Second lecture

Error structures and sensitivity analysis

C) Properties of error structures
- recalling the definition
- Lipschitzian calculus
- images
- densities and Dloc
- finite and infinite products
- the gradient and the sharp
- Integration by part formulae

D) Application in simulation : error calculus on the Monte Carlo space
- structures with or without border terms
- Sensitivity analysis of a Markov chain

E) Application in numerical analysis
- sensitivity of an ODE to a functional coefficient
- comments on finite elements methods



ERROR STRUCTURES

Main definition . An error structure is a term
(2, AP, ID, T")
where (2, A, IP) is a probability space, and:
(1) ID is a dense subvector space of L>(2, A, IP) (also denoted L*(IP));

(2) T is a positive symmetric bilinear application from ID x ID into L'(IP)
satisfying “the functional calculus of class C' N Lip”. This expression
means

YuelD”", VvelD", VF:R"—- 1R, VG:R'"— R

with F, G being of class C' and Lipschitzian, we have F(u) € 1D,
G(v) € ID and
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(3) the bilinear form E[u, v] = %IE[F[u, v]] is “closed”. This means that
the space ID equipped with the norm
1/2
il = (il + Elut, ]
is complete.
If, in addition

(4) the constant function 1 belongs to ID (which implies I'[1] = 0 by prop-
erty 2), we say that the error structure is Markovian.

We will always write £[u] for E[u, u] and I'[u] for I'[u, u].
With this definition, the form & is a Dirichlet form.

To this Dirichlet form corresponds a Dirichlet operator A (generator of the
associated symmetric semi-group) which satisfies (with some hypotheses) :

A[F ou] = ZFlou Alui]+ = ZF”ou Tluij,u;] P-ps..



Lipschitzian error calculus

D is stable by contractions

Proposition If F is a contraction, i.e.

m

IFx)— FO) < Y _|xi — ¥

i=1

then for u € D™, we have

(TIF ou))'? < > (Clui)) '

and

(E1F ou))'? < 3 (ELui1) .

1
Theorem Forallu € D, the image by u of the (positive bounded) measure I'[u]-P
is absolutely continuous with respect to the Lebesgue measure on R:
ux(Clu] - P) < dx.
If F: R — R is Lipschitz
F[Foul=F?ou-Tu]

where F' is any version of the derivative (defined Lebesgue-a.e.) of F.

Proposition (proved for special error structures)
Ifu = (ul, - ,um) € D™, then the image by u of the measure detF[u,-, uj]. P is
absolutely continuous with respect to the Lebesgue measure on R™.

On the other hand, no error structure is known at present that does not satisfy this
proposition
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the operator I" can be extended to a larger space than ID:

Definition I11.13. A function u: Q — R is said to be locally in D, and we write u € Djy¢

if a sequence of sets Q, € A exists such that
e U2, =Q
n
o Vndu, €e D: u, =uon,.
Dy is preserved by locally Lipschitz functions.
Proposition II1.14. Let u be in Djq.
1) There exists a unique positive class I'[u] (defined P-a.e.) such that

VveDD, VBe A, u=vonB = I'[u]=T[v] onB.

2) The image by u of the o -finite measure I'[u]-P is absolutely continuous with respect

to the Lebesgue measure.
3) If F: R — Rislocally Lipschitz, F o u € Dioc and
T[Foul = F?ou-Tul.



Images

Let S = (2, A, P,ID, T") be an error structure; consider an R _valued random variable
X:Q— R?suchthat X e DY, ie. X = (X1,... ,X4), X; e Dfori =1,...,d. We
will define the error structure image of S by X.

First of all, the probability space on which this error structure will be defined is the

image of (Q, A, IP) by X:
Q. A P) 5 (R BRY, X,P)

where X, P is the law of X, i.e. the measure such that (X,P)(E) = ]P(X‘I(E)) VE €

B(RY).
We may then set
Dy = {u € L*(X,P): uo X € D}

and
Ix[ul(x) = E[T[uoc X]| X = x].

(Unless explicitly mentioned otherwise, the symbol E denotes the expectation or condi-
tional expectation with respect to IP.)

Proposition XS = (R‘], BRY), X, P, Dy, FX) is an error structure, the coordi-
nate maps of R are in Dy, and X, S is Markovian if S is Markovian.



