
On numerical integration by the shift and application toWiener spaceNicolas BOULEAU �-=-Since the advantages of quasi-Monte Carlo methods vanish when the dimension of the basicspace increases, the question arises whether there are better methods than classical MonteCarlo in large or in�nite dimensional basic spaces. We study here the use of the shift operatorwith the pointwise ergodic theorem whose implementation is particularly interesting. Afterrecalling the theoretical results on the speed of convergence in a form useful for applications,we give su�cient criteria for the law of iterated logarithm in several cases and in particular insituations involving the Wiener space.
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| 2If a family of real random variables is naturally de�ned on a probability space which canbe smoothly changed to be ([0; 1]s;B([0; 1]s); dx) with small s, quasi-Monte Carlo methods areamong the fastest ones for computing expectations, at least when the family is wide enoughto exclude other speci�c methods. See for example [20], [21]. But the advantage of thesemethods vanishes when s increases (cf [22]). Practically, for the best low-discrepancy sequencesavailable at present (cf [21], [12]), to compute expectations with an accuracy of 10�4 by unitof standard deviation, it is faster to come back to the classical Monte Carlo method as soon asthe dimension s exceeds 20 (cf [1] [9]).In large or in�nite dimension (computation of expectations of stopping times for Markovchains, or of functionals of solutions of stochastic di�erential equations, etc.) the classical MonteCarlo method which is based on the law of large numbers, can nevertheless be supplanted byanother method based on the pointwise ergodic theorem of Birkho� and the shift operator.Particular features of the implementation of this method make it at present the most interestingway of integration in large or in�nite dimension (cf [5]).The aim of this study is to clarify the consequences of recent theoretical results for thenumerical computation of expectation by the shift method, and in particular to yield su�cientcriteria for the existence of speed of convergence of the type `iterated logarithm' in severalsituations. We put particular accent to the case of Wiener space because it is the basic spaceof many situations useful in applications.The content of the study is the following:I. Law of iterated logarithm for the shiftII. Criteria of membership for the Gordin class1. Case of the torus T s2. Case of the torus T IN3. Case of Wiener spacea) The Wiener space as a product spaceb) Functionals of lipschitzian SDE'sc) Multiple Wiener integrals4. Other factorisations of the Wiener spaceWe give now some details on each of these parts.The �rst part is concerned with the speed of convergence in the pointwise ergodic theoremfor the shift on T IN. In contrast to the case of the law of large numbers, there is no standardspeed of convergence valid for every function in L2. Nevertheless the successive improvementsof the LIL (cf [16], [23], [15], and more recently [4]) have shown the importance of a sub-classof L2 for which a form of the LIL is valid and which contains several useful examples (cf partII). We call this class the Gordin class by reference to [13] one of the �rst works where thisdecomposition in sum of martingale increments and a subsidiary harmless term is used. Ourpurpose is not to extend the general results (cf [4]) but to express useful consequences forapplications. All the results are explicitely proved except the theorem of Heyde and Scottitself.In the second part, we show �rst that functions in the Sobolev spaces H�(T s) are in theGordin class for the shift of binary digits. Next for the torus T IN with the shift to the right,Dirichlet forms techniques are used to obtain a simple su�cient criterion for membership to theGordin class. For the �rst factorisation of the Wiener space under study, the shift becomes thescaling Bt � � = 1p2B2t. With this transform, H�olderian functions of solutions of LipschitzianSDE's are shown to belong to the Gordin class. Somes examples are analysed which arerelated to multiple Wiener integrals. Other factorisations are discussed and especially therepresentation of Brownian motion on the Schauder basis of C([0; 1]) consisting of primitive



