
Second lecture

Error structures and sensitivity analysis

C) Properties of error structures
- recalling the definition
- Lipschitzian calculus
- images
- densities and Dloc
- finite and infinite products
- the gradient and the sharp
- Integration by part formulae

D) Application in simulation : error calculus on the Monte Carlo space
- structures with or without border terms
- Sensitivity analysis of a Markov chain

E) Application in numerical analysis
- sensitivity of an ODE to a functional coefficient
- comments on finite elements methods



               

1ERROR STRUCTURES
Main definition . An error structure is a term

(Ä,A, IP, ID, 0)
where (Ä,A, IP) is a probability space, and:
(1) ID is a dense subvector space of L2(Ä,A, IP) (also denoted L2(IP));
(2) 0 is a positive symmetric bilinear application from ID × ID into L1(IP)satisfying “the functional calculus of class C1 ∩ Lip”. This expressionmeans

∀u ∈ IDm, ∀v ∈ IDn, ∀F : IRm → IR, ∀G : IRn → IR
with F , G being of class C1 and Lipschitzian, we have F(u) ∈ ID,G(v) ∈ ID and

0[F(u),G(v)] =∑
i, j
∂F
∂xi (u)

∂G
∂x j (v)0

[ui , v j] IP-a.s.;
(3) the bilinear form E[u, v] = 12IE[0[u, v]] is “closed”. This means thatthe space ID equipped with the norm

‖u‖ID =
(
‖u‖2L2(IP) + E[u, u])1/2

is complete.
If, in addition

(4) the constant function 1 belongs to ID (which implies 0[1] = 0 by prop-erty 2), we say that the error structure is Markovian.

We will always write E[u] for E[u, u] and 0[u] for 0[u, u].With this definition, the form E is a Dirichlet form.To this Dirichlet form corresponds a Dirichlet operator A (generator of theassociated symmetric semi-group) which satisfies (with some hypotheses) :
A[F ◦ u] =∑

i
F ′i ◦ u A[ui ]+ 12

∑

i, j
F ′′i j ◦ u 0[ui , u j ] IP-p.s..



Nicolas Bouleau
D is stable by contractions







          

1
Let S1 = (Ä1,A1, IP1, ID1, 01) and S2 = (Ä2,A2, IP2, ID2, 02) betwo error structures.The aim is to define on the product probability space

(Ä,A, IP) = (Ä1 ×Ä2,A1 ⊗A2, IP1 × IP2)

an operator 0 and its domain ID in such a way that (Ä,A, IP, ID, 0)is an error structure expressing the condition that the two coordinatemappings and their errors are independent.
Proposition. Let’s define
(Ä,A, IP)= (Ä1 ×Ä2,A1 ⊗A2, IP1 × IP2)

ID={ f ∈ L2(IP) : for IP1-a.e. x f (x, ·) ∈ ID2
for IP2-a.e. y f (·, y) ∈ ID1 and∫ (

01[ f (·, y)](x)+ 02[ f (x, ·)](y)dIP1(x) dIP2(y) < +∞
}

and for f ∈ ID
0[ f ](x, y) = 01[ f (·, y)](x)+ 02[ f (x, ·)](y),

then S = (Ä,A, IP, ID, 0) is an error structure denoted S = S1×S2and called the product of S1 and S2, whereby S is Markovian if S1and S2 are both Markovian.
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• infinite products
Theorem on products Let Sn = (

Än,An, IPn, IDn0n), n ≥ 1, beerror structures. The product structure
S = (Ä,A, IP, ID, 0) = ∞∏

n=1
Sn

is defined by
(Ä,A, IP)=

( ∞∏

n=1
Än,⊗∞n=1An,

∞∏

n=1
IPn
)

ID={ f ∈ L2(IP) : ∀n, for almost every w1, w2, . . . , wn−1, wn+1, . . .
for the product measure
x → f (w1, . . . , wn−1, x, wn+1, . . . ) ∈ IDn and∫ ∑

n
0n[ f ] dIP < +∞}

and for f ∈ ID
0[ f ] = ∞∑

n=1
0n[ f ].

S is an error structure, Markovian if each Sn is Markovian.
When we write 0n[ f ], 0n acts on the n-th argument of f uniquely.