PRODUCTS

1

Let S; = (1, A;, IP, ID;, I'y) and S, = (2, Az, P>, IDy, T) be
two error structures.
The aim is to define on the product probability space

(Q, A, IP) = (Ql X Qz, Al ®A2,IP1 X IPz)

an operator I" and its domain ID in such a way that (2, A, IP, ID, I')
1s an error structure expressing the condition that the two coordinate
mappings and their errors are independent.

Proposition. Let’s define
(2, A, P)= (2 x 20, A4 @ A, IP; x IP,)
D= {f e L*(IP): forIPy-ae.x f(x,-) €D,
forPrae.y f(-,y) e ID, and
f (T1Lf G ) () + Taf f (x, ) | () dIPy (x) dIPy(y) < +oo}
and for f € ID

LA, y) =Tl fC 1) + Dol f(x, )1(y),

then S = (2, A, IP, ID, I') is an error structure denoted S = S; x S,
and called the product of S| and S,, whereby S is Markovian if S,
and S, are both Markovian.
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e infinite products

Theorem on products Let S, = (24, A, IP,,ID,I',), n > 1, be
error structures. The product structure

S:(Q,A,IP,]]),F):I_[SH
n=1

is defined by
(©,0) (0,0)
(Q’ A’ IP) — <1_[ Qna ®ZO:1AI’I’ l_IIPn)
n=1 n=1
ID= {f € L2(IP): Vn, for almost every wi, wy, ..., W,_1, Wy, .
for the product measure
X — f(wl,... , Wy—1, X, wn+1,...) e ID,, and
/ZFn[f]dIP < -|-OO}
and for f € ID

Cif1=) Tlfl
n=1

S is an error structure, Markovian if each S, is Markovian.

When we write I',[ f], I',, acts on the n-th argument of f uniquely.



e The gradient and the sharp (#)

One of the features of the operator I' is to be quadratic or bilin-
ear like the variance or covariance that often makes computations
awkward to perform. If we accept to consider random variables with
values in Hilbert space, it is possible to overcome this problem by
introducing a new operator, the gradient, which in some sense is a
linear version of the standard deviation of the error.

The gradient. Let S = (Q, A,IP,ID, I') be an error structure.
If 'H is a real Hilbert space, we denote either by Lz((Q, A, IP), H)
or L*(IP, H) the space of H-valued random variables equipped with
the scalar product (U, V) 2p 1) = IE[(U, V)H].
Definition . Let ‘H be a Hilbert space. A linear operator D from ID
into L>*(IP, H) is said to be a gradient (for S) if

Yu elD I'lu]l = (Du, Du)y.

In practice, a gradient always exists (once the space ID is separable
i.e. possesses a dense sequence).

Proposition (chain rule). Let D be a gradient for S with values in
H.ThenVu € ID" VF e C' NLip(IR"),

n

D[F ou] = Z 2F ou D[u;] ae.

i—1 oA

The sharp (#). It is a special case of gradient when H is taken
to be

A AN A

H=L*Q, A, P

where (ﬁ, .Zl\, I’I\’) is a copy of (2, A, IP). It satisfies Vu € ID", and
F € C' NLip(IR")

(F(ul,... ,u,,,))#zijaFou-uf’f

- Bx,-

It is particularly usefull in stochastic calculus.



e Integration by parts formulae
Let S = (2, A,IP,ID, ') be an error structure. If v € DA, for
Yu € ID we have

1
5IE[F[u, v]] = —IE[uA[v]]. (1)

This relation is already an integration by parts formula since I" fol-
lows first-order differential calculus, in particular if F € Lip with
Lebesgue derivative F’

1 /
EIE[F )T [u, v]| = —IE[F (u) A[v]]. (2)

We know that ID N L is an algebra, hence if u, u, € ID N L> we
can apply (2) to uu, as follows

1 1
5IE[uzr[ul, vl] = —IE[ujurAlv]] — EIE[ulr[uz, vl] )

which yields for ¢ Lipschitz

1 / 1
EIE[MW ) [uy, v]] = —E[pu)uAlv]] — EIE[QD(Ml)F[Mz, v]].
(4)

