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Since the impulse given by P. Malliavin, the stochastic calculus of variations has
been mainly applied to stochastic differential equations with C'* coefficients, see
Ocone [?] for a comprehensive exposition.

But it is also important for applications to get regularity results for solutions
of SDE with less smooth coefficients and in particular under Lipschitz hypotheses
which are, in dimension greater than one, the most natural hypotheses of existence
and uniqueness of solutions.

The celebrated integration by parts method cannot apparently be extended be-
yond the case of functionals in the domain DL of the Ornstein-Uhlenbeck operator
(ID2,5 with the notations of Watanabe [?]), so that the regularity of solutions of Lips-
chitzian SDE must come from specific technics. Especially well adapted are Dirichlet
forms methods which allow to exploit intensively the fact that Lipschitz functions
operate on Dy = DvV—L.

We give here an account of results already obtained in this direction by Dirichlet
forms methods and we present in details a new example which gives rise to an
extension of the stochastic calculus. The first part introduces the framework of the
Dirichlet space related to the Ornstein-Uhlenbeck semigroup on the Wiener space
and recalls the absolute continuity criterion (cf [?] [?]) for functionals in Dy or ]Dlzoi
and some consequences on Lipschitz SDE.

The second part is devoted to the regularity of solutions of Lipschitz SDE with
respect to initial data. It is shown that the solution is differentiable in a slightly
weakened sense. That gives for example the following simple result: under these
hypotheses, if the initial variable Xy has a density, then X; has a density for all ¢.

After recalling the definition of the capacity associated with the Ornstein-Uhlenbeck
Dirichlet form, it is shown in the third part, that the solutions of Lipschitz SDE can



be refined, by taking quasi-continuous versions for each ¢, into processes with con-
tinuous paths outside a polar set and unique up to a quasi-evanescent set. The main
tool here is an extension of the Kolmogorov theorem on existence of continuous
versions to the case where the measure is changed to a capacity.

This allows to study the solutions of Lipschitz SDE under measures which do not
charge polar sets. In the last part, using Wiener chaos decompositions of positive
distributions, we show that this property allows an extension of the stochastic cal-
culus by constructing a finite energy measure singular with respect to the Wiener
measure and for which the coordinates do not build a semimartingale. This answers
a conjecture formulated in [?].

I The structure of Dirichlet space on the Wiener
space associated with the Ornstein - Uhlenbeck
semigroup.

The Wiener space
0 = e C(Ry, RY);(0) = 0}

is equipped with the topology of uniform convergence on compact sets, with its
Borelian o-algebra and with the Wiener measure m which makes the coordinates a
standard Brownian motion. F denotes the m-completed o-algebra of o(By;t € R4,
and F; the F-m-completed o-algebra of o(Bs; s < t).

We consider on L*(m) the Ornstein-Uhlenbeck semigroup P; a strongly continu-
ous symmetric Markovian semigroup characterized by

Plexpf [ h(s).dB, — SIAIPY) = exp{e”* [ h(s).dB, — Ll 7]}

Vh € H = L*(Ry, RY).

The self-adjoint operator generator of P; is denoted by L. It corresponds to P; (cf
[?]) a Dirichlet form with domain

D =D(V-L)

given by

(1)) = IV =Lul[f2my.

That means that the space ID with the norm (HUH%2(M) + ((u,u)) )% is complete
and that normal contractions operate: For all u € 1D, for all measurable v such that
Vwlo(w)| < u(w)| and Yw,w'|v(w) — v(w’)| < u(w) — u(w’)|, one has v € D and

((v,0)) < ((u,u)).



This Dirichlet form is local ([?] p239) and possesses a carré-du-champ operator,
i.e. a symmetric bilinear continuous map I' from ID x ID into L'(m) such that

Yu,v e IDN L>®(m),

2(uv,u)) — ((v,u?)) = /vF(u,u) dm.