                  

• The gradient and the sharp (#)One of the features of the operator 0 is to be quadratic or bilin-ear like the variance or covariance that often makes computationsawkward to perform. If we accept to consider random variables withvalues in Hilbert space, it is possible to overcome this problem byintroducing a new operator, the gradient, which in some sense is alinear version of the standard deviation of the error.The gradient. Let S = (Ä,A, IP, ID, 0) be an error structure.If H is a real Hilbert space, we denote either by L2((Ä,A, IP),H)or L2(IP,H) the space ofH-valued random variables equipped withthe scalar product (U, V )L2(IP,H) = IE[〈U, V 〉H].Definition . Let H be a Hilbert space. A linear operator D from IDinto L2(IP,H) is said to be a gradient (for S) if
∀u ∈ ID 0[u] = 〈Du, Du〉H.

In practice, a gradient always exists (once the space ID is separablei.e. possesses a dense sequence).
Proposition (chain rule). Let D be a gradient for S with values in
H. Then ∀u ∈ IDn ∀F ∈ C1 ∩ Lip(IRn),

D[F ◦ u] = n∑
i=1

∂F
∂xi ◦ u D[ui] a.e.

The sharp (#). It is a special case of gradient when H is takento be
H = L2(Ä̂, Â, ÎP)

where (Ä̂, Â, ÎP) is a copy of (Ä,A, IP). It satisfies ∀u ∈ IDn, andF ∈ C1 ∩ Lip(IRn)
(F(u1, . . . , un))# =∑

i
∂F
∂xi ◦ u · u#i

It is particularly usefull in stochastic calculus.
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• Integration by parts formulaeLet S = (Ä,A, IP, ID, 0) be an error structure. If v ∈ DA, for
∀u ∈ ID we have 12IE[0[u, v]] = −IE[u A[v]]. (1)
This relation is already an integration by parts formula since 0 fol-lows first-order differential calculus, in particular if F ∈ Lip withLebesgue derivative F ′

12IE[F ′(u)0[u, v]] = −IE[F(u)A[v]]. (2)
We know that ID ∩ L∞ is an algebra, hence if u1, u2 ∈ ID ∩ L∞ wecan apply (2) to u1u2 as follows

12IE[u20[u1, v]] = −IE[u1u2 A[v]]− 12IE[u10[u2, v]] (3)
which yields for ϕ Lipschitz
12IE[u2ϕ′(u1)0[u1, v]] = −IE[ϕ(u1)u2 A[v]]− 12IE[ϕ(u1)0[u2, v]].

(4)
Let’s now introduce a gradient D with values in H along with itsadjoint operator δ. The preceding formula (4 ) with u ∈ ID, U ∈dom δ

IE[uδU ] = IE[〈D[u],U 〉H] (5)
provides, as above, for ϕ Lipschitz

IE[ϕ′(u)〈D[u],U 〉H] = IE[ϕ(u)δU ]. (6)
Moreover if u1, u2 ∈ ID ∩ L∞ and U ∈ dom δ

IE[u2〈Du1,U 〉H] = IE[u1u2δU]− IE[u1〈Du2,U 〉H]. (7)



               

We refer to Monte Carlo space as the probability space used insimulation:
(Ä,A, IP) = ([0, 1],B([0, 1]), dx)IN

.

We denote the coordinate mappings (Un)n≥0. They are i.i.d. randomvariables uniformly distributed on the unit interval.To obtain an error structure on this space, using the theorem onproducts, it suffices to choose an error structure on each factor; many(uncountably many) solutions exist.We will focus on very simple (shift-invariant) structures useful inapplications.
• The H 1-type product structureIt is the structure
(Ä,A, IP, ID, 0) = ([0, 1],B([0, 1]), dx, H 1([0, 1], u → u′2)IN

.

