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[. Some notations and definitions
[.1. Dirichlet Structures

(Q,F,m,E,D)

(Q2,F,m) : measured space with m o-finite and positive
& @ Dirichlet form with domain ID

i.e. Quadratic positive form with dense domain ID in L?(m) which is
. closed : ID is an Hilbert space under the norm

£ 1D = [IANF2 oy + ECF )T

cand sit. feID = (fA1) e D and E(fAL, fAL) < E(S, f).

Notations for different hypotheses:

(P) (Probability) m(Q) =1

(M) (Markovianity) 1 € ID and £(1,1) =0

(T') (Existence of a Carré du Champ Operator):

VieDnL>®3f e L', Vhe DN L™,

28(fh f) = E(h, f2) = [ fhdm
(L) (Locality)
VfeID,VF,G € D(R)

suppF NsuppG =0 = E(F(f) — F(0),G(f) — G(0)) =0
(W) (Wiener space)
Q = {w e C(Ry,RY),w(0) =0}

F = borelian o-field of €2 with compact convergence
m = Wiener measure
(£,ID) = form associated with the Ornstein-Uhlenbeck semi-group.



[.2. Basic properties

There is a sub-Markov semigroup associated with a Dirichlet struc-
ture.

Theorem 1 . Let a Dirichlet structure (Q, F,m,E,ID) be given. There
exists a strongly continuous contraction semi-group (P;);>o symmetric
on L*(m) and unique such that

(%) { D = {f € L*(m) : limy (552, f) g mjexists}
VieD E(f, f) = hmHO(f—ftf’f)m(m)

this sema-group 1s sub-Markov.

Conversely, if (P) is a symmetric strongly continuous contraction
semi-group on L*(m), and sub-Markov, the positive quadratic form
associated with (P;) by (x) 1s a Dirichlet form.

Definition 2 . A function F from R" into IR is a contraction [resp.
a normal contraction] if

Vo P = Fy)l < 2 fei = il

[resp. and F(0) = 0]

Theorem 3 . Vf € D, if F is a normal contraction from IR" to IR
then

FofeD and (E(Fof,Fo )2 < S (E(fi fi))2.
=1

Under (P )(M) the word normal can be cancelled.

The hypothesis (T') gives rise to a carré du champ operator:

Theorem 4 . Under (T') there exists a unique continuous symmetric
positive bilinear map from ID x D into L'(m), denoted by T such that

Vf,g,h e DNL™
E(fh,g) +E(gh, f) = E(h, fg) = [ hT(f,g) dm
T is the Carré du Champ Operator (CCO) associated with &, if F is

a normal contraction from IR to IR

VfeD D(Fof,Fof)<ID(f,f) m—ae.



[.3. About hypothesis (T')

Equivalent hypotheses:

Theorem 5 .

a) Let Pt(l) be the extension of P [t e tO LY(m). (Pt(l))tzo 18

a strongly continuous contraction semi-group in Ll(m) with generator
(A(l)ﬂ)A(l)). It 1s the smallest closed extension of the restriction of
the generator A of P to the set {f € DANL': Af € L'}

8) (L) <= (T') = (I")
(T")Vf € DA f? € DAY
(T") There is a sub-space H of DA, dense in ID such that
VfeH f>e DAW

c¢) Under (T) it holds

Vf,g€ DA T(f.9) =AY (fg) - fA(9) — gA(f)  m—ae.

About the relationship between hypothesis (I') and the existence of a
C.C.O. for Markov processes, we have:

Theorem 6 . Suppose Q be l.c.d., F its borelian o-field. Let (Q;) be a
Feller semi-group which is symmetric on C.() with respect to a Radon
positive measure m, and (P,) the symmetric associated semi-group on
L*(m).

1) If (Q;) has a C.C.O. in the sense of Meyer, then the Dirichlet
structure associated to (P;) satisfies (T').

2) Conversely, if the Dirichlet structure associated to (P;) satisfies
(T') and if the sets of zero potential are m-negligible, then (Q;) has a
C.C.0O. wn the sense of Meyer.



