
H) sensitivity analysis of an SDE, application to finance



           

Error calculi with respect to parameters ∈ IRn

. Black-Scholes : sensitivity with respect to σ :

dSt = St(σ dBt + r dt)

• For the calls, we may consider that the implicit Black-

Scholes-volatility is given by the derivative markets. If we

use this volatility σ to price other options, which accuracy

have we to take on σ ?

A natural choice is to consider a constant proportional

error :

Γσ[I ] = ς2σ2

where ς is the (historical) agitation of the implicit B&S

vol.

(For instance a lognormal homogeneous error structure

)

• Now for a European option with payoff f (ST ), the value

at time t ∈ [0, T ] of the option is Vt = F (t, St, σ, r) with

F (t, x, σ, r) = e−r(T−t)

∫

IR

f

(
xe(r−

σ2

2 )(T−t)+σy
√

T−t

)
e−

y2

2√
2π

dy.

Putting as usual gammat =
∂2F

∂x2
(t, St, σ, r)

we get
{

Γσ[V0] = T 2σ2S4
0 gamma2

0 Γσ[I ]

Aσ[V0] = TσS2
0 gamma0 Aσ[I ] + 1

2
∂2F
∂σ2 (0, S0, σ, r)Γσ[I ].

I think this bias has significant financial consequences.

(even if we consider that the implicit volatility is “with-

out bias on his spot” i.e. Aσ[I ](σ0) = 0, it remains a bias)



      

Error calculi for a diffusion model

We consider an asset modelled by a diffusion process

dXt = Xtσ(t, Xt) dBt + Xtr(t) dt.

We may study the sensitivity of the financial quantities

(option price, hedging) to an error on any parameter of

the model.

For finite dimensional parameters we do as above, the

most convenient is to proceed with a gradient especially

with the sharp.

We shall display the fact that error structures are tools

which allow to study as well the sensitivity with respect

to the Brownian path, or to other functional quantities.

1. Effect of a lack of accuracy on the Brownian path

2. Error on the function (t, x) → σ(t, x) in the whole

model

3. Error on the function σ(t, x) not in the whole model

but rather only on the hedging formula used by the trader.



           

Effect of an inaccuracy on the Brownian path : hypotheses

In order to express that the inaccuracy is sometimes

larger depending on the period (week-ends, etc.) we

choose an O-U-structure with weights :

Let α be a function on IR+ such that α(x) ≥ 0 ∀x ∈ IR+

and α ∈ L1
loc(IR+, dx), the O.-U. structure with weights α is

defined as the generalized Mehler-type structure associ-

ated with the semi-group ptu = e−αtu on L2(IR+).

It is the mathematical expression of the following per-

turbation of the Brownian path :

ω(s) =

∫ s

0

dBu −→
∫ s

0

e−
α(u)

2 ε dBu +

∫ s

0

√
1− e−α(u)ε dB̂u,

where B̂ is an independent standard Brownian motion.

This error structure satisfies for u ∈ CK(IR+).

Γ

[∫ ∞

0

u(s) dBs

]
=

∫ ∞

0

α(s)u2(s) ds

It has a gradient : D: ID→ L2(IP,H) où H = L2(IR+, dt)

D

[∫
u(s) dBs

]
(t) =

√
α(t) u(t) ∀u ∈ L2(IR+, (1 + α) dt)

We shal use mainly the sharp, which is a particular gra-

dient with H = L2(Ω̂, Â, ÎP) defined by

(∫ ∞

0

u(s) dBs

)#

=

∫ ∞

0

√
α(s) u(s) dB̂s, u ∈ L2(IR+, (1+α)dt),

which satisfies the chain rule and, for a regular adapted

process Ht :
(∫ ∞

0

Hs dBs

)#

=

∫ ∞

0

√
α(s)Hs dB̂s +

∫ ∞

0

H#
s dBs.