It is the simplest one, already very useful for sensitivity studies onMonte Carlo simulations.
• Structure without border termsFor some applications it is interesting to have integration by partsformulae without border terms. Consider the structure

([0, 1],B([0, 1]), dx,d, γ )
with γ [u](x) = x2(1 − x)2u′2(x) on the smallest closed domain dcontaining C1[0, 1]. And consider the product structure

(Ä,A, IP, ID, 0) = ([0, 1],B([0, 1]), dx,d, γ )IN

Nicolas Bouleau
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2The coordinate mappings Un verify
Un ∈ DA ⊂ ID

0
[Un]=U 2n

(1−Un)2
0
[Um,Un]= 0 ∀m 6= n

A[Un]=Un(1−Un)(1− 2Un).
Set ϕ(x) = x2(1− x)2.
•According to the theorem on products, if F = f (U0,U1, . . . ,Un, . . . )is a real random variable, then F ∈ ID iff

∀n x → f (U0, . . . ,Un−1, x,Un+1, . . . ) ∈ d
and

IE
[∑

n
f ′2n
(U0,U1, . . . )ϕ(Un)

]
< +∞.

•We can define a gradient withH = `2 and
DF =

(
f ′n(U0,U1, . . . )

√
ϕ
(Un)

)

n∈IN
.

• If a ∈ `2, a = (an), we observe that a ∈ dom δ and δ[a] =∑
n an(2Un − 1) (which is a square integrable martingale) such that,
∀F ∈ ID

IE[〈DF, a〉] = IE
[

F ∑
n

an(2Un − 1)
]
.

• Applying this relation to FG for F,G ∈ ID ∩ L∞ yields
IE[G〈DF, a〉`2

]
= IE

[
F
(

G∑

n
an(2Un − 1)− 〈DG, a〉

)]
.

•We can similarly obtain an explicit formula for the adjoint operator
δ acting on Y = (Yn(U0,U1, . . . ))n≥0and an explicit formula for the generator A acting on F = f (U0,U1, . . . ).
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• Sensitivity of a simulated Markov chainSuppose by discretization of an SDE with respect to a martingaleor a process with independent increments, we obtain a Markov chain
{ S0= x

Sn+1= Sn + σ (Sn)(Yn+1 − Yn)

where Yn is a martingale simulated by
Yn − Yn−1 = ξ(n,Un) with ∫ 1

0 ξ(n, x) dx = 0
and where σ is a Lipschitz function.
• Sensitivity to the starting pointThe improvement of using error structures is here only to allowcalculations with Lipschitz functions.
• Internalization for ddx IE[9(SN)]We are seeking ψ(ω, x) such that

d
dx IE[9(SN)] = IE[9(SN)ψ(ω, x)].

We place an error only on U1 and choose the preceding error struc-ture without border terms. Assuming ξ(1, x) to be C2 in x and usingthe integration by parts formula
IE[G DF] = −IE [F d

dU1
(G√ϕ(U1))

]

leads to
d

dx IE[9(SN)] = IE
[
9(SN)

(
ξ ′′x2
(1,U1)(1+ σ ′(x)ξ(1,U1))

σ(x)ξ ′2x
(1,U1) − σ

′(x)
σ (x)

)]
.



            

• Deriving information on the law of SN .We introduce an error on each Un and then work with the MonteCarlo space using the above defined structure. If F = f (U1, . . . ,Un, . . . )we obtain:
DF =

(
f ′i
√
ϕ
(Ui)

)

i≥1
(remember that ϕ(x) = x2(1−x)2 ).

With F = 9(SN), we get DF = 9 ′(SN)DSN .For a ∈ `2, using the IPF (integration by parts formula)
IE[G〈DF, a〉] = −IE

[
F
(
〈DG, a〉 − G∑

n
an(2Un − 1)

)]

with G = 1
〈DSN ,a〉 yields the relation:

IE[9 ′(SN)] = IE

9

(SN)



∑
n an(2Un − 1)
〈DSN , a〉 −

〈
D 1
〈DSN , a〉, a

〉




which can, with a suitable assumption, yield the regularity of the lawof SN , this is Malliavin’s method.Now according to the density criterion in error structures we havewith the Lipschitz hypotheses
0
[SN]= σ 2(SN−1)ξ ′2(N ,UN)ϕ(UN)

+ · · · +
( N∏

k=1
(1+ σ ′(Sk−1)ξ(k,Uk))

)2 (
σ(x)ξ ′(1,U1))2

ϕ
(U1).