[.4. The locality hypothesis, the functional calculi

and the absolute continuity criterion for image measures

Theorem 7 . (L) <= (L) < (L")

(L) E(If +1 = LIf+1|=1) =E(f. f)

(L") Vf,g e D,Ya € R (f+a)g=0=&(f,g9)=0
and under (P)(M) it is enough to take a =0

Theorem 8 . Suppose (T')(L) :
o)VfeD  E(f, f)=4ST(f f)dm
b)VfeD™ ge D", VF,G Lipschitz C'-maps from R™[IR"] into

R :

L(F(f) = F(0),Gl9) - G(0) = X X F{(£)Gi(9)T(fi.gj) m— ae.
=1 )=

There is a stronger result in one dimension : the Lipschitz functional

calculus:

Theorem 9 . Suppose (T') (L)
a) VfeD f*(F(f, f)m) << A ()\1 = Lebesgue measure on IR)
b) Let be f,g € ID and F,G Lipschitz map from R to R and let F',

G' be versions of their derivatives :
L(F(f) = F(0),G(g) = G(0)) = F'(f/) G'T(f.g)  m—ae.

There is also a criterion of absolute continuity of image laws in the
multivariate case:

Theorem 10 . Suppose (T') (L), if f € D" and if V1 < i,j <n
L(fi, f;) € D then
f*[det F(f, f*)m] << A (/\n = Lebesgue measure on IRn)

Theorem 11 Suppose (W)
if feD"
foldet T(f, f*).m] << A,

This result can be extended to ID,,, with a suitable definition.



II. Image structures

ILLA. Finite dimensional images.

IT.A.1. Definition and basic properties.

Proposition 12 . Let S = (2, F,m,E,D) be a Dirichlet structure
satisfying (P), and 1 € D .
For U € DY, let us define
Dy ={felUm): fol €D}
gU(faf) :8(fOU7fOU)
then (IRd B(IRd) U.m SUJDU) 18 a Dirichlet structure and the set Ly
of Lipschitz functions from R? into IR is in Dy;.
Let IDy; be the closure of Ly in Dy and & = &y Dy x Dy

then (R, B(RY), U,m, Ey,Dy) is a regular Dirichlet structure
(satisfying again (P), and 1 € Dy ).

Definition 13 . The structure (R?, B(RY), U,m, &, D) will be called
the image structure of S and will be denoted by U,S.

Notations. For ¢ € L'(m) we set

dU,(¢.m)

E.[¢o|U=x]:= TUom

(x) U.m—a.e.

then we have

Proposition 14 .
1) IfS=(2,F,m,E,D) possesses a C.C.0. T, the same holds for
U,S and U,S and thewr C.C.0. 1s given by

o(f, f)(@) = Enll(foU.fo U)[U=1] VfeDy

2) If S is local, so are U,S and U,S and if S satisfies both (L) and
(T), Vf € Ly nC'(RY) it holds

I (£.)(e) = S Bal POV =al5 ) 3 0




Remark. There are explicit examples in which

U.S #U,S.



II.A.2 The Energy Image Density Property.

Definition 15 . A Durichlet structure S = (2, F,m,E,D) satisfying
(P), 1 e D, (I), (L) is said to satisfy the (EID) property if
VYn € N*,VF € ID",

F, (det[T(F, F*)].m) << An.

A natural question is whether the (EID) property is preserved by
image.

Proposition 16 . Let S satisfying (P), 1 € D, (T'), (L) and (EID).
Let U € DY such that one of the following hypotheses holds:

a) the matriz T(U,U*) is o(U)-measurable

b) det[[N(U,U*)] >0 m-a.e.
then the image structure U,S satisfies (P), 1 € D, (T'), (L) and
(EID).

With hypothesis a) the proof comes straightforward from the defi-
nitions. With hypothesis b) the result is a consequence of the following
two lemmas:

Lemma 17 . Let M be a random matriz which s symmetric and
non-neqative definite, then

{det[E(M|F)] =0} C {det[M]=0}

Lemma 18 . If det[l'(U,U*)] > 0, for all ¢ € (IDy)" there exists an
nxd-matriz J which is o(U)-measurable (up to m-negligible sets) such
that

L(poU,po U*) = JT(U,U")J* m — a.e.