         

Propagation of an error on the Brownian motion

From the equation

Xt = X0 +

∫ t

0

Xsσ(s, Xs) dBs +

∫ t

0

Xsr(s) ds,

we draw

X#
t =

∫ t

0

(σ(s, Xs) + Xsσ
′
x(s, Xs))X

#
s dBs

+

∫ t

0

√
α(s)Xsσ(s, Xs) dB̂s +

∫ t

0

X#
s r(s) ds.

which may be solved in the spirit of the “variation of the

constant” method

If we put




Kt = σ(t, Xt) + Xtσ
′
x(t, Xt)

Mt = exp

{∫ t

0

Ks dBs −
1

2

∫ t

0

K2
s ds +

∫ t

0

r(s) ds

}
,

we have

X#
t = Mt

∫ t

0

√
α(s)Xsσ(s, Xs)

Ms
dB̂s.

The effect of an error from (Bt)t≥0 on the process (Xt)t≥0 is

given by :

Γ[Xt] = M 2
t

∫ t

0

α(s)X2
sσ

2(s, Xs)

M 2
s

ds

Γ[Xs, Xt] = MsMt

∫ s∧t

0

α(u)X2
uσ

2(u, Xu)

M 2
u

du.



            

Effect on the value of an option

Under the probability which is a martingale-measure,

if f (XT ) is the payoff of a European option, its value at

time t is

Vt = IE

[
exp

(
−
∫ T

t

r(s) ds

)
f (XT ) | Ft

]

where (Ft) is the Brownian filtration.

Let us suppose f ∈ C1 ∩ Lip. Let be

Y = exp

(
−
∫ T

t

r(s) ds

)
f (XT ).

In order to compute (IE[Y | Ft])
# we apply the

Lemma : Let Γt be defined by

Γt

[∫
u(s) dBs

]
= Γ

[∫
1[0,t](s)u(s) dBs

]

and let U → U#t be the sharp operator associated with Γt, then for

U ∈ ID

(IE[U | Ft])
# = IE[U#t | Ft].

Hence

(IE[Y | Ft])
# =

exp
(
−
∫ T

t r(s) ds
)

IE[f ′(XT )MT | Ft]
∫ t

0

√
α(s)Xsσ(s,Xs)

Ms
dB̂s

and

Γ[Vt] = Γ[IE[Y | Ft]] =

= exp
(
−2
∫ T

t r(s) ds
)

(IE[f ′(XT )MT | Ft])
2 ∫ t

0
α(s)X2

sσ
2(s,Xs)

M2
s

ds.

This gives also the cross-error of Vt and Vs, (usefull for

instance to compute the error on
∫ T

0 h(s) dVs or
∫ T

0 Vsh(s) ds)

Γ[Vs, Vt] = exp
(
−
∫ T

s r(u) du−
∫ T

t r(v) dv
)

IE[f ′(XT )MT | Fs]IE[f ′(XT )MT | Ft]
∫ s∧t

0
α(u)X2

uσ
2(u,Xu)

M2
u

du.



           

Effect on the hedging portfolio

The hedging portfolio is the adapted process Ht, which

satisfies

Ṽt = V0 +

∫ t

0

Hs dX̃s,

where Ṽt = exp(−
∫ t

0 r(s) ds)Vt and X̃t = exp(−
∫ t

0 r(s) ds)Xt.

Here it is

Ht = exp

(
−
∫ T

t

r(s) ds

)
IE[f ′(XT )MT | Ft]

1

Mt
.

The same method as for Vt gives

Γ[Ht] = exp
(
−2
∫ T

t r(s) ds
) (

IE
[

MT
Mt

(f ′′(XT )MT + f ′(XT )ZT
t ) | Ft

])2

∫ t

0

α(u)X2
uσ(u, Xu)

M 2
u

du

avec ZT
t =

∫ T

t

Ls dBs −
∫ T

t

KsLsMs ds

Ks = σ(s, Xs) + Xsσ
′
x(s, Xs)

Ls = 2σ′x(s, Xs) + Xsσ
′′
x2(s, Xs).