This Dirichlet structure (2, F,m;((.,.)), D) is related to the Sobolev spaces which
are classically defined on the Wiener space in the following way:

Let D, 5, p € (1,00),s € IR the closure of the linear space generated by polyno-
mials in continuous linear forms on () for the norm

1F s = 1T = L) P,

(cf [?]). Then ID = Dy and [[F||7. + ((F, F)) = || F][3,;-
Let

b= [ éuls)ds

where énis a complete orthonormal system of H = L*(IRy, ]Rd), then for all u € ID
the following limit exists in probability (cf [?])

Ve, (u)(w) = limt ™ [u(w + t£,) — u(w)]

110

and one has
[(u,u) =Y (Ve,u)

The derivation operator D (cf [?]) which can be defined by

Du =" (Ve,u)é,

n

and which is continuous from ID = ID,; into LQ(Q, H) is related to the carré-du-

champ operator I' by
[(w,u) =< Du, Du >p, Yu € Dy ;.

This relation between the carré-du-champ operator and the derivations in the
directions of Cameron-Martin vectors (£ € Q s.t. f € H) allows, by an extension
of the co-area formula of Federer [?], to obtain the following absolute continuity
criterion:

Proposition 1 . Let u = (u1,...,u,) € (IDgq1)", the image by u of the measure
det[T'(u,u™)].m

is absolutely continuous with respect to the Lebesque measure on IR™.



When n = 1, this result is true for any local Dirichlet space (cf [?]) and also for
the local energy part in any Dirichlet space on a locally compact space (cf [?]).
In fact proposition 1 remains valid for u in (]Dlzoi)” defined by

DY = {u: Q- R; 30, € F, Q, 1 Q. VnIu, € Dy, u = u,onQ,}

and for u € ]Dlﬁ, I'(u,u) depends only on w.

An important application of the extension of Dirichlet forms methods to the case
of the Wiener space is the study of stochastic differential equations. Let us specify
the Lipschitz hypotheses which will be in force in the sequel:

Two Borelian functions o, b are given

o : Ry x R" — IR™?

b: Ry xR" — IR"
and there exists K : IRy — IRy such that

VT € Ry, Vt€[0,T], Vz,y € R"
o (t,2)[ V |b(t, z)| < K(T)(1+ [|)
ot x) —o(t,y)|V [b(t, x) — b(t,y)| < K(T)(Jz —yl).

One is concerned by the equation
dXt = O'(t,Xt).dBt + b(t,Xt) dt. (1)

From the fact that contractions hence Lipschitz functions operate on the Dirichlet
space, it follows (cf [?] [?]) that the solution of (??) is such that the map ¢t — X,
is continuous from IRy into (IDy;)" and by writing down a stochastic differential
equation satisfied by the matrix I'(Xy, X)) it is possible to bring out conditions
under which X, has a density by application of proposition 1.

For example if A, = {(t,y) : o(t,y) isof rank k} and if T} is the essential
beginning of Ay for (X;);>0, one gets that for ¢ such that m({t > T3}) > 0 and for
almost all subspace V' of IR" of dimension k, the projection of X; on V, knowing
{t > T}}, has a density with respect to the Lebesgue measure on V.

IT Regularity of solutions of Lipschitz SDE with
respect to the initial data

Under these Lipschitz hypotheses, it is known (cf [?]) that there exists a version
(X7 (w))@w)emy xmn of the solution of (?7) starting at z, such that for almost all
w the map (¢,2) — X7 (w) is continuous and for all ¢ > 0 2 — X7 (w) is an onto
homeomorphism of R".



If it is supposed further that o and b are C''* with respect to = then z — X7 (w)
is an onto C''- diffeomorphism.

Under the only Lipschitz hypotheses, X7 is of course not C'' with respect to z in
general, but it is possible to show that the Jacobian aa—x(Xf(w)) exists in a weakened
sense and satisfies a SDE which can be written explicitly.

For this, consider the space = IR" x Q equipped with the probability m =
h(x) dx x m where m is the Wiener measure on € and h a strictly positive continuous
function such that [h(z)dx =1, [|x|*h(z)dz < +o00. The o-algebras generated by
applications Bj, s < t and completed for 1 are denoted by F.