II.A.2 The Image Generator.

There is in general no simple relationship between the initial semi-
group and the semi-group of the image structure. Not better for the
associated Markov process.

Nevertheless, the generator (A, DAy) of the image structure can
be put in relation with the generator (A, DA) of the initial structure:

If f.g € Dy, and foU € DA, we have

8U(f7g) = 8(f o U7g o U) = _(‘4<f o U)?.g 0 U)Lz(m)

= — [En[A(f o U)|U = 2g(x) dU,m(x)
hence f € DAy and Ay f = ]Em[A( o U)|U = z].

But, hypotheses are needed to ensure the space
Dy N{f:foU € DA} contains other functions than constants:

Proposition 19 . Suppose S satisfies (P), 1 € D, (T'), (L). Let
U € (DA)? such that T(U;,U;) € L*(m) Yi,j=1,...,d then

of  f
dw;’ dr;dx;

DAy D {f € C*(RY) : bounded}

and for such an f

Apf(z) =E,[A(fo U)|€] = 1]
= %Zi,j Olz'j(x)a%.a% + 2 /32'%%

with o;j(z) = B[L(U, U;)|U = 2] (€ L*(Uym))

and Bi(zx) = E[AU;|U = ] (€ L*(U,m))
If further, det[I'(U, U*)] > 0 m-a.e. then the function k£ = dg;m
satifies

20k — Z (ozlj )=0 Vi=1,...,n

Zj
in the sense of dlstrlbutlons.



H. Airault and P. Malliavin have studied the case of Wiener space
with
UeWsw=0nDpn
and
[detT(U, U*)]V/? € W,
and they show in this case that

Ay =A+Vy

where A is the Laplace-Beltrami operator associated to the Rieman-

H
nian metric with matrix [(a;;)]™" and where @ = § grad log p with

p = d%—*vm and where dv = y/det(a;;).A, is the associated area mea-

sure.



II.B. General Images.

II.B.1. U does not need to be supposed in ID or ID? for defining an
image structure, whenever there is enough functions f o U in ID.

Let S = (2, F,m,E, D) satisfy (P) and 1 € D, let (X, G) be a mea-
surable space and let U be a measurable map from (2, F) into (X, G).
Let us suppose that there exists a set A of measurable applications
from X into IR such that

. A is a vector space containing the constants

VfeA foUeD

. A is dense in L*(U,m)
then the form (€4, A) defined by E4(f, f) = E(f o U, foU) is closable
in L?(U,m), let (&7, Dy) its closure, we put

U.S = (X,G,Um, &, Dy).

I1.B.2. Example.

Let S = (R™, B(RY), v®N, D, €) be a Dirichlet structure such that

. v =N(0,1) is the standard Gaussian measure on IR

. (ID, €) is any Dirichlet form on L*(v®™) such that the coordinates
Yn belong to ID.

Let be X = C[0,1] and G be its borelian o-field. Let (h,) be a
C.O.N.S. of L%([0,1]) and put

ha(t) = [ hin(s) ds
Let us consider the map U from IR™ into X defined by

(%) U(x) = ) xn(x)hy if the serie converges in C[0, 1],
n=0

U(z) =0 elsewhere

A vector valued martingale argument shows that

Lemma 20 . The serie (x) converges almost surely and in L£[071](1/®N)

(1<p<oo), and the law of its sum is the Wiener measure p : p =
U, (v®N).
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Let us denote by (B;) the brownian motion defined by this Wiener
measure on C[0, 1], and let be

then it can be shown that
hpoU(z) = xn(z) for v°N —ae.z.

Hence by hypothesis h,oU € ID, therefore if f = F(hy, ..., h,) with F
Lipschitz, we have foU € ID. But F(xi,...,xs) is dense in L (v®N)
hence F(hy,...,h,) is dense in L*(u).

So, the image structure
(X7 g):u?ng ]])U)

is well defined and contains {F (hy,...,h,)} for Lipschitz F.



III. Tensor products and projective limits.

ITI.A. Finite products.
Let Sl = (Ql, fl, mq, 51, ]D1> and SQ = (QQ, f‘-g, mso, 82, ]DZ) be Dirich-

let structures.