Let’s now introduce a gradient D with values in H along with its
adjoint operator §. The preceding formula (4 ) with u € ID, U €
dom &

E[usU] = E[(D[u], U)x] (%)
provides, as above, for ¢ Lipschitz
E[¢'()(Dlul, U)n] = Elp)sU]. (6)
Moreover if u;,u, e IDN L*® and U € dom §

IE[u>(Duy, Uy | = E[ujuz8U| — E[u1(Dus, U)y].  (7)



Application in simulation : error calculus on the Monte Carlo space
- Structures with or without border terms

We refer to Monte Carlo space as the probability space used in
simulation:

(Q, A, P) = ([0, 11, B([0, 11), dx)".

We denote the coordinate mappings (Un)nzo. They are 1.i.d. random
variables uniformly distributed on the unit interval.

To obtain an error structure on this space, using the theorem on
products, it suffices to choose an error structure on each factor; many
(uncountably many) solutions exist.

We will focus on very simple (shift-invariant) structures useful in
applications.

e The H'-type product structure

It 1s the structure
(Q, A, 1P, D, T) = ([0, 11, B([0, 11), dx, H' ([0, 1], u — u?)".

It is the simplest one, already very useful for sensitivity studies on
Monte Carlo simulations.

e Structure without border terms
For some applications it is interesting to have integration by parts
formulae without border terms. Consider the structure

([0, 11, B([0, 11), dx, d, y)

with y[u](x) = x2(1 — x)*u’?(x) on the smallest closed domain d
containing C'[0, 1]. And consider the product structure

(Q, A, IP,ID,T) = ([0, 1], B([0, 11), dx., d, y)"
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The coordinate mappings U, verify
U, e DACIDD
r[u,) = (1 - U,)
C[Un, Uy]=0 Vm#n
AU, =U,(1 = U,)(1 = 2U,).

Set p(x) = x?(1 — x)?.

2

e According to the theorem on products,if F = f (UO, Uy, ...

18 a real random variable, then F' € ID iff

Vn x > f(Uo, ..., Up—1,x,Ups1,...) €d

and

E {Z f2(Uo, Uy, ... .)¢(Un)i| < 400,
e We can define a gradient with H = ¢ and

DF = (f,;(UO, Ui, ...) <p(Un)>

nelN

elfa € ¢*,a = (a,), we observe that a € dom § and §[a] =
> a,(2U, — 1) (which is a square integrable martingale) such that,

VF € ID

E[(DF,a)] =IE |:F Zn:an(2Un —~ 1)} .

e Applying this relation to F G for F, G € ID N L™ yields

IE[G(DF,a)p] =E |:F <G Xn:an(ZUn — 1) — (DG, a)>:| .

e We can similarly obtain an explicit formula for the adjoint operator

) acting onY = (Yn(Uo, Ui, .. '))nZO

and an explicit formula for the generator A actingon F = f (UO, Ui, ... )
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e Sensitivity of a simulated Markov chain
Suppose by discretization of an S D E with respect to a martingale
or a process with independent increments, we obtain a Markov chain

S() =X
Sn—l—l — Sn + G(Sn) (Yn—l—l - Yn)
where Y, 1s a martingale simulated by
1
Y, — Y1 =&(n,U,) with / E(n,x)dx =0
0

and where o is a Lipschitz function.

e Sensitivity to the starting point
The improvement of using error structures is here only to allow
calculations with Lipschitz functions.

e Internalization for %IE[\I'(S N)]
We are seeking v (w, x) such that

d
—IE[¥(Sw)] = E[W(Sn)¥ (@, )]

We place an error only on U; and choose the preceding error struc-
ture without border terms. Assuming £(1, x) to be C? in x and using
the integration by parts formula

IE[GDF]=—-IE | F d G U
= — |: d—Ul( @( 1))]

leads to

d _ §a(LUN(1+0'@E(LUY) _ o'(x)
EIE[\IJ(SN)] =E [\IJ(SN) ( o (x)&2(1, Uy) “em ]|



e Deriving information on the law of Sy .