         

Effect of an inaccuracy on the Brownian motion : summary

If we introduce the following notation which extends

the Black–Scoles case :

deltat = Ht = exp

(
−
∫ T

t

r(s) ds

)
IE[f ′(XT )MT | Ft]

1

Mt

gammat = exp

(
−
∫ T

t

r(s) ds

)
IE

[
M 2

T

M 2
t

f ′′(XT ) +
MT

M 2
t

f ′(XT )ZT
t | Ft

]
.

we may resume the study of the sensitivity with respect

to the Brownian path as follows :

Γ[Xt] = M 2
t

∫ t

0

α(u)X2
uσ

2(u, Xu)

M 2
u

du

Γ[Xs, Xt] = MsMt

∫ s∧t

0

α(u)X2
uσ

2(u, Xu)

M 2
u

du.

V #
t = deltat X

#
t

H#
t = gammat X

#
t

Γ[Vt] = delta2
t Γ[Xt]

Γ[Vs, Vt] = deltasdeltat Γ[Xs, Xt]

Γ[Ht] = gamma2
t Γ[Xt]

Γ[Hs, Ht] = gammasgammat Γ[Xs, Xt]

Γ[Vs, Ht] = deltasgammat Γ[Xs, Xt]

It is also possible to compute the biases : in the Black-

Scholes case (with Γ[St] = S2
t σ

2t) we have :

A[St] = −StσBt +
1

2
σ2Stt

A[Vt] = deltatA[St] +
1

2
gammat Γ[St]

A[Ht] = gammatA[St] +
1

2

∂3F

∂x3
(t, St, σ, r)Γ[St].



         

Erroneous volatility : model with an inaccuracy on σ

We suppose that the model of the asset is

Xt = x +

∫ t

0

Xsσ(s, Xs) dBs +

∫ t

0

Xsr(s) ds

and that in this equation, the function σ is endowed with

an error such that the following formula holds

(σ(t, Y ))# = σ#(t, Y ) + σ′x(t, Y )Y #

where Y is a random variable, eventually correled with σ,

such that σ(t, Y ) ∈ ID.

From the equation

Xt = x +

∫ t

0

Xsσ(s, Xs) dBs +

∫ t

0

Xsr(s) ds

we draw

X#
t =

∫ t

0

(X#
s σ(s, Xs)+Xsσ

#(s, Xs)+Xsσ
′
x(s, Xs)X

#
s ) dBs+

∫ t

0

X#
s r(s) ds.

which has the solution

X#
t = Mt

∫ t

0

Xsσ
#(s, Xs)

Ms
(dBs −Ks ds).

with

Ks = σ(s, Xs) + Xsσ
′
x(s, Xs)

and

Mt = exp

{∫ t

0

Ks dBs −
1

2

∫ t

0

K2
s ds +

∫ t

0

r(s) ds

}
.



         

First case. σ(t, x) is represented by a series of functions

ψn(t, x) regular in x:

σ(t, x) =
∑

n

anψn(t, x)

the coefficients an are erroneous random variables with

laws such that a.s. only a finite number of an dont vanish.

Γ[an] = a2
n

Γ[am, an] = 0 for m 6= n

a#
n = an

ân − ÎEân

βn
βn =

√
ÎE(ân − ÎEân)2,

σ#(s, Xs) =
∑

n

a#
n ψn(s, Xs)

X#
t =

∑

n

Mt

∫ t

0

Xsψn(s, Xs)

Ms
(dB1 −Ks ds)a#

n

Γ[Xt] =
∑

n

M 2
t

(∫ t

0

Xsψn(s, Xs)

Ms
(dBs −Ks ds)

)2

a2
n.

Then the error on the value of a European option is

Γ[Vt] =
∑

n

(V n
t )2a2

n.

with

V n
t = exp

(
−
∫ T

t

r(s) ds

)
IE

[
f ′(XT )MT

∫ T

0

Xsψn(s, Xs)

Ms
(dBs −Ks ds) | Ft

]

which may be computed by Monte Carlo, the same for

the hedging portfolio.



          

Second case. We suppose the volatility is locale and stochas-

tic

σ(t, y, w)

given by a diffusion processes independent of (Bt)t≥0.

σ(t, y, w) = σy
t (w)

where σt is solution of
{

dσt = a(σt) dWt + b(σt) dt

σ0 = c(y)

with (Wt)t≥0 a Brownian motion independent of (Bt)t≥0.