(Q, m) gets a natural Dirichlet form associated with the derivations in directions
given by the canonical basis of IR". In other words the tool is here the form

8u 81}
8:1; 8:)1;Z

with domain and operators 9/dz; sNultably defined.
We denote by (X;)i>0 [resp. (Bi)i>o] the class of the process (X[ )i>o [resp. of
the Brownian motion (B;);>o] enlarged up to rm-evanescent sets.

Proposition 2 . Under the Lipschitz hypotheses,

a) for m-almost all w, ¥Vt >0, X?(w) € (HL.(IR™))"

b) there exists a process (M(x,w))s>o, (F))-adapted, with continuous paths and
values in GL,(IR), such that

for m-almost all w, Yt > 0, [aa—x(Xf(w)) = Mi(x,w) dz — a.e.]

c) let o' and V' be fired Borelian versions of the derivatives aa—xa(t, x) and aa—xb(t, ),
then M is the unique (ft)-adapted continuous solution, defined up to an m-evanescent

set, of the SDE

dM, = [o'(t, X;). M dB; + [b'(t, X;). M) dt
My, =1

It follows from this proposition and from a variant of proposition 1 applied to
the Dirichlet structure on € explained above that the equation (1) with initial value
a random variable independent of (B;) possessing a density , has a solution which
admits a density for all ¢ > 0. This was known, apparently, in dimension greater
than one, only under C''® hypotheses.

In dimension 1, there is an explicit solution : if we write as before o’, o for fixed
Borelian versions of the derivatives of o and b with respect to x, the process

d ¢ ) 1 st t
Y," = exp {Z (/0 ol(s, X7)dB: — 5/0 [oi(s, XT)]? ds) —I—/0 b'(s, X7) ds}
i=1
is such that for m-almost all w,

B
Va,f e R, VE>0, X/(w)— X7(w) :/ Yo (w) da.

(e}



III Regularity, up to a polar set, of the solutions
and their flows.

The Dirichlet form on the Wiener space associated with the Ornstein-Uhlenbeck
operator makes it possible to look at properties of the Brownian motion satisfied up
to a zero capacity set (cf [?], [?],[?]).

We study here, from this point of view, properties of solutions of Lipschitz SDE.
A work in the same spirit was done independently by J. Ren (cf [?]) for equations
with C'*-coefficients and with thin sets associated with C, s-capacities (cf [?]).

We denote by ' the capacity associated with the Ornstein-Uhlenbeck Dirichlet
form. It is defined by

C(G) = inf{llull3;; we D, u>1m—ae. on G}
if G is an open set, and by
C(G)=inf{C(G) G openand G D A}

it AeF.

If C(A) =0, Ais said to be a polar set.

f+ Q — IR is said to be quasi-continuous with respect to the capacity C' if
Ve > 0,30, open with C'(€.) < € such that f restricted to the complementary Q¢ of
(), is continuous.

Two processes (ux)aen, (vr)aea defined on Q are said to be C-indistinguishable
if there exists a polar set A such that Vw ¢ A, VX € A, uy(w) = v)(w).

Under the Lipschitz hypotheses, we know that the solution X7 (w) of equation
(1) starting at = is such that for fixed ¢, 2, X7 € D3 ,. It follows that this random
variable admits a quasi-continuous version defined up to a polar set . The following
extension of the Kolmogorov theorem gives conditions under which it is possible to
put these quasi-continuous versions together to get a continuous process outside a

polar set.
Proposition 3 . Let (u,)zemr be a family of elements of ID and p, o, ..., o, stricly
positive real numbers. Suppose the following conditions hold
Yimi o <1
3 Vae,y € R" |ugy —uy|? € D
o dL:1R;y — Ry, VR>0, Vz,y € IR’

Qy

2]V lyl SR = || Jue — w7154 < L(R) iy |20 — wi

Then there exists a family (vy)zcmr such that
i) ¥ — vy(w) is continuous
i) for all x v, is a quasi-continuous version of u,.



