
Third lecture

New tools for finance

F) Error structures on the Wiener space

G) error structures on the Poisson space

H) sensitivity analysis of an SDE, application to finance

I) A non classical approach to finance
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.1 Error structures on the Wiener space
Let’s first recall the classical approach of the so-called Wiener integral.

2.1. The Wiener stochastic integral. Let (T, T , µ) be a σ -finite measured space,
(
χn
)

n∈IN an orthonormal basis of L2(T, T , µ),
and

(
gn
)

n∈IN a sequence of i.i.d. reduced Gaussian variables defined on (Ä,A, IP).
If f ∈ L2(T, T , µ) were associated with I ( f ) ∈ L2(Ä,A, IP) defined via

I ( f ) =
∑

n
〈 f, χn〉gn,

I would be a homomorphism from L2(T, µ) into L2(Ä,A, IP).
If f, g ∈ L2(T, T , µ) are such that 〈 f, g〉 = 0, then I ( f ) and I (g) are two independent Gaussian variables.
From now on, we will take either (T, T , µ) =

(
IR+,B(IR+), dx

)
or
(
[0, 1], B

(
[0, 1]

)
, dx

)
.

If we set

B(t) =
∑

n

〈
1[0,t], χn

〉
gn =

∑

n

∫ t

0
χn(y) dy · gn (1)

then B(t) is a centered Gaussian process with covariance

IE
[
B(t)B(s)

]
= t ∧ s

i.e., a standard Brownian motion.
It can be shown that series (1) converges in both CK

(
IR+

)
a.s. and L p((Ä,A, IP), CK

)
for p ∈ [1,∞[ (where K denotes a compact

set in IR+).
Due to the case where f is a step-function, the random variable I ( f ) is denoted

I ( f ) =
∫ ∞

0
f (s) d Bs

(
resp.

∫ 1

0
f (s) d Bs

)

and called the Wiener integral of f .

2.2. Product error structures. The preceding construction actually involves the product probability space

(Ä,A, IP) =
(
IR,B(IR),N (0, 1)

)IN
,

with the gn’s being the coordinate mappings. If we place on each factor an error structure
(
IR,B(IR),N (0, 1),dn, γn

)
,

we obtain an error structure on (Ä,A, IP) as follows

(Ä,A, IP, ID, 0) =
∞∏

n=0

(
IR,B(IR),N (0, 1),dn, γn

)
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such that a random variable
F
(
g0, g1, . . . , gn, . . .

)

belongs to ID iff ∀n x → F
(
g0, . . . , gn−1, x, gn, . . .

)
belongs to dn IP-a.s. and

0[F] =
∑

n
γn[F],

γn acting on the n-th variable of F , belongs to L1(IP).

2.3. The Ornstein–Uhlenbeck structure. On each factor, we consider the one-dimensional Ornstein–Uhlenbeck structure (see
Chapters II and III Example 1). Hence, we obtain

0
[
gn
]
= 1

0
[
gm, gn

]
= 0 if m 6= n.

For f ∈ L2(IR+), by
∫∞

0 f (s) d Bs =
∑
n
〈 f, χn〉gn we obtain

0

[∫ ∞

0
f (s) d Bs

]
=
∑

n

〈
f, χn

〉2 = ‖ f ‖2L2(IR+),

From the relation

0

[∫ ∞

0
f (s) d Bs

]
= ‖ f ‖2L2(IR+) (2)

we derive ∀F ∈ C1 ∩ Lip(IRm)

0

[
F
(∫

f1(s) d Bs, . . . ,

∫
fn(s) d Bs

)]
=
∑

i, j

∂F
∂xi

∂F
∂x j

∫
fi (s) f j (s) ds.

This relation defines 0 on a dense subspace of L2(IP) since it contains the C1 ∩Lip functions of a finite number of gn’s, which prove
to be dense by virtue of the construction of the product measure. In other words, any error structure on the Wiener space such that
ID contains

∫
f d B fot f ∈ C∞K (IR+) and satisfies (2) is an extension of the Ornstein-Uhlenbeck structure, in fact coincides with

it : it can be proved that (2) characterizes the Ornstein–Uhlenbeck structure on the Wiener space among the structures such that ID
contains

∫
f d B for f ∈ C∞K (IR+).

Nicolas Bouleau
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Gradient. We can easily define a gradient operator withH = L2(IR+): for G ∈ ID let’s set

D[G] =
∑

n

∂G
∂gn
· χn(t). (3)

This approach makes sense according to the theorem on products and satisfies

〈D[G], D[G]〉 =
∑

n

(
∂G
∂gn

)2
= 0[G],

therefore D is a gradient.
For h ∈ L2(IR+), we obtain:

D
[∫ ∞

0
h(s) d Bs

]
= h (4)

(since
∫∞

0 h(s) d Bs =
∑
n
〈h, χn〉gn and D[gn] = χn).