We observe that if σ(x) 6= 0 and ξ ′(k, x) 6= 0 ∀k, then SN hasdensity.Moreover, observing from the above calculation of DSN that
det( 0

[SN] 0
[SN , SN−1]

0
[SN , SN−1] 0

[SN−1]
)
= 0

[SN−1](σ 2(SN−1)ξ ′2ϕ(UN)) > 0,
we obtain that the pair (SN , SN−1) also has a density.
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•The pseudo-Gaussian structure on the MonteCarlo spaceConsider the Ornstein–Uhlenbeck structure on IR

(IR,B(IR),m, H 1(m), u → u′2)
with m = N (0, 1).

Let’s denote N (x) = ∫ x
−∞

1√2π e− t22 dt the distribution function ofthe reduced normal law and
ϕ1(x) = 12π exp−(N−1(x))2

,

The image by N of the Ornstein–Uhlenbeck structure then gives astructure on ([0, 1], B([0, 1]), dx), i.e.
([0, 1],B([0, 1]), dx,d1, γ1)

with d1= {u ∈ L2[0, 1] : u ◦ N ∈ H 1(m)}
and γ1[u](x)= ϕ1(x)u′2(x).

Although the function ϕ1 is not as simple as ϕ, this structure stillpossesses an IPF without border terms like the preceding structure,and gives rise to an efficient IPF on the Monte Carlo space.
Another interesting property of this structure is that it satisfies aPoincaré-type inequality.

Proposition. Let S be the product
S = ([0, 1],B([0, 1]), dx,d1, γ1)IN

,

then ∀F ∈ ID we the following inequalities hold:
var[F] = IE[(F − IEF)2] ≤ 2E[F].



Remarks on error calculus for Monte Carlo simulations

- Pseudorandom generators aren’t perfect. A way of modelling this coarseness
is to put an error structure on the Monte Carlo space ([0,1], dx)N

- Applying this idea to simulation encounters the difficulty that most of algorithms
are discontinuous ( rejection method, etc.). 
Fortunately, concerning the variances,  we may work in Dloc .

- Concerning the biases,

- by the fact that A[1/N Σf(Un)] = 1/N ΣA[f(Un)]
the biases do not vanish in general by averaging, they may increase by non linearity

- I am not able at present to give a satisfactory definition of (DA)loc



                  

Application to numerical analysis
• Error on f (X) when f is erroneousLetÄ1 be a space of functions (not necessarily a vector space), e.g.from IRd into IR, and let’s consider an error structure S1 = (Ä1, A1,IP1, ID1, 01) with the following properties:
a) The measure IP1 is carried by the C1 ∩ Lip function in Ä1.
b) Let S2 = (IRd,B(IRd), IP2, ID2, 02) be an error structure on IRd

such that C1 ∩ Lip ⊂ ID2. Let’s suppose the following: If wedenote Vx the valuation at x , defined via
Vx( f ) = f (x) f ∈ Ä1,

Vx is a real functional on Ä1 (a linear form if Ä1 is a vectorspace). We now suppose that for IP2 a.e. x Vx ∈ ID1, and therandom variable F defined on Ä1 × IRd by
F( f, x) = Vx( f )

satisfies ∫ (
01[F]+ 02[F]) dIP1 dIP2 < +∞.

The theorem on products then applies and we can write:
0[F] = 01[F]+ 02[F]. (1)

Let’s consider that the two structures S1 and S2 have a sharp oper-ator. This assumption gives rise to a sharp on the product structure.
Proposition. With the above hypotheses, yet with d = 1 for the sake
of simplicity, let X ∈ ID2, then f (X) ∈ ID and

( f (X))# = f #(X)+ f ′(X)X#. (2)

Nicolas Bouleau
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2ExampleConsider space of analytic functions in the unit disk with real co-efficients
f (z) = ∞∑

n=0
anzn

with the an to be random with a product structure on them.
Choice of the a priori probability measure. If we choose the anto be i.i.d., the measure IP1 is carried by a very small set and thescaling f → λ f gives from IP1 a singular measure.In order for IP1 to weigh on a cone or a vector space, we use thefollowing result.