The family (v,) is unique up to C-indistinguishability and the following unifor-
mity properties hold:

There exist open sets (Qe)eso with compact complementary Q¢ such that

a) Ve >0, C(£,) < € and the map (z,w) € R" x Qf — v,(w) € IR is continuous

b) V3,0 <8 < Ozi(l - Z;:1 1/0@)/2}? r=1,...,r

dK >0, Ve> 0, VR >0, dn > 0,

(e, [z|VIy| <R, [z —y| <n) = |valw) —vy(w)| < KXy 2 — yil .

This criterion allows to show that under the Lipschitz hypotheses and for a given
fixed initial condition = € IR", the solution X7 of equation (1) can be made more
accurate into a process ()N(t)tzo unique up to C-indistinguishability such that

i) t — X, is continuous,

ii) for all ¢ Xt is quasi-continuous and )N(t = X7 m — as..

This result has been extended, by using a Banach valued space ID3; by D. Feyel
and A. de la Pradelle [?] to the case of Ito processes of the form

1 1
Xt:/ ozs.st—I—/ B,.ds
0 0

with o, 8 € L*(IRy, D) and adapted.

The previous criterion of Kolmogorov type, allows also to obtain a quasi-continuous
version X7 of X7 which is for w outside a polar set, continuous in (¢,2) and an onto
homeomorphism with respect to z; but for this C''-hypotheses in x are needed for
o and b (cf [?]).

With C%*°-hypotheses, the differentiability with respect to x of the flow is ob-
tained with a quasi-continuous regular Jacobian matrix %Xf(w) continuously de-
pending on (¢, z) for w outside a polar set (see [?] theorems V.1 and V.2 for more
precise results).

IV  Stochastic calculus under a probability which
does not charge polar sets

We keep in the sequel the preceding globally Lipschitz hypotheses and look at the
solution of

1 1
X, ::1;+/ U(S,Xs).st—l-/ b(s, X,) ds (2)
0 0

which is continuous in ¢, quasi-continuous in w and unique up to C-indistinguishability.
This process is well defined under any probability measure on the Wiener space
which does not charge polar sets.

A. The first case is when the right hand side of (??) also makes sense under such a
measure v.



To be precise with the changes of measure we introduce the o-fields F =
o(Bs, s <1) without any completion.

It can be shown (cf [?]) that there exists an (F°)-adapted solution , X, , of (??)
such that, for fixed ¢, X; is quasi-continuous in w, and for quasi every w, t — X;(w)
is continuous. Then if v is a probability measure on ) which does not charge polar
sets and such that the process (B;) is an (F?)-semimartingale under v, the process
X, is the solution of the same SDE under v, that is to say X; satisfies v-a.e.

N t . ¢ N
Vi Xy=ux —I—/ o(s, Xs) ¥ dB; —I—/ b(s, Xs)ds
0 0

where fO'(S,XS) Y dB, denotes the stochastic integral under v.

For a one dimensional Brownian motion (d = 1), the law of the Brownian bridge
IE] . |B; = a] is an example of such a measure v which is singular with respect
to the Wiener measure (cf [?]). For d > 1 the same result is obtained by taking
the conditional law of the Brownian motion given that By belongs to an (n — 1)-
dimensional hyperplan with the Gauss measure on it.

B. The case which gives rise to a true extension of the classical stochastic calculus
is when under v (B;) fails to be a semimartingale so that the right hand side has no
direct meaning by itself.

We construct now a family of such measures on the Wiener space in the case
d =1 for simplicity.

The idea is to consider a conditional law of the form IE[ . | f ho(s)dBs = 0] for
ho € L2([0,1]), fy h2(s)ds = 1.

For using computations by decomposition on the Wiener chaos, we define this
object as the positive measure which coincides on ID N C'(Q) with the distribution
on the Wiener space

b = \/Zrbo( o) ho = [ " ho(s)dB, (3)

in the sense of Meyer-Yan [?].
The characteristic functional of v is

U, (€) = e77<8m>" e 0((0,1)) (4)

so that its decomposition on the chaos is written

EIEIAS

n

with

pl2pP

f, = (2p)!(—1)phg§2p ifn =2



where

I(f) = n!/ F(styerr50)dBs, ... dB,,

0<51<...<s5n<1
for symmetric f € L*([0,1]").
So v is a distribution of Watanabe and putting v, = ﬁlzp(fzp) one has

(2p)!
2l = W

It follows that v has a finite energy that is to say
<1 1

1/2_ _ I TP 14
1B s = 3 gyl ZHQ 7 <

Formula (4) extends to £ € L*([0,1])

< V7g(§) — ¢ —1<gho>2? (6)

where
£(¢) = exp[/ol ¢, dB, — %/01 €2 ds].