Proposition VI.6. If h ∈ L2(IR+) and F ∈ ID,

IE〈DF, h〉H = IE
[

F
∫ ∞

0
h d B

]
.

Corollary VI.7. ∀F,G ∈ ID ∩ L∞

IE
[
G〈DF, h〉H

]
= −IE

[
F〈DG, h〉

]
+ IE

[
FG

∫
h d B

]
.

Let Ft = σ
(
Bs, s ≤ t

)
be the natural filtration of the Brownian motion, we have

Lemma VI.8. The operators IE
[
· | Fs

]
are orthogonal projectors in ID, and for X ∈ ID

D
[
IE[X | Fs]

]
= IE

[
(DX)(t)1t≤s | Fs

]
.

We often write Dt X for DX (t).

We are now able to study the adjoint operator of the gradient: operator δ.
Proposition VI.9. Let ut ∈ L2(IR+ × Ä, dt × dIP

)
be an adapted process (ut is Ft -measurable up to IP-negligible sets, ∀t), then

ut ∈ dom δ and
δ
[
ut
]
=
∫ ∞

0
ut d Bt .

Thus δ extends the Itô stochastic integral and coincides with it on adapted processes.

Nicolas Bouleau
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The sharp. The general definition lends the following relations:

(
F
(
g0, . . . , gn, . . .

))# =
∑

n

∂F
∂gn

(
g0, . . . , gn, . . .

)
ĝn

∀X ∈ ID X#(ω, ω̂) =
∫ ∞

0
DX (t) d B̂t

0[X ] = ÎE
[
X#2].

From (4) we obtain: (∫ ∞

0
h(s) d Bs

)#
=
∫ ∞

0
h(s) d B̂s .

Proposition VI.10. Let u be an adapted process in the closure of the space
{

n∑

i=1
Fi 1]ti ,ti+1], Fi ∈ Fti , Fi ∈ ID

}

for the norm
(
IE
∫∞

0 u2(s)ds + IE
∫∞

0
∫∞

0 (Dt [u(s)])2 dsdt
)1/2. Then

(∫ ∞

0
us d Bs

)#
=
∫ ∞

0
(us)

# d Bs +
∫ ∞

0
us d B̂s .

The proof proceeds by approximation

Nicolas Bouleau
the sharp is particularly usefull to compute errors for stochastic calculus
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.1. Error structures on the Wiener space 5

As an application of the sharp, we propose the following exercises.
Exercise VI.11. Let f1(s, t) and f2(s, t) belong to L2(IR2

+, ds dt
)

and be symmetric.
Let U =

(
U1,U2

)
with

Ui =
∫ ∞

0

∫ t

0
fi (s, t) d Bs d Bt , i = 1, 2.

If det
(
0[U,U t ]

)
= 0 a.e. then the law of U is carried by a straight line.

Hint. Show that
U #

i =
∫ ∞

0

∫ ∞

0
fi (s, t) d Bs d B̂t .

From
(
ÎE
[
U #

1 U #
2
])2 = ÎE

[
U #2

1
]
ÎE
[
U #2

2
]

deduce that a random variable A(ω) exists whereby

U #
1 (ω, ω̂) = A(ω)U #

2 (ω, ω̂).

Use the symmetry of U #
1 and U #

2 in (ω, ω̂) in order to deduce that A is constant.

Exercise VI.12. Let f (s, t) be as in the preceding exercise, and g belong to L2(IR+). If

X =
∫ ∞

0
g(s) d Bs

Y =
∫ ∞

0

∫ t

0
f (s, t) d Bs d Bt

show that

0[X ] = ‖g‖2L2

0[Y ] =
∫ ∞

0

(∫ ∞

0
f (s, t) d Bs

)2
dt

0[X, Y ] =
∫ ∞

0
g(s)

(∫ ∞

0
f (s, t) d Bt

)
ds.

Show that if
(
0[X, Y ]

)2 = 0[X ]0[Y ], the law of (X, Y ) is carried by a parabola.
Numerical application. Let’s consider the case

f (s, t) = 2h(s)h(t)− 2g(s)g(t)

for g, h ∈ L2(IR+) with ‖h‖L2 = ‖g‖L2 = 1 and 〈g, h〉 = 0.
The pair (X, Y ) then possesses the density

1
4π

e−y/2e−x2 1√
y + x2

1{y>−x2},

Nicolas Bouleau
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and the matrix of the error variances is

(
0[X ] 0[X, Y ]
0[X, Y ] 0[Y ]

)
=
(

1 −2X
−2X 8X2 + 4Y

)
.

