0, 1[ belongs to L2([0, 1], dx)}
0[u]= u′2.

The space ID defined herein is denoted H 1([0, 1]).
Example 3. Let U be a domain (connected open set) in IRd with unit volume, B(U ) be theBorel σ -field and dx = dx1, . . . dxd be the Lebesgue measure

ID= {u ∈ L2(U, dx) : the gradient ∇u in the distribution sense
belongs to L2(U, dx; IRd)}

0[u]= |∇u|2 =
(
∂u
∂x1

)2
+ · · · +

(
∂u
∂xd

)2
.

Then (U,B(U ), dx, ID, 0) is an error structure.
Remark. From the relation E[ f, g] = 〈−A f, g〉 we see easily that the domain of the gen-erator contains the functions of class C2 with compact support in U , DA ⊃ C2K (U ) and thatfor such functions

A f = 121 f = 12
d∑

i=1
∂2 f
∂x2i

.

Nicolas Bouleau
ELEMENTARY EXAMPLES
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   COMPARISON OF APPROCHES

Deterministic sensitivity
Deterministic analysis : Interval
approaches derivation with respect to calculus

the parameters of the model
Error calculus using

Probabilistic Dirichlet forms Probability
approaches first order calculus

only dealing with
variances

second order cal-
culus with vari-
ances and biases

theory

Infinitesimal errors Finite errors
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