Let ho,hi,..., hn, ... be a complete orthonormal system of L%(]0, 1]), it follows from
(??) that if g is a polynomial one has

< I/,g(};o,}zl, e ,hNn) >=< m,g((),le, N ,hn) > (7)

and v is then a positive distribution of Watanabe hence v is a measure (cf [?]).
For ¢ € [0, 1] we consider also the distrbutions 14 defined by

Uyt(f) =< V7g(§1[07t]) —e 2<£ holjo, t]>
A similar computation as the previous one gives
[vlla—1 < [[]l2,-1

The family (14) is a distribution martingale in the sense of Yan [?] and the 14’s are
probabilities on €.

Following the notations of [?] we compute now the adapted projection of the
distribution D where D is the gradient operator. We have

(Dv)*(t) = i m[m—l ((hol[o,t])mq_l%ho(t))

and by using the formulae of Shigekawa [?]

REL(h") = L (RO0#D) s[RI oy (A0



we obtain hott)
D) (1) = ey — ot (holp.).
( V) ( ) {t< }1 — Hhol[o,t]Hz( 0 [0775]) b (8)
where || . || is the norm of L*([0,1]) and
— ¢
(holpo.) = /0 ho(s) dB,,
and with

a = inf{t: /Ot hi(s)ds = 1}.

If we write (22) in the following form
(Dv)™(t) = ¢(t).ve
the formula of Tto-Ustunel [?] gives
v=m+ (. )v)

From now on, we suppose a < 1 and hg with bounded variation. (hgljgy)
possesses then a version which is an (F})-adapted process continuous in (,w) on
[0,1] x Q. In the sequel  is supposed to be defined from this version. (The following
construction is also possible without supposing the variation of /o to be bounded.
A version of (hglyy) should be chosen continuous in ¢ and quasi-continuous in w,
what is always possible).

That leads to the following lemma:

Lemma 4 .The process
1
M, = B, — / Cs ds
0

where the integral is, for t > a, a semi-convergent integral) is an -Brownian
here the integral is, t>a, / gent integral) i F)-B /
motion under v.

Proof. Using the fact that the measure v restricted to the o-field F? is the measure
v, we break up the interval [0,1] in [0,a), {a}, (a,1].

a) First if ¢ < a, the distribution 14 is a random variable in L?, in other words the
meastre v, has a density in L? with respect to m.

Indeed setting § = [ h3(s)ds,

HVtH%2 — Z;o:o (2p;.!(2—pl) 92p
_ 1
It follows then from (8) that if we set n; = % we have

t
ny =1 —I—/0 Csns dBy fort <a (9)



and because P[fj (?ds < +oc] = 1 for t < a we get

t 1 gt
mo=expl [ GdB,— 3 [ ¢2ds]

hence n; > 0 and in fact 1, and m are equivalent, v, being a probability it holds
[En; = 1 and the classical Girsanov theorem (cf [?]) applies and gives the result.

b) The study of the limit of M, for ¢ 1 a is obvious under v, and M, is an F-Brownian
motion under v on [0, a].

c) At last it follows easily from formula (7) that under v o-fields F? and o(B; —
Ba,a < s < 1) are independent and that

<v,GF >=<v,G><m, F >

if G is F2-measurable and if F is o(B; — B,,a < s < 1)-measurable, what gives the
result by
M, =M,+ B, — B, fort > a.

O

Writing By = M; + fg (s ds, we see that in order that the coordinates (B;) fail to
be a semimartingale, it is sufficient to choose hg in such a way that the continuous
process [y (s ds fails to have a finite variation in the neighbourhood of a under v.