Definition 21 .
S1®@ Sy = (1 x Qo, F1 @ Fay,my X my, E,ID)
with
D = {felmxm):  for meney [(.y)eD,
for mi—a.e.x  f(x,.) € Dy

and [ E1(F(sp), £op)) dimi(9)+ [ E(F (2.2, (r,.)) dma(s) < o)
and Vf € D,

£y = [ &) FCy) dmi(y) + [ Ef(x..), f(x..)) dmy(x).

It is indeed easy to see that this form is closed and that contractions
operate.

If S and S, satisfy (P) and (M) the same holds for Sy @ Ss.
If S; and Sy are local, S1 ® Sy is local.

If Sy and Sy satisfy (I'), the same holds for S| ® Sy and its OCC is
given by

P(f 1) =Tu(f Coy)s £ y) (@) + Ta(f (s ), f ;) (y)

Concerning the associated semi-group we have the following :
Let (P, (Pz) be the semi-groups associated with S; and Sy, and
let Pt and P? be the semi-groups on L?(my x msy) defined by

Plf(r.y) = PNf(9)()
P2f(r,y) = P2f(x.)(v)

which are symmetric, strongly continuous and sub-Markov.



Proposition 22 . a) The semi-group associated with Sy @ Sy s
P,=PP? = PP}

b) its generator is the smallest closed extension of the operator de-
fined on DA, © DAy by A(6 @ ) = A16 @ )+ 6 @ Ayt

¢) ID; @ Dy is dense in D.



ITI.B. Infinite tensor products.

The preceding construction extends without any problem to the
infinite tensor products (countable or not) :
®(E27 fi) His 8i7 ]]:)Z)
il
where the factors are supposed to satisfy (P).

That comes mainly from the fact that the limit of an increasing
sequence of Dirichlet forms is a Dirichlet form:

Lemma 23 . Let (2, F,m) be a measured space equipped with Dirich-
let forms £, D™ such that

D™ | asnt
”TasnT VfeDm nH(f,f) EM(f, f)
then D =nD", E(f, f) =lmEM(f, f) is a Dirichlet form.
If the S;’s are local, so is ®; S;.
if each S; possesses a CCO, the same holds for ®; S;.
Suppose now that the family S; is countable and that each finite
product

b

X S;
1=0

satisfies the (EID) property, then S = ®;°, S; satifies (EID).
That comes directly from the definitions.
As an example let us take

Si = (R, B(R), hi(x)dz, [V hi(z)dz, D;)

where h; satisfies the Hamza condition and [ h;(z)dz = 1,

Then by the coarea formula of Federer, the finite products satisfy
(EID) and therefore the infinite product structure (which is in general
non Gaussian) satisfies (EID).

Remark. In this example, putting

p= @ (hide)
J €N
j#i



and
Ef, 1) = [ (V) hida
we have
D={fecL*m):ViecN f(.,y)€D,foru —ae.y
and [ E(F o). o)) () < o)
and for f € ID

I(f.f) = f% Ti(f. f) = f}) %

where I'; acts only on the i-th variable.
Therefore if for f € ID we put

Df = (fz{)z'elN
this defines a continuous operator from ID into L?*(m, (*) and we have
F(fﬁf) =< Dfan > 2

We shall see later that this allows to develop a conditional Dirichlet
calculus. These product structures are examples of Classical Dirichlet
forms in the sense of Albeverio-Rockner.



ITI.C. Projective limits.

1. General projective system of Dirichlet structures can be defined in

an obvious way.

But there is a difficulty for passing to the limit unless some uniform
closability property is known (which is the case for products). Here is
an example of projective system without limit :

Example
Let p be the Gauss measure on IR. Let us consider the structures

S(n) — (RH,B(Rn),/L®n,g(n), ]])n)

with
. of n 1 0f ..
I[)(n) — LZ n . Ll n d - Y5 Zd ®n
[f € L) s 5 - € Li(RY) and [(32 -55)* dn™" < o)
and 010/
gn) _ = 92 g 0m

(£ 1) = (X g
where the numbers a; are chosen such that

a; > 0, lima; =0

11— 00

The S™)’s define a compatible system of Dirichlet structures, but if
hn(r) = apz, we have ||y || f2(4en) — 0 and the candidate £ satisfies

Elh = s = ) = [(~ = ) du™ =0

an Um

and (‘j(hm h,) = 1 therefore £ is not closable.