Property. Let µ be a probability measure on IR with a density (µ¿dx). We set
µn = αnµ+ (1− αn)δ0

with αn ∈]0, 1[, ∑n αn < +∞. Let an be the coordinate maps from
IRIN into IR, then under the probability measure ⊗nµn, only a finitenumber of an are non zero and the scaling
a = (a0, a1, . . . , an, . . . ) 7→ λa = (λa0, λa1, . . . , λan, . . . ) (λ 6= 0)
transforms⊗nµn into an absolutely continuous measure [equivalentmeasure if dµdx > 0].Hereafter, we will suppose the measure IP1 = ⊗nµn with µn cho-sen as above. The an’s are the coordinate mappings of the productspace.



                      

Choice of 0. We consider here the simplest case where
0
[an] = a2n, 0

[am, an] = 0 m 6= n
Calculation.

0
[Vx]( f ) =∑

n
a2nx2n.

Since
f (ze2iπ t) =

∞∑

n=0
anzne2iπnt,

using that (e2iπnt)n∈Z is a basis of L2C[0, 1], we obtain
0
[Vx]( f ) = ∫ 1

0
∣∣ f (xe2iπ t)∣∣2 dt (3)

Let’s now consider an erroneous random variable X defined on (IR,
B(IR), IP2, ID2, 02) as above and examine the error on

F( f, X) = f (X) = VX( f ).
From (2) and (3) we have
0
[ f (X)] = ∫ 1

0
∣∣ f (Xe2iπ t)∣∣2 dt + f ′2(X)0[X ] (4)



              

• Sensitivity of the solution of an ODE to afunctional coefficient
To study the sensitivity of the solution of

y′ = f (x, y)
to f , let’s consider the case where f is approximated by polynomialsin two variables f (x, y) =∑ apq x p yq.

We choose the measure IP1 and 01, as explained above and in as-suming measures µn to be centered for purpose of simplicity.Then, if we take hypothesis (α)
0
[apq] = a2pq

we obtain a sharp defined by
a#pq = apq âpq

βpq
where

βpq =
∥∥an

∥∥L2(µn) =
(∫

IR x2 dµn(x)
)1/2

.

This sharp defines a sharp on the product space and if we considerthe starting point y0 and the value x to be random and erroneous,denoting y = ϕ(x, y0)
the solution to { y′= f (x, y)y(0)= y0,we then seek to compute 0[Y ] for

Y = ϕ(X, Y0).
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First, suppose f alone is erroneous.Let’s remark that by the representation
f (t, y) =∑

p,q
apqt p yq,

the formula
( f (t, Y ))# = f #(t, Y )+ f ′y(t, Y )Y #

is still valid even when Y is not independent of f .Hence from
yx = y0 +

∫ x
0 f (t, yt) dt,

we have
y#x =

∫ x
0
( f #(t, yt)+ f ′2(t, yt)y#t

) dt.
Let

Mx = exp ∫ x
0 f ′2(t, yt) dt

by the usual method of variation of the constant. This yields
y#x = Mx

∫ x
0

f #(t, yt)Mt dt.
Finally, when f , Y0 and X are erroneous, we obtain

0[Y ]=M2X
∑

p,q

(∫ X
0

t p yqtMt dt
)2 a2pq

+
(∑

p,q
apq X pY q0

)2
0[X ]

+ M2X0
[Y0].

where MX = exp{∑p,q qapq ∫ X0 t pϕ(t, Y0)q−1 dt. Let’s recall hereinthat all of these sums are finite.
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Remarks on sensitivity analysis for finite elements methods

- Errors are generally thought by numerical analysts as a global norm of (un-u) in some
functional space. This is a poor and non transitive information.

- In the case problem (1) is solved by a Galerkin method, 
data and the solution are represented in a finite dimensional space 

fn = Σakek          un = Σbkek

Putting an error structure on the ak’s gives errors and co-errors on the bk’s and their biases.

If un is used as data in a new boundary problem, we have the right information to go on.

(1)          L(u) = f      with boundary conditions

-  We may also represent the boundary itself with an error, by putting its 
graph in an error structure. That allows us to perform sensitivity analysis 
with respect to the boundary.   