As m and v are mutually singular, we must express (; in terms of the Brownian
motion M, under v.

Lemma 5 . Fort < a, it holds

b ho(s)
————dM,
o [IhE(u)du

Proof. This comes from the fact that the relation M; = By — [; (, ds yields

M, = Bt-l-/ot [%/Osho(u)dBu] ds

and it is not difficult to see that this relation can be turned into the following

Gt = —ho(t)

L) BTV
dv “ '

M:&+Avw)ﬂmﬁﬁ_

To show that it is possible to choose hqg in such a way that

I:= /a|§5|d3 = 400 v —a.s. (10)
0



we perform some transformations:
Let u be a function from [0, 00) into (0, 00) such that

/Ooomdt:a. (11)

The map y — a — [° f_lf?
¢ : [0,a) = [0,00) by

dt being stricly increasing, we can define a function

[ole] zt
Vs e [0,a) a— /5(5) ;—IE 1)dt = 3. (12)

Then if we set

h = 1
it holds [ h2(t)dt =1 and [ hi(t)dt = ﬁ hence
_ Jo ho(w) du
= R
But the process
t
i/t ho(S) dMS

~ o [ hE(u) du
is a continuous martingale with bracket

Jo hi(u) du

Y.V > =2 —7+ £ |
S0 T R ) du

Therefore there exists a Brownian motion (W;) such that Y; = We () and the integral
to be studied can be written
I = |f|to((t)| lv)‘)/f(t)l di
_ oo |ho(€71(s
= o ey (Walds.

Since by (12) it holds £(£71(s)) = Stk one gets with (13)

u?(s)

[:/OOO$|WSMS. (14)

Hence it is enough to find a function v > 0 satisfying (11) and such that in (14) one
gets +oo. For this we use the following version of a lemma of Jeulin [?]:
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Lemma 6 . Let R, be a positive measurable real process on a probability space (2, 1P)
such that

1) the law v of Ry does not depend on 1

2) v({0}) =0

3) [xdv(z) < +o0

then for any positive Radon measure p on IRy

D dut) < teo = [ Redu(t) € ()
i) foldu(t) =400 = [57 Ridu(t) =400 TPas.

Proof. The point i) is clear because
ER; = /:I;dl/(:z:) < +o00.

For the second point let n € IN and J, = {f;° Ridu(t) < n}. Suppose IP(J,) > 0,
then
Efls,R] = [g dulE[ly, Lpsay] = o7 dulB[(1y, — Lip<uy)*]
> Jo© du(IP(Jn) = v([0,u]))*

and by the hypothesis 2) lim,_ov([0,u]) = 0, hence the last integral is equal to
a, > 0. By integration

nIP(J,) > a, /OO du(t)

0

what gives ii) by contraposition. O
It follows by taking R; = “5%' that I = 400 as soon as
< _u(s)V/s
——ds = 15
/0 (s 1 1)3/2 § = Foo (15)

There are several functions satifying (11) and (15), for example u(s) = 1/(% +log(s+
1)), which gives

11
e2a 2(a—t)

ho(t) = ———Tpu(1).

a—1

Let us summarize the preceding discussion. Let hg associated with u by (12)
and (13) and let v be the distribution on the Wiener space associated with hq by
(3) and (4). v is a distribution of Watanabe in D5 _; and is also a positive measure
which does not charge polar sets.

For ¢ < a, on the o-field F the measures m and v are equivalent, (B;),<; is an
(F?)-Brownian motion under m and an (F})-semimartingale under v.

For t > a, the measures m and v are mutually singular on the o-field F?, (Bs)s<t
is not an (F})-semimartingale under v, nevertheless the process

B, — / [f e /Ovho(u)dBu] dv



is an (F?)-Brownian motion under v.

It is possible to build examples of measures which do not charge polar sets and
for which the singularity which is here at the point a, appears along a whole interval.
Such measures are solutions in sense of distributions of Watanabe of the stochastic
differential equation which defines the exponential of Doléans. This will be published
elsewhere.
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