In other words, the image error structure by (X, Y ) possesses a quadratic error operator 0(X,Y ) such that for C1 ∩ Lip-functions

0(X,Y )[F](x, y) = F ′21 (x, y)− 4x F ′1(x, y)F ′2(x, y)+ (8x2 + 4y)F ′22 (x, y).

This can be graphically represented, as explained in Chapter I, by a field of ellipses of equations

(
u v
) ( 1 −2x
−2x 8x2 + 4y

)−1 (u
v

)
= ε2

Nicolas Bouleau
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which are the level curves of small Gaussian densities.
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2.4. Structures with erroneous time. Let’s now choose (T, T , µ) =
(
[0, 1], B

(
[0, 1]

)
, dx

)
for the sake of simplicity and let





χn =
√

2 cos 2πnt if n > 0
χ0 = 1
χn =

√
2 sin 2πnt if n < 0

be the trigonometric basis of L2([0, 1]
)
. We then follow the same construction as before

Bt =
∑

n

∫ t

0
χn(s)ds · gn

∫ 1

0
f (s) d Bs =

∑

n
f̂ngn

if
f (t) =

∑

n
f̂nχn

and
(Ä,A, IP, ID, 0) =

∏

n

(
IR,B(IR),m, H1(m), γn

)
,

where m is the reduced normal law and
γn[u] = anu′2

with an constant and dependent on n.

Example. an = (2πn)2q , q ∈ IN. In this case

0

[∫ 1

0
f (s) d Bs

]
= 0

[∑

n
f̂ngn

]
=
∑

n
f̂ 2
n (2πn)2q

from the theorem on products, we know that
∫ 1

0
f (s) d Bs ∈ ID if and only if

∑

n
f̂ 2
n (2πn)2q < +∞.

Proposition VI.13.
∫ 1

0 f (s) d Bs ∈ ID if and only if the q-th derivative f (q) of f in the sense of distribution belongs to L2([0, 1]
)
;

then

0

[∫ 1

0
f (s) d Bs

]
=
∫ 1

0
f (q)2(s) ds.

Nicolas Bouleau
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Proof . This result stems from the fact that
(

f (q) ∈ L2([0, 1]
)

in the sense of D′
)

is equivalent with
∑
n

f̂ 2
n (2πn)2q < +∞, as easily

seen using Fourier expansion. ¦
We can observe that the structure (Ä,A, IP, ID, 0) is white in the strong sense of error structures.

Proposition VI.14.

a) Let f ∈ L2([0, 1]
)

with f (q) ∈ L2([0, 1]
)

with such support that

g = τα f =
(
t → f (t − α)

)

also lies in L2([0, 1]
)
. Then for U =

∫ 1
0 f (s) d Bs and V =

∫ 1
0 g(s) d Bs , the image structures by both U and V are equal.

b) Let f, g ∈ L2([0, 1]
)

and f (q), g(q) ∈ L2([0, 1]
)

such that f g = 0, then for U =
∫ 1

0 f (s) d Bs and V =
∫ 1

0 g(s) d Bs , the
image structure by the pair (U, V ) is the product of the image structures by U and by V .

This result is also valid for the Ornstein–Uhlenbeck structure obtained for q = 0.

Nicolas Bouleau
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.1. Error structures on the Wiener space 11

2.5. Structures of the generalized Mehler type. The error structures on the Wiener space constructed in the preceding Section
2.4 can be proved to belong to a more general family which will now be introduced.

Let m = N (0, 1) as usual. Let’s consider the probability space

(Ä,A, IP) =
(
IR,B(IR),m

)IN

with gn as coordinate mappings.
Let X = F

(
g0, . . . , gn, . . .

)
be a bounded random variable. Consider the transform Pt :

Pt X = ÎE
[

F
(

g0
√

e−a0t + ĝ0
√

1− e−a0t , . . . , gn
√

e−an t + ĝn
√

1− e−an t , . . .
)]

where the ĝn’s are copies of the gn’s, ÎE is the corresponding expectation and the an are positive numbers: an ≥ 0 ∀n.
The following properties are easily proved along the same lines as in dimension one (see Chapter II).

2.5.1. Pt is well-defined and preserves the probability measure IP.

2.5.2. Pt is continuous from L2(IP) into itself with norm ≤ 1

IE
(
Pt X

)2 ≤ IEPt
(
X2) = IEX2.

2.5.3. Pt is a Markovian semigroup

Pt+s(X) = Pt
(
Ps(X)

)

Pt (X) ≥ 0 if X ≥ 0
Pt (1) = 1.

2.5.4. Pt is symmetric with respect to IP.
Let Y = G

(
g0, . . . , gn, . . .

)
, we then obtain:

IE
[
Pt X · Y

]
= IE

[
F
(
ξ0, . . . , ξn, . . .