If functions a, b et c are regular, the map y → σ(t, y, w)

is regular and we suppose that the formula

(σ(t, Y ))# = σ#(t, Y ) + σ′y(t, Y )Y #

holds at each step of the computation.

If W is endowed with an error of O-U-type, putting

my
t = exp

{∫ t

0

a′(σy
s) dWs −

1

2

∫ t

0

a′2(σy
s) ds +

∫ t

0

b′(σy
s) ds

}

we obtain

Γ[Xt] = M 2
t

∫ t

0

(∫ t

u

Xsc
′(Xs)m

Xs
s a(σXs

u )

Msm
Xs
u

(dBs −Ks ds)

)2

du.

The computation of Γ[Vt] et Γ[Ht] is done in a similar

way and leads to computable formulae by Monte Carlo

method.



         

Third case. We suppose the volatility is local and stochas-

tic, σ(t, y) being a stationary process independent of

(Bt)t≥0.

For instance, let k be regular functions η1(y), . . . , ηk(y)

and let us put

σ(t, y) = σ0e
Y (t,y)

with

Y (t, y) =

k∑

i=1

Zi(t)ηi(y)

where Z(t) = (Z1(t), . . . , Zk(t)) is a stationary process with

values in IRk.

In order to have a real process, we may take for example

Zi(t) =
∑

j

∫ ∞

0

ξij(λ)(cos λt dU j
λ + sin λt dV j

λ )

where ξij ∈ L2(IR+) et U 1
λ, . . . , U

k
λ , V 1

j , . . . , V k
λ are independent

Brownian motions.

We put an error of O-U-type on these Brownian mo-

tions.

X#
t = Mt

∫ t

0

Xsσ(s, Xs)Ŷ (s, Xs)

Ms
(dBs −Ks ds).

this leads for Γ[Xt] to a sum of squares:

Γ[Xt] =

∫ t

0

M 2
t

∑

ij

[(∫ t

0

Xsσ(s, Xs)

Ms
yi(Xs)ξij(λ) cos λs(dBs −Ks ds)

)2

+

(∫ t

0

Xsσ(s, Xs)

Ms
yi(Xs)ξij(λ) sin λs(dBs −Ks ds)

)2]
ds.

etc.



           

Error on σ due to the trader : preliminary remark
• Let us consider a probabilistic model with a parameter

λ (here the volatility). If a quantity, because of mathe-

matical relations of the model, may be written in two

ways :

X = ϕ(ω, λ)

X = ψ(ω, λ)

and if we consider that λ is erroneous (in the whole model),

the error will be the same when X is computed by ϕ or

by ψ.

• If, on the contrary, in order to take a practical de-

cision, we use a particular explicit formula of the model

and if we make an error on λ when using this formula,

then the error depends on the formula we use.

Let us take a simple example.

Let L be the length of the projection of a triangle with

edges of lengths a1, a2, a3 and with polar angles θ1 + α, θ2 +

α, θ3 + α.

a3

a2
θ2 + α

θ1 + α

a1

L

The length L satisfies

L = maxi=1,2,3 |ai cos(θi + α)|

L = 1
2

∑
i=1,2,3 |ai cos(θi + α)|.

If the user is wrong on a1, and only on a1 (without to try to

respect the triangle) then the first formula gives an error

on L different from zero only when the term |a1 cos(θ1 + α)|
dominates the other ones, but not the second formula.



         

Error on σ due to the trader

Hence we have to specify which formula we deal with.

In order to manage an option with payoff f (XT ) we sup-

pose that the trader performs a correct pricing but that

his hedging is imperfect, becaus an error on σ.

The hedging equation is

Ṽt = V0 +

∫ T

0

Hs dX̃s

where Ṽt = exp
(
−
∫ t

0 r(s) ds
)

Vt and X̃t = exp
(
−
∫ t

0 r(s) ds
)

Xt

with Vt = exp
(
−
∫ T

t r(s) ds
)

IE[f (XT ) | Ft] which gives :

Ht = exp

(
−
∫ T

t

r(s) ds

)
IE[f ′(XT )MT | Ft]

1

Mt
. (*)

By doing an error on Ht, the trader doesn’t realizes at

time T the discounted payoff Ṽ = exp
(
−
∫ T

0 r(s) ds
)

f (XT )

but

P̃T = V0 +

∫ T

0

[Hs] dX̃s

where Hs is computed by (*) with a wrong function σ

what we denote by brackets [Hs]. We must make formula

(*) completely explicit :

The trader uses the Markovian character of Xt in order

to write the conditional expectation under the form

IE

[
f ′(XT )

MT

Mt
| Ft

]
= Ψ(t, Xt).