2. An important special case where the limit exists
Consider a Dirichlet structure S = (Q,F,m,&,ID) and a family
(Uy) of applications such that

U,:Q— R and U, € D™ V¥n

then the image structure of S by (U, ..., U,) defines a Dirichlet struc-
ture S™ with state space

I R
=0

These structures S define a projective system which always possesses
a limit. This comes easily from the fact that the initial form (£,1ID) is
closed.

The limit can be called the image structure by the process (U, )nenN.

The same would be true, mutatis mutandis, for uncountable fami-
lies.



IV. D-independence.

IV.A. Definition and examples.

Let S = (Q,F,m,&,ID) be a Dirichlet structure satisfying (P) and
1 e D.

If U € D? the image structure U,.S will be called the D-law of U.

Definition 24 . [fU € D, V € D, U and V will be said to be
D-independent if the D-law of (U, V') 1s the product of the D-laws of U
and V.

Proposition 25 . A necessary and sufficient condition for indepen-
dent U and V' to be D-independent 1s

Vfi, f» € CL(RP), Vg1, g2 € C;(IRY)
E(f1oUg oV, foolUgeoV)
= g(fIOUa f‘ZOU)<910V7 92OV)L2(m) + 8(910‘/7 gQOV)(fIOU7 fQOU)LQ(m)

If E is local and possesses a CCO we have the more explicit result

Proposition 26 . If S satisfies (P), 1 € D,(L), (T'), for U € D” and
V € ID? to be D-independent it 1s necessary and sufficient that

1) U and V are independent,

2) Vi, k E[L(U;, Vi)|U,V] =0 m-a.e.

3) Vi, E[I(U,U;) U, V] =ELU,U)|U] m-a.e.

4) Vi, k E[L Vi, V)|U, V] =E[l'(Vi,V))|[V] m-a.e.

Remark. These conditions are fulfilled as soon as

. (Ui, Vi) =0 for all i, k

. (U,T(U;,Uj)) is independent of V for all 4, j

. (V,T(V, V})) is independent of V for all £, 1.
Examples.

1) If U and V are random variables in the first chaos on the Wiener
space, they are D-independent as soon as they are independent i.e.
orthogonal.
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2) Let f € L? . (RE) and g € L% (R%). By a result of Ustunel and

sym sym

Zakal if the multiple Wiener integrals I,(f) and I,(g) are independent
so are the o-fields

U(Ip(f)a < D[p(f)a hl,l >y, < Dp_lfp(f)a hp—l,l @...® hp—l,p—l >)

and

U([q(g)a < DIq<g)7 kl,l >y < Dq_llq(g)v kq—l,l Q... kq—l,q—l >)

Therefore I,(f) and I,(g) are D-independent as soon as they are inde-
pendent and I'(1,(f), I,(g)) = 0.

3) This extends to the case of multivariate random variables whose
components are multiple Wiener integrals.



IV.B. Convergence in D-law.

Let as before S = (2, F,m, &, D)be a Dirichlet structure satisfying
(P) and 1 € D.

Definition 27 . Let (U,) be a sequence in D and V € D The
sequence (Uy,) is said to converge i D-law to V

U, =%V
of
. Upsm converges to the law of V' in the narrow sense

VfelLnC(RY  E(fol,, fol,) — &E(foV, foV)

in other words that means convergence of the D-laws on bounded con-

tinuous functions for the measures, on C'-Lipschitz functions for the
forms.
The central limit theorem becomes the following :

Theorem 28 . Let us suppose S satisfies (P), 1 € D, (L), (T'). Let
(Un) be a sequence of functions in DY which are centered, with the
same D-law, and D-independent, then

1
Vn—ﬁ(Ul-l-...-l—Un)

converges i D-law and the limit Dirichlet structure is
(R?, B(IRY), v, £, D)

with
Vv = Nd<07 E)

VfeLnc Ry Erp =y [oL0

o Qij dv

c‘?xi 8x]~

where ¥;; = [xx;dp (p being the common law of the U, ’s)
and a;; = E(Up i, Up ;) = Ep, (x5, ;) (which does not depend on n).