)
G
(
y0, . . . , yn, . . .

)]

where ξ0, . . . , ξn, . . . are i.i.d. reduced Gaussian variables and y0, . . . , yn, . . . are also i.i.d. reduced Gaussian variables, such that
cov

(
ξn, yn

)
=
√

e−an t , i.e.
IE
[
Pt X · Y

]
= IE

[
X · Pt Y

]
.

2.5.5. Pt is strongly continuous on L2(IP). Indeed if X is bounded and cylindrical

lim
t→0

Pt X = X a.e.

by virtue of dominated convergence, hence
lim
t→0

IE
[(

Pt X − X
)2] = 0

again by dominated convergence. From the density of bounded cylindrical random variables in L2(IP), the result therefore follows.
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2.5.6. Let’s define
ID =

{
X ∈ L2(IP) : lim

t↓0

1
t

IE
[(

X − Pt X
)
X
]
< +∞

}

and for X ∈ ID
E[X ] = lim

t↓0
↑ 1

t
IE
[(

X − Pt X
)
X
]
.

By approximation on cylindrical functions, it can be shown that this construction provides the product error structure

(Ä,A, IP, ID, 0) =
∞∏

n=0

(
IR,B(IR),m, H1(m), u → anu′2

)

and

ID =
{

X = F
(
g0, . . . , gn, . . .

)
: ∀n ∂F

∂gn
∈ H1(m)

∑

n
an

(
∂F
∂gn

)2
∈ L1(IP)

}

0[X ] =
∑

n
an

(
∂F
∂gn

)2
.

Let’s now introduce the semigroup pt on L2(IR+) defined for

f =
∑

n
〈 f, χn〉χn

by
pt f =

∑

n
〈 f, χn〉e−an tχn .

(pt ) is a symmetric strongly continuous contraction semigroup on L2(IR+) with eigenvectors χn . Let (B,DB) be its generator.
Since

‖pt f − f ‖2L2 =
∑

n
〈 f, χn〉2

(
1− e−an t)2

we can observe that if ∑

n
〈 f, χn〉2a2

n < +∞

then f ∈ DB and B f = −∑
n
〈 f, χn〉anχn which leads to
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Proposition VI.16.
∫∞

0 f (s) d Bs ∈ ID if and only if
∑

n
〈 f, χn〉2an < +∞,

i.e. using, in this case, the symbolic calculus notation

f ∈ D
(√
−B

)
,
√
−B f =

∑

n
〈 f, χn〉

√
anχn,

we then have:
0

[∫ ∞

0
f (s) d Bs

]
= 〈
√
−B f,

√
−B f 〉L2(IR+).

Let’s emphasize that the semigroup pt on L2(IR+) is not necessarily positive on positive functions. As a matter of fact, we obtained
any symmetric, strongly continuous contraction semigroup on L2(IR+), and we can start the construction with such a semigroup as
input data.
Exercise VI.17. Show that for f ∈ L2(IR+)

Pt

(∫ ∞

0
f d B

)
=
∫ ∞

0

(
p t

2
f
)
d B

Pt

(
exp

{∫
f d B − 1

2
‖ f ‖2L2

})
= exp

{∫
p t

2
f d B − 1

2
∥∥p t

2
f
∥∥2

L2

}

Pt

((
sin
∫

f d B
)

e
1
2 ‖ f ‖2

L2

)
=
(

sin
∫

p t
2

f d B
)

e
1
2 ‖p t

2
f ‖2

L2 .

2.5.9. Considering the Wiener measure as carried by C0(IR+) and using the symbolic calculus for operators in L2(IR+) the general-
ized Mehler formula can be demonstrated:
∀F ∈ L2(Ä,A, IP)

Pt F = ÎE
[

F
(∫ ∞

0

(
p t

2
1[0,·]

)
(u) d Bu +

∫ ∞

0

(√
1− pt 1[0,·]

)
(v) d B̂v

)]
.

This Mehler formula provides an intuitive interpretation of the error on the Brownian path modeled by this error structure. For
example, in the Ornstein–Uhlenbeck case where pt u = e−t u, we can see that the path ω is perturbed in the following way

ω −→ e−
ε
2ω +

√
1− eε ω̂

where ω̂ is an independent standard Brownian motion and ε a small parameter.
In the case of the weighted Ornstein–Uhlenbeck case (see Exercise VI.20 below)

ω(s) =
∫ s

0
d Bu −→

∫ s

0
e−α(u)ε/2 d Bu +

∫ s

0

√
1− e−α(u)ε d B̂u

(where α is a positive function in L1
loc(IR+)).

Nicolas Bouleau
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.2 Error structures on the Poisson space
Several error structures can easily be constructed either on the Poisson process on IR+ or on the general Poisson space. As in the
case of Brownian motion, these structures allow studying more sophisticated objects, such as marked processes and processes with
independent increments, which can be defined in terms of a general Poisson point process.