When computing Ψ, he does an error on σ and he is cor-

rect on Xt, which is given by the market (since we suppos

that the model is correct).



        

Error on σ due to the trader

The function Ψ is given by

Ψ(t, x) =
∂Φ

∂x
(t, x)

where Φ is the function giving the value of the option from

the stock price Xt :

Vt = exp

(
−
∫ T

t

r(s) ds

)
IE[f (XT ) | Ft] = Φ(t, Xt).

It satisfies 



Φ(T, x) = f (x)

∂Φ

∂t
+ AtΦ− r(t)Φ = 0

where At is the operator

Atu(x) =
1

2
x2σ2(t, x)

∂2u

∂x2
(x) + xr(s)

∂u

∂x
(x).

We are concerned by the calculation of

(P̃T )# =

∫ T

0

Ψ#(t, Xt) dX̃t =

∫ T

0

∂Φ#

∂x
(t, Xt) dX̃t.

The function Φ#(t, x) satisfies :




Φ#(T, x) = 0

∂Φ#

∂t
+ AtΦ

# + A#
t Φ− r(t)Φ# = 0

where A#
t is the operator

A#
t u(x) =

1

2
xσ(t, x)σ#(t, x)

∂2u

∂x2
(x).



          

Error on σ due to the trader

Using these formula and the Ito formula applied to

exp

(
−
∫ t

0

r(s) ds

)
Φ#(t, Xt).

we obtain
∫ t

0

∂Φ#

∂x
(s, Xs) dX̃s = −Φ#(0, X0)+

∫ t

0

exp

(
−
∫ s

0

r(u) du

)
(A#

s Φ)(s, Xs) ds.

hence eventually

(P̃T )# = −Φ#(0, X0) +
1

2

∫ T

0

X̃sσ(s, Xs)σ
#(s, Xs)

∂2Φ

∂x2
(s, Xs) ds.

• σ# is not yet specified. The preceding calculus is valid,

for instance, when we modellize the error done by the

trader by one of the three case discussed above :

First case σ(t, y) =
∑

n

anψn(t, y)

σ#(t, y) =
∑

n

a#
n ψn(t, y).

Second case. σ is an independent diffusion

σ#(t, y) = c′(y)my
t

∫ t

0

a(σy
s)

my
s

dŴs.

Third case. σ is an independent stationary process

σ(t, x) = σ0 exp(Y (t, y))

σ#(t, x) = σ(t, x)Ŷ (t, y).



        

Error on σ due to the trader

Let us make some comments on the formula we obtained

:

(P̃T )# = −Φ#(0, X0) +
1

2

∫ T

0

X̃sσ(s, Xs)σ
#(s, Xs)

∂2Φ

∂x2
(s, Xs) ds.

• The first term: −Φ#(0, X0) comes from the fact that the

trader is supposed to perform a correct pricing. Hence

his pricing isn’t coherent with the stochastic integral he

uses to hedge.

Φ#(0, X0) is the difference between the pricing that the

trader would have proposed and the true one (that one

of the model).

• In the second term

1

2

∫ T

0

X̃sσ(s, Xs)σ
#(s, Xs)

∂2Φ

∂x2
(s, Xs) ds

the quantity σ#(t, x) is a random derivative in the sense

of Dirichlet forms. Often it may be interpretaed as a

directional derivative.

So, we see that if the payoff is a (regular and ) convex

function of the price of the asset and if σ(t, x) has a positive

directioal dervative in the direction of y(t, x), then this

second term is positive.

In other words, if the trader hedges with a function σ

disturbed in the direction of such a function y, his final

lost is weaker than the difference between the pricing he

would have proposed and that one of the market (= that

one of the model here) since the second term is positive.