The main step of the proof is the following lemma
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Lemma 29 . Let Uy, ..., U, be in D¢ and D-independent then Vf €

LN CHRY

E(f(Uh+...4Un), f(UL1+...+TU,))

_1s 791, N o) (5= ot | ,
=3 XJI/ o Wit '+y”)ag;j (y1+- - +yn) (gﬁl aij(yz)) dpi(y1) - - - dpin (yn)
where j, = Up,m 1s the law of U,, and

at;(ye) = B[ (Ui, Uej)|Ue = yi] (= T, (i 25) (ye)-



Let (Z(”))nEIN be a sequence of discrete time processes
Z0 = (z" oz

defined on a Dirichlet structure S, we shall say that (Z(”)) converges
in D-law to the process Z, if the marginal D-laws of Z(™ converge to
those of Z.

Example. Let us take S = (R, B(R), u, f V2 dpu, HY(IR, pt)) with p =

N(0,1) and let us consider the “standard Gaussian product space”
SN = (RN, B(R"), ™, £, D).
Let X; be the coordinates and let us put

Y(“): Xk\/ﬁ
X+ X2

then the process
Z0W =™, .. v 0,0..)
converges in D-law toward

X=(X1,...,Xn...)

That is an extension of the Gateaux-Lévy theorem which states the
same result with only probability structures.



V.Dirichlet sub-spaces and conditioning.

V.A. Dirichlet sub-spaces.

Definition 30 . Let S = (Q,F,m,E,D) be a Dirichlet structure sat-
isfying (P) and 1 € D, a sub-vector space d of D will be called a
Dirichlet sub-space of 1t 1s closed in ID and stable under composition
by Lipschitz functions on IR.

Proposition 31 . Ifd is a Dirichlet sub-space, it holds

T ™ = £2(m, o(d))

and so Sq = (Q,0(d), m, E|axa,d) is a Dirichlet structure.

In particular, dl is stable by composition by Lipschitz functions of
several variables.
For example if X; € ID, Vi € I, the space

D(X;,i € I) = {G(X, X.)ir€l, GeC(RN}"

N

is a Dirichlet sub-space which will be called the Dirichlet sub-space
generated by the family (X;);e;.
Remark. If S satisfies (I'), Sq satisfies (I') and its CCO is given by

Ca(v,v) = E[[(v,v)|o(d)] VYved
Example. It is easily seen that the kernel of the form

K={feD : &(f f) =0}

is a Dirichlet sub-space.



V.B. Conditional calculus.

We consider a D-structure S = (2, F,m, £, D) satisfying (P), (M),
(L), (I)
Hypothesis (G). We shall say that S admits a gradient if there exists
a separable Hilbert space and a linear map D from ID into L*(m, H)
such that

< Du,Du >p=T'(u,u) Vu € ID.

This is the case for the Wiener space, for some product spaces and
some Classical Dirichlet space in the sense of Albeverio-Rockner.
From the functional calculus for I' we deduce

Proposition 32 . D s continuous and satisfies
a) D(folU)=f'oUDU, feL(R),UeD
b) D(FoU)=y;F oU.DU;, FeLnC(RY,UeD

Most of the features of the conditional calculus of Nualart-Zakal
extends to this situation :

Let (X;,i € IN) be a countable family in ID nad let ‘H be the fol-

lowing measurable field of sub-spaces of H
H = (L(DX;,i € N))*
For F' € ID, let us define

DX(F) = P¥(DF)
I'X(F,F) =< P¥(DF),P¥(DF) >y
EX(F,F) = E[Y(F,F)]

Proposition 33 . a) (DX, D) is a closable operator in L*(m, H) iff
the form (£X,1D) is closable.

b) This is the case if Ph € ID for all h € H.

¢) In this case the D-structure associated with € : (0, F,m, X, DY)
satisfies (P), (M), (L), (T) and (G) with gradient operator D~ and

will be called the conditional structure knowing X.