Among the works on the variational calculus on the Poisson space let us first cite Bichteler–Gravereau–Jacod [1987] and Wu
[1987]. The construction produced by these authors yields the same objects as our approach in Section 3.2. Carlen and Pardoux,
in 1990, introduced a different structure on the Poisson process on IR+ and displayed some interesting properties. This domain
represents still an active field of research (Nualart and Vives [1990], Privault [1993], Decreusefond [1998], etc.).

Our initial approach will consist of following to the greatest extent possible the classical construction of a Poisson point process,
which we will first recall:

3.1. Construction of a Poisson point process with Intensity measure µ. Let’s begin with the case where µ is a finite
measure.

3.1.1. Let (G,G, µ) be a measurable space equipped with a finite positive measureµ. We set θ = µ(G) andµ0 = 1
θ
·µ. Considering

the product probability space
(Ä,A, IP) =

(
G,G, µ0

)IN∗ ×
(
IN,P(IN), Pθ

)
,

where P(IN) denotes the σ -field of all subsets of integers IN and Pθ denotes the Poisson law on IN with parameter θ defined by

Pθ ({n}) = e−θ
θn

n!
, n ∈ IN,

and if we denote the coordinate mappings of this product space by
(
Xn
)

n>0 and Y , we obtain for the Xn’s a sequence of random
variables with values in (G,G) which are i.i.d. with law µ0 and for Y an integer-valued random variable with law Pθ independent
of the Xn’s.

The following formula

N (ω) =
Y (ω)∑

n=1
δXn(ω),

where δ is the Dirac measure (using the convention
0∑
1
= 0) defines a random variable with values in the space of “point measures”,

i.e. measures which are sum of Dirac measures. Such a random variable is usually called a “point process.”

Proposition VI.22. The point process N features the following properties:

a) If A1, . . . , An are in G and pairwise disjoint then the random variables N (A1), . . . ,
N (An) are independent.

b) For A ∈ G, N (A) follows a Poisson law with parameter µ(A).

Nicolas Bouleau
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Proof . This result is classical (see Neveu [1977] or Bouleau [2000]). ¦
Since the expectation of a Poisson variable is equal to the parameter, we have ∀A ∈ G

µ(A) = IE
[
N (A)

]

such that µ can be called the intensity of point process N .

3.1.2. Let’s now assume that the space (G,G, µ) is only σ -finite. A sequence Gk ∈ G then exists such that:

• the Gk are pairwise disjoint

• ⋃
k

Gk = G

• µ
(
Gk
)
< +∞.

Let’s denote
(
Äk,Ak, IPk

)
and Nk the probability spaces and point processes obtained by the preceding procedure on Gk ; more-

over let’s set

(Ä,A, IP) =
∏

k

(
Äk,Ak, IPk

)

N =
∑

k
Nk .

We then obtain the same properties for N as in Proposition VI.23, once the parameters of the Poisson laws used are finite.
Such a random point measure is called a Poisson point process with intensity µ.

3.1.3.. Let’s indicate the Laplace characteristic functional of N .
For f ≥ 0 and G-measurable

IEe−N ( f ) = exp
{
−
∫ (

1− e− f ) dµ
}
.
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3.2. The white error structure on the general Poisson space. The first error structure that we will consider on the Poisson
space displays the property that each point thrown in space G is erroneous and modeled by the same error structure on (G,G),
moreover if we examine the points in A1 and their errors along with the points in A2 and their errors, there is independence if
A1 ∩ A2 = ∅. This property justifies the expression “white error structure”.

3.2.1. Let’s begin with the case where µ is finite. Suppose an error structure is given on
(
G,G, µ0

)
e.g.

(
G,G, µ0,d, γ

)
; using the

theorem on products once more, if we set

(Ä,A, IP, ID, 0) =
(
G,G, µ0,d, γ

)IN∗ ×
(
IN,P(IN), Pθ , L2(Pθ ), 0

)
,

we obtain an error structure that is Markovian if (G,G, µ0,d, γ ) is Markovian.
Then any quantity depending on

N =
Y∑

n=1
δXn

and sufficiently regular will be equipped with a quadratic error:

Proposition VI.23. Let U = F
(
Y, X1, X2, . . . , Xn, . . .

)
be a random variable in

L2(Ä,A, IP), then

a) U ∈ ID iff ∀m ∈ IN, ∀k ∈ IN∗, for µ⊗IN∗
0 -a.e. x1, . . . , xk−1, xk+1, . . .

F
(
m, x1, . . . , xk−1, ·, xk+1, . . .