We introduce an error on each U, and then work with the Monte
Carlo space using the above defined structure. If F = f (U Iy oee, Un, .. )
we obtain:

= ( r/o(U, (remember that ¢ (x) = x*(1—x)?).
(f o( ))izl remember that ¢(x) = x“(1—x

With F = \II(SN), we get DF = W/(Sy)DSy.
For a € £?, using the IPF (integration by parts formula)

IE[G(DF,a)]z—IE[ (DGa GZan U—1>i|

with G =

ylelds the relation:
> a,_U, — 1) .
E[W' Sy =IE| ¥ (S z —(D—,
[vsw)] S\ sva < (DS, a) “>

which can, with a suitable assumption, yield the regularity of the law
of Sy, this 1s Malliavin’s method.

Now according to the density criterion in error structures we have
with the Lipschitz hypotheses

C[Sw] = o2(Sw-1)6 (V. Un)o (Un)

4 (ﬁ(l + o' (Sk—1)& (., Uk))> (o0 (0)E'(1, Ul))ng(U1).

k=1

We observe that if o(x) # 0 and &'(k,x) # O Vk, then Sy has
density.
Moreover, observing from the above calculation of DSy that

det (F[;N[,ng\]/_l] F[IL?&:NS_]ZT]) = I'[Sn-1](0*(Sn-1)E"9(Uy)) > 0,

we obtain that the pair (Sy, Sy_1) also has a density.



ad

e The pseudo-Gaussian structure on the Monte

Carlo space
Consider the Ornstein—Uhlenbeck structure on IR

(IR, B(R), m, H'(m), u — u’z)

with m = N (0, 1).

Let’s denote N(x) = f ~ Fe 7 d t the distribution function of

the reduced normal law and

1
@i(x) = s—exp—(N N~'(0)?,
JT

The image by N of the Ornstein—Uhlenbeck structure then gives a
structure on ([0, 11, B([0, 1]), dx), i.e.

([0, 11, B([0, 11), dx, dy, 1)

with di={ueL’0,1]:uoN € H'(m)}
and ylul(x) = @1 (x)u"*(x).

Although the function ¢; is not as simple as ¢, this structure still
possesses an IPF without border terms like the preceding structure,
and gives rise to an efficient IPF on the Monte Carlo space.

Another interesting property of this structure is that it satisfies a
Poincaré-type inequality.

Proposition. Let S be the product
S = ([0, 11, B([0, 11), dx, dy, 1)
then VF € 1D we the following inequalities hold:
var[F] = E[(F — IEF)*] < 2&[F].



Remarks on error calculus for Monte Carlo simulations

- Pseudorandom generators aren’t perfect. A way of modelling this coarseness
is to put an error structure on the Monte Carlo space ([0,1], dx)N

- Applying this idea to simulation encounters the difficulty that most of algorithms

are discontinuous ( rejection method, etc.).

Fortunately, concerning the variances, we may work in D, .

- Concerning the biases,

- by the fact that Alin28Uy)] = in 2ZA[fU,)]

the biases do not vanish in general by averaging, they may increase by non linearity

- I am not able at present to give a satisfactory definition of (DA), .



Application to numerical analysis

e Error on f(X) when f is erroneous

Let €2 be a space of functions (not necessarily a vector space), e.g.
from IR¢ into IR, and let’s consider an error structure S| = (Ql, Ay,
IP,, ID,, Fl) with the following properties:

a) The measure IP; is carried by the C' N Lip function in ;.

b) Let S, = (IRd, B(IRd), IP,, ID,, Fz) be an error structure on IR¢
such that C! N Lip C ID,. Let’s suppose the following: If we
denote V, the valuation at x, defined via

Vi) = f(x) f e,

V. 1s a real functional on €2; (a linear form if €2, is a vector
space). We now suppose that for IP, ae. x V, € IDy, and the
random variable F defined on €; x IR? by

F(f,x) =V(f)

satisfies
/ (C1[F1+ T2[F1) dIP, dIP; < +o00.

The theorem on products then applies and we can write:
I'[F]=T1[F]+ 2l F] (1)

Let’s consider that the two structures §; and S, have a sharp oper-
ator. This assumption gives rise to a sharp on the product structure.

Proposition. With the above hypotheses, yet with d = 1 for the sake
of simplicity, let X € ID,, then f(X) € ID and

(FXO) = Ff 0 + FO0XE. ()

one
way for
tackle
this
problem

other
methods
are
possible
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Example
Consider space of analytic functions in the unit disk with real co-
efficients

f(Z) — Zanzn
n=0

with the a, to be random with a product structure on them.