The main result in this theory is then :
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Theorem 34 . Suppose the conditional structure knowing X = (X;,1 €
IN) exists. Let Tx = 0(X;,i € IN).

a) Let F : R x Q — R, B(R) ® tx-measurable, s.t. F(x,w) is
Lipschitz in x, bounded as well as F, then for all U € D (even for
UcDY)

(w — F(U(w),w)) € D*

and
I (F(U(.),.), F(U(.),))(w) = FA(U(w),w)TX(U,U)(w) m—a.e.

b) For all U € D (even for U € ID¥), the image of the measure
TX(U,U).m by the map w — (U(w),w)from (Q, F) into (RxQ, B(R)®
7x) s absolutely continuous w.r. to dx x m.

In particular if TX(U,U) > 0 a.e., U possesses a conditional law
knowing the o-field Tx = o(X;,i € IN).

There are two limitations for applying this theory in practice

1) The verification of the closability condition.

2) Most examples, especially from filtrage problems, do allow a
direct treatment because the conditional law is absolutely continuous
with respect to the Wiener measure: The ordinary criterion applies.
Example. Let (9:(w))ier, and (&(w))iem, be two processes defined on
a probability space (W, A, IP).

If the law of ¢ knowing 7 (i.e. knowing 7 = (75, s € IRy)) is
absolutely continuous w.r. to the Wiener measure, then a sufficient
condition for a random variable F' : ©Q — IR of the form

F = f(nvf)

to possess a conditional density knowing 7 is that for IP-a.e. w, setting
Fulw) = Fln(w),),

1) F, € D (= Dy, here)

2) det I'(Fy, F¥)(w) >0 dm(w)-a.e..



V.C. A glance to stationary processes.

Let S = (2, F,m,E,D) be a D-structure satisfying (P), (M), (L),
(T).

A map X : t = X; from IR into ID will be called a D-stationary
process if its marginal D-laws are invariant under translations of time.

Let F € LN CIR"), the relation
ﬁ[F(tha o 7th)] = F<Xt1+t7 cee 7th+t)

defines a group of isometries which extends to the Dirchlet sub-space
generated by X : Dx = D(X,,t € R)

It is easy to see that (7;) is strongly continuous on D, if and only
if ¢ = X, is continuous from IR into ID.

If this is satisfied, we get a spectral representation : 7; = e/,
A self-adjoint on Dy and if E(dA) is the resolution of the identity
associated with A :

Xy = [eME(dN)X,  in Dy

Let I'x be the CCO of the sub-structure (2, 0(X), m,Ex,Dy) which
is given by
Ly(U,V) = B[O, V)]o(X)]

Let us suppose moreover that I'( Xy, X;) be deterministic Vs, t.

(This happens often without any Gaussian hypothesis : for example
for product spaces

® (R, B(R), hndz, [ V* hydz, D,)

n=0

the h,’s satisfying the Hamza condition and [ 22h,(z)dz < oo if for all
t, X belongs to the closure in D of linear combinations of coordinates. )

Then I'(X5, X;) = I'(X(, Xi—5) hence by Bochner theorem

D(Xpn, Xp) = (k) = [ eMdp()

for a finite positive measure p since v is continuous.



It follows that
. X; has a density as soon as p # 0
. (X4, ..., Xy,) has a density if the functions

itqe it,e

et .,

e

are linearly independent in L*(IR, ).

Let v be the usual spectral measure of X, from the two spectral
representations it follows that the space L(X;,t € IR)ID
to L*(o(X), u+v).

Hence if v << p with j—: bounded, T'(Y,Y)'/% is on £L(X;,t € R) a
norm equivalent to ||Y||p -

If we project Xy on L( X, s <t
we get

is isomorphic

)}DX for this Hilbert scalar product

Xin € L(X,,5<0) "

and X/;h is also the best estimate of X;, 5 in the whole space D(Xj, s <
t) in the sense of the Dirichlet form &£, because

E(Xion — Xion, X5) =0 Vs <t
— E(Xin— X F(X,,,....X,))=0 VFeLnCY(R"
s; <ti=1,...,n

This situation is similar to the Gaussian case for the filtrage of
Wiener.