)
∈ d

and IE
[ ∞∑

k=1
γk[F]

]
< +∞ (where, as usual, γk is γ acting upon the k-th variable).

b) for U ∈ ID

0[U ] =
∞∑

k=1
γk
[
F
(
Y, X1, . . . , Xk−1, ·, Xk+1, . . .

)](
Xk
)
.

Proof . This is simply the theorem on products. ¦
This setting leads to the following proposition:

Proposition VI.24. Let f, g ∈ d, then N ( f ) and N (g) are in ID and

0
[
N ( f )

]
= N

(
γ [ f ]

)

0
[
N ( f ), N (g)

]
= N

(
γ [ f, g]

)
.

Proof . By IE|N ( f ) − N (g)| ≤ IE[N | f − g|] = µ| f − g|, the random variable N ( f ) depends solely upon the µ-equivalence class
of f .

Nicolas Bouleau

Nicolas Bouleau

Nicolas Bouleau
theorem

on

products
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From the Laplace characteristic functional, we obtain:

IE
[
N ( f )2

]
=
∫

f 2 dµ+
(∫

f dµ
)2

thus proving that N ( f ) ∈ L2(IP) if f ∈ L2(µ). Then for f ∈ d,

0
[
N ( f )

]
=
∞∑

k=1
γk

[
Y∑

n=1
f
(
Xn
)
]
=
∞∑

k=1
1{k≤Y }γ [ f ]

(
Xk
)

=
Y∑

k=1
γ [ f ]

(
Xk
)
= N

(
γ [ f ]

)
.

The required result follows. ¦
By functional calculus, this proposition allows computing 0 on random variables of the form F

(
N ( f1), . . . , N ( fk)

)
for F ∈

C1 ∩ Lip and fi ∈ d.
Let (a,Da) be the generator of the structure

(
G,G, µ0,d, γ

)
, we also have:

Proposition VI.25. If f ∈ Da, then N ( f ) ∈ DA and

A
[
N ( f )

]
= N

(
a[ f ]

)
.

Proof . The proof is straightforward from the definition of N . ¦
For example if f ≥ 0, f ∈ Da, then

A
[
e−λN ( f )] = e−λN ( f )N

(
λ2

2
γ [ f ]− λa[ f ]

)
.

3.2.2. Chaos. Let’s provide some brief comments on the chaos decomposition of the Poisson space. Let’s set Ñ = N − µ. If
A1, . . . , Ak are pairwise disjoint sets in G, we define

Ik
(
1A1 ⊗ · · · ⊗ 1Ak

)
= Ñ

(
A1
)
· · · Ñ

(
Ak
)
,

the operator Ik extends uniquely to a linear operator on L2(Gk,G⊗k, µk) such that:

• Ik( f ) = Ik( f̃ ), where f̃ is the symmetrized function of f

• IEIk( f ) = 0 ∀k ≥ 1, I0( f ) =
∫

f dµ

• IE
[
Ip( f )Iq(g)

]
= 0 if p 6= q
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• IE
[
(Ip( f ))2

]
= p!〈 f̃ , g̃〉L2(µp).

If Cn is the subvector space of L2(Ä,A, IP) of In( f ), we then have the direct sum:

L2(Ä,A, IP) =
∞⊕

n=0
Cn .

The link of the white error structure on the Poisson space with the chaos decomposition is slightly analogous to the relation of
generalized Mehler-type error structures with the chaos decomposition on the Wiener space. It can be shown that if

(
Pt
)

is the
semigroup on L2(IP) associated with error structure (Ä,A, IP, ID, 0), then ∀ f ∈ L2(Gn,G⊗n, µn)

Pt
(
In( f )

)
= In

(
p⊗n

t f
)
,

where (pt ) is the semigroup on L2(µ0) associated with the error structure
(
G, G, µ0, d, γ

)
.

It must nevertheless be emphasized that pt here is necessarily positive on positive functions whereas this condition was not
compulsory in the case of the Wiener space.

Exercise VI.26. Let d be a gradient for
(
G,G, µ0,d, γ

)
with values in the Hilbert space H . Let’s defineH by the direct sum

H =
∞⊕

n=1
Hn,

where Hn are copies of H .
Show that for U = F

(
Y, X1, . . . , Xn, . . .

)
∈ ID

D[U ] =
∞∑

k=1
dk
[
F
(
Y, X1, . . . , Xk−1, ·, Xk+1, . . .

)](
Xk
)

defines a gradient for (Ä,A, IP, ID, 0).
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3.2.3. σ -finite case. When µ is σ -finite, the construction may be performed in one of several manners which do not all yield the
same domains.

If we try to strictly follow the probabilistic construction (see sub-section 3.1.2) it can be assumed that we have error structures on
each Gk

Sk =
(

Gk,G
∣∣
Gk
,

1
µ(Gk)

µ

∣∣∣∣
Gk

,dk, γk

)

hence, as before, we have error structures on
(
Äk,Ak, IPk

)
, e.g.