Choice of the a priori probability measure. If we choose the a,,
to be 1..d., the measure IP; is carried by a very small set and the
scaling f — Af gives from IP; a singular measure.

In order for IP, to weigh on a cone or a vector space, we use the
following result.

Property. Let (v be a probability measure on IR with a density (u <
dx). We set

Mn = Oy + (1 — O511)80
with o, €10, 1[, Y @, < +00. Let a, be the coordinate maps from

n

IRY into R, then under the probability measure ®,i,, only a finite
number of a, are non zero and the scaling

a:(ao,al,... ,an,...)|—>ka:(kao,ka1,... ,Aan,...) (A #£0)

transforms @, [, into an absolutely continuous measure [equivalent
measure if j—’; > 0].

Hereafter, we will suppose the measure IP; = ®,u, with w, cho-
sen as above. The a,’s are the coordinate mappings of the product
space.



Choice of I". We consider here the simplest case where

F[an]:ai, F[am,an]:O m=#n

(f) Za2 2n

Calculation.

Since
21nt E :anzn 2mnt

2imni ) 1s a basis of L%[O, 1], we obtain

using that (e ez

1
C[V](f) = fo £ (xe®™) | di 3)

Let’s now consider an erroneous random variable X defined on (IR,
B(R),IP,,1D,, I';) as above and examine the error on

F(f. X) = f(X)=Vx(f).
From (2) and (3) we have

1
FlfX)] = fo | f(Xez””)|2dt—|— fFAXOT[X] @)



e Sensitivity of the solution of an ODE to a
functional coefficient

To study the sensitivity of the solution of

y = fx,y)

to f,let’s consider the case where f is approximated by polynomials
in two variables
fx,y)= Zapqxpyq-
We choose the measure IP; and Iy, as explained above and in as-

suming measures i, to be centered for purpose of simplicity.
Then, if we take hypothesis (o)

F[“m] = alzaq

we obtain a sharp defined by
’ Gpg
a, = ay;—
pq Pq
Pra

1/2
Brq = Ha”HLz(Mn) = (sz d'“”(x)) :

This sharp defines a sharp on the product space and if we consider
the starting point y, and the value x to be random and erroneous,
denoting

where

. (X ) This is the
y =@, Yo problem
we attempt

the solution to to solve :

0) = sensitivity
(0= Yo, of Y with

we then seek to compute I'[ Y] for rel:lspect to
a

Y = ga(X, YO)- erroneous

guantities

{ y=rfx,y)
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First, suppose f alone is erroneous.
Let’s remark that by the representation

fy) =) apt’y,
P-4

the formula

(f@. Y =@, V)+ £, V)Y

is still valid even when Y is not independent of f.

Hence from N
Ye = )0 +/ f(2, y)dt,
we have i "
= [T ) + ) ar
Let

M, = exp/ fo(t, yi) dt
0

by the usual method of variation of the constant. This yields

x r# t,
)?f:Mx/ Jf( yt)dt.
0 M;

Finally, when f, Y, and X are erroneous, we obtain

error due to f
X .p.d 2 /
i dt ) a? L
prq

r[Y]=M: (
Xqu: o M,

error due to X

e
+ (Zapqxpyg> I[X]

error due to Yo

p.q
+ M3T[Yo]. L —

—

where Mx = exp{}_, 44y, fOX tPo(t, Yo)9~ ! dr. Let’s recall herein
that all of these sums are finite.
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Remarks on sensitivity analysis for finite elements methods

(1) L(u) = f  with boundary conditions

- Errors are generally thought by numerical analysts as a global norm of (u -u) in some
functional space. This is a poor and non transitive information.

- In the case problem (1) is solved by a Galerkin method,
data and the solution are represented in a finite dimensional space
f =2ae, u,=2be,
Putting an error structure on the a,’s gives errors and co-errors on the b, ’s and their biases.

If u, 1s used as data in a new boundary problem, we have the right information to go on.

- We may also represent the boundary itself with an error, by putting its
graph in an error structure. That allows us to perform sensitivity analysis
with respect to the boundary.