(
Äk,Ak, IPk, IDk0k

)
, and Poisson point processes Nk .

We have noted that on

(Ä,A, IP) =
∏

k

(
Äk,Ak, IPk

)

N =
∑

k
Nk

is a Poisson point process with intensity µ. Thus, it is natural to take

(Ä,A, IP, ID, 0) =
∏

k

(
Äk,Ak, IPk, IDk, 0k

)
.

Let’s define
d =

{
f ∈ L2(µ) : ∀k f |Gk ∈ dk

}

and for all f ∈ d, let’s set
γ [ f ] =

∑

k
γk
[

f |Gk

]
,

we then have:

Proposition VI.27. Let f ∈ d be such that f ∈ L1 ∩ L2(µ) and γ [ f ] ∈ L1(µ). Then N ( f ) ∈ ID and

0
[
N ( f )

]
= N

(
γ [ f ]

)
.

To clearly see what happens with the domains, let’s proceed with the particular case where

(G,G) =
(
IR+,B(IR+)

)
,

µ is the Lebesgue measure on IR+, Gk are the intervals [k, k + 1[, and the error structures Sk are
(

[k, k + 1[,B
(
[k, k + 1[

)
, dx, H1([k, k + 1[

)
, u → u′2

)
.

We then have in d not only continuous functions with derivatives in L2
loc(dx), but also discontinuous functions with jumps at the

integers.
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Practically, this is not troublesome. We thus have

Lemma. The random σ -finite measure
Ñ = N − µ

extends uniquely to L2(IR+) and for f ∈ H1(IR+, dx)

0
[
Ñ ( f )

]
= N

(
f ′2
)
.
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3.2.4. Application to the Poisson process on IR+. Let’s recall herein our notation.
On [k, k + 1[, we have an error structure:

Sk =
(

[k, k + 1[, B
(
[k, k + 1[

)
, dx, H1([k, k + 1[

)
, u γk−→ u′2

)
.

With these error structures, we built Poisson point processes on [k, k + 1[ and then placed error structures on them:
(
Äk,Ak, IPk, IDk, 0k

)
=
(
IN,P(IN), P1, L2(P1), 0

)
×
(
Sk
)IN∗

.

If Y k, X k
1, X k

2, . . . , X k
n, . . . denote the coordinate maps, the point process is defined by

N k =
Y k∑

n=1
δXk

n
.

We have proved that for f ∈ H1([k, k + 1[
)

0k
[
N k( f )

]
= N k( f ′2

)

and for f ∈ C2([k, k + 1]
)

with f ′(k) = f ′(k + 1) = 0,

Ak
[
N k( f )

]
= 1

2
N k( f ′′).

(cf. Example III.3 and Propositions VI.24 and VI.25).
We now take the product

(Ä,A, IP, ID, 0) =
∞∏

k=0

(
Äk,Ak, IPk, IDk, 0k

)

and set

N =
∞∑

k=0
N k .

Let’s denote ξk the coordinate mappings of this last product, we then have from the theorem on products

Lemma VI.28.

• ∀k ∈ IN, ∀n ∈ IN∗, X k
n ◦ ξk ∈ ID

• 0
[
X k

n ◦ ξk
]
= 1

• 0
[
X k

m ◦ ξk, X`n ◦ ξ`
]
= 0 if k 6= ` or m 6= n.
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If we set Nt = N
(
[0, t]

)
, Nt is a usual Poisson process with unit intensity on IR+. Let T1, T2, . . . , Ti , . . . be its jump times.

We can prove

Proposition VI.29. Ti belongs to ID.
0
[
Ti
]
= 1, 0

[
Ti , T j

]
= 0 if i 6= j.

Corollary VI.30.

a) If F is C1 ∩ Lip

0
[
F
(
T1, . . . , Tp

)]
=

p∑

i=1
F ′2i
(
T1, . . . , Tp

)
.

b) For f ∈ H1(IR+),
∫∞

0 f (s) d(Ns − s) ∈ ID and

0

[∫ ∞

0
f (s) d(Ns − s)

]
=
∫ ∞

0
f ′2(s) d Ns .

c) For f ∈ H1(IR+) with f ′(0) = 0 and f ′′ ∈ L1(IR+) ∩ L2(IR+) we have
∫ ∞

0
f (s) d(Ns − s) ∈ DA

and
A
[∫ ∞

0
f (s) d(Ns − s)

]
= 1

2

∫ ∞

0
f ′′(s) d Ns .
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3.2.5. Application to internalization. The construction discused above is indispensable for studying random variables that
depend on an infinite number of Tn . Nevertheless, it also gives results in finite dimension, which could be elementarily proved using
the fact that random variables Tn+1 − Tn are i.i.d. with exponential law. We have, for instance, the following results.

Lemma. Let g ∈ C1(IR+) with polynomial growth and vanishing at zero. Let F ∈ C1 ∩ Lip(IRn). Then

IE
[

n∑

i=1
g
(
Ti
)
F ′i
(
T1, . . . , Tn

)
]
= IE

[(
g
(
Tn
)
−

n∑

i=1
g′
(
Ti
)
)

F
(
T1, . . . , Tn

)
]
.

Proof . Let us first consider an f as in Corollary VI.30. The proof of this corollary yields:

IE
[

n∑

i=1
f ′
(
Ti
)
F ′i
(
T1, . . . , Tn

)
]
= IE

[(
f ′
(
Tn
)
−

n∑

i=1
f ′′
(
Ti
)
)

F
(
T1, . . . , Tn

)
]
.

This relation now extends to the hypotheses of the statement by virtue of dominated convergence.
¦

With the same hypotheses on F , the lemma directly yields the following formula

d
dα

IE
[
F
(
αT1, . . . , αTn

)]
= 1
α

IE
[(

Tn − n
)
F
(
αT1, . . . , αTn

)]
. (5)

Exercise. Provide a formula without derivation for

d
dα

IE
[
F
(
αh(T1), . . . , αh(Tn)

)]
.

Exercise. Consider the random variable with values in IR2 X =
(
N ( f1), N ( f2)

)
for f1, f2 ∈ L1 ∩ L2(IR+); show that if

det0
[
N ( fi ), N ( f j )

]
= 0 IP-a.s.,

then the law of X is carried by a straight line.
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3.3. The Carlen–Pardoux error structure. For the classical Poisson process on IR+, E. Carlen and E. Pardoux have proposed
and studied an error structure which possesses a gradient and a δ with attractive properties.

As previously mentioned, if Tn are the jump times of the Poisson process, random variables En = Tn − Tn−1, n > 1, E1 = T1,
are i.i.d. with exponential law. Since the knowledge of all En is equivalent to the knowledge of the process path, we can start with
the En’s and place an error structure on them.

Consider the error structure
S =

(
IR+,B(IR+), e−x dx,d, u γ−→ xu′2(x)

)
,

closure of the pre-structure defined on C∞k (IR+), and define

(Ä,A, IP, ID, 0) = S⊗IN∗

with the random variables En being the coordinate mappings. We have:

0
[
En
]
= En n ≥ 1

0
[
Em, En

]
= 0 m 6= n.

Lemma. Setting
D
[
En
]
= −1]Tn−1,Tn ](t)

defines a gradient with value inH = L2(IR+).

Indeed ∫ ∞

0
1]Tn−1,Tn ](t) dt = En = 0

[
En
]
.

Among the attractive properties of this gradient is the following.

Proposition VI.32. Let U = ϕ
(
E1, . . . , En

)
for ϕ ∈ C1 ∩ Lip(IRn), then

U = IEU +
∫ ∞

0
Ksd

(
Ns − s

)
,

where Ks is the predictable projection of the process D[U ](s).

For the proof we refer to Bouleau–Hirsch [1991], Chapter V, Section 5.

Corollary VI.33. The adjoint operator δ coincides with the integral with respect to Nt − t on predictable stochastic processes of
L2(IP,H).
Proof . If Hs is a predictable process in L2(IP,H), the proposition implies the equality

IE
[

U
∫ ∞

0
Hs d

(
Ns − s

)]
= IE

[∫ ∞

0
D[U ](s)Hs ds

]
. (6)
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It then follows that Hs ∈ dom δ and δ[H ] =
∫∞

0 Hsd
(
Ns − s

)
. ¦

Although this error structure yields new integration by parts formulae different from the preceding ones, on very simple random
variables it yields the same internalization formula.

Let X = F
(
αT1, . . . , αTn

)
, F ∈ C1 ∩ Lip as before. Then

d
dα

IE
[
F
(
αT1, . . . , αTn

)]
= IE

[
n∑

i=1
Ti F ′i

(
αT1, . . . , αTn

)
]
,

whereas

D[X ] = −
n∑

i=1
αF ′i

(
αT1, . . . , αTn

)
1]0,Ti ](s)

such that

d
dα

IE[X ] = − 1
α

IE
∫ Tn

0
D[X ](s) ds

= − 1
α

IE
∫ ∞

0
D[X ]1]0,Tn ](s) ds

which gives according to (6)

= − 1
α

IE
[

X
∫

]0,Tn ]
d
(
Ns − s

)]

= 1
α

IE
[
X
(
Tn − n

)]
.

which is exactly (5).