| 3functions of the Haar basis. The criterion obtained on T IN by Dirichlet forms method applieshere as well.We thank J.P. Conze and E. Lesigne for useful discussions and suggestions.I. The law of iterated logarithm for the shiftWe are interested by almost sure results. It is well known (see [14], [17]) that for every ergodicendomorphism � on a Lebesgue space, and for every sequence, (�n), �n > 0, �n ! 0, there isan f in L2 such that ( 1n n�1Xk=0 f � � k � IEf)=�n ! +1 a.s.Such a \slow" f is constructed by suitable application of the Rohlin-Halmos lemma whichlikewise furnishes a \fast" non constant f 2 L2 for which ( 1n Pn�1k=0 f � � k � IEf) is o( 1n1�� ) (seealso [18] pp.14-15)Nevertheless such functions, by the nature of the Rohlin-Halmos lemma itself, are ratherabstract examples, and do not prohibit an LIL from holding for a large class of functionscontaining the most common ones.For later convenience, we assume the following framework:(E; E; �) is a probability space and(
;A; IP) = (EZ; E
Z; �
Z).The coordinates from 
 into E are denoted by Xn. We de�ne the ergodic automorphism �on (
;A; IP) by Xn � � = Xn�1 8n 2 Z:We call � the shift to the right. One putsFnm = �(Xm;Xm+1; : : : ;Xn) for m � n 2 ZFn�1 = �(Xk; k � n)F+1m = �(Xk; k � m)F+1�1 = �(Xk; k 2 Z)As stated in the introduction the following results can be proved in a more general setting, forother endomorphisms (see [16], [23], [15]) and for Banach-valued random variables (see [4]).Let us consider on L1(F10 ; IP) the Perron-Frobenius operator T de�ned byTf = IE[f jF11 ] � � f 2 L1(F10 ; IP)we then have:Lemma 1 For f 2 L2(F10 ; IP), IEf = 0, the following assumptions are equivalent:a) PNn=0 T nf remains bounded in L2,b) PNn=0 T nf converges weakly in L2 when N " 1,c) PNn=0 T nf converges in L2 when N " 1,d) there exists g 2 L2(F10 ; IP) such that f = (I � T )g.Proof. b))d): if PNn=0 T nf converges weakly, by the Banach-Steinhaus theorem the limit g isan element of L2(F10 ; IP). By composition with the bounded operator T , we obtain g = f+Tg.



| 4d))c): if f = (I � T )g, g 2 L2, it can be supposed IEg = 0. Then kTNgkL2 ! 0 whenN " 1. Indeed kTNgk2L2 = IE[IE(gjF1N )2] and IE(gjF1N ) is an inverse martingale which tendsto zero in L2.Finally for a))b), let us consider a subsequence Nk such that PNkn=0 T nf converges weaklyin L2(F10 ) as k " 1. Letting g be the limit, by composition with T we getg � f + limk"1TNk+1g = Tgand the same argument as for c))d) shows that TNk+1f ! 0 in L2.Remark. It is easy to see that these conditions are equivalent to the condition that PNn=0 �nfconverge for the topology �(L2(F+1�1 ); L2(F+10 )).We shall say that a function f 2 L2(F+10 ) belongs to the Gordin class (for which wewrite f 2 G) if f � IEf satis�es the equivalent conditions of lemma 1.Lemma 2 The Gordin class is the class of the functions f 2 L2(F+10 ) admitting a decompo-sition f � IEf = ~g + h � ��1 � h(1)where ~g; h 2 f 2 L2(F+10 ) with IE(~gjF11 ) = 0 and IEh = 0. Such a decomposition, if it exists,is unique.Proof. By lemma 1, if f 2 G there is a g 2 L2(F+10 ) such that f � IEf = g � Tg. Putting~g = g � IE(gjF11 ) and h = Tg = IE(gjF11 ) � � , we get the decomposition (1).Conversely, if f can be decomposed as (1), we have T ~g = 0 and T (h � ��1) = h, hencef � IEf = (I � T )g with g = ~g + h � ��1. The uniqueness follows immediately.The theorem of iterated logarithm is valid for functions in the Gordin class:Theorem 3 Let f 2 L2(F+10 ) be in the Gordin class, and ~g; h the elements of its decomposi-tion (1). Then, putting SN = PNn=0(f � IEf) � �n, there holdsa) limN"1 1pN kSNkL2 = k~gkL2b) lim supN"1 jSN jp2N log logN = k~gkL2Proof. Noting that SN = NXn=0 ~g � �n + h � ��1 � h � �Npart a) comes from the following inequality, where the norms are taken in L2:�����k 1pNSNk � k 1pN NXn=0 ~g � �nk����� � 2 khkpN !N"1 0and from kPNn=0 ~g � �nk2 = (N + 1)k~gk2, which follows by orthogonality.If ~g = 0 part b) is a consequence of the fact that, h being in L2, h��NpN ! 0 when N " 1 bythe pointwise ergodic theorem. Thus, when ~g 6= 0 it su�ces to show that



| 5lim supN"1 jPNn=0 ~g � �njp2N log logN = k~gk:But this is given by the theorem of Heyde and Scott ([16] corollary 2).We shall now state su�cient conditions for membership to the Gordin class G.Without subscript, norms are L2-norms.Proposition 4 Let f 2 L2(F+10 ) be such that1Xn=0 kIE[f ]� IE(f jF1n )k < +1;(2)then f 2 G and the ~g of its decomposition satis�esk~gk � 1Xn=0 kIE[f ]� IE(f jF1n )k:Proof. By the fact that kT n(f � IEf)k = kIEf � IE(f jF1n )kthe convergence of the series (2) implies that the series PT n(f � IEf) converges normally.Letting g be its sum, then ~g is given by g � IE(gjF11 ) thus k~gk � kgk.Proposition 5 Let f 2 L2(F+10 ), and let us consider the decompositionf = IEf + 1Xn=0 fn(3)with f0 = IE(f jF00 )� IE(f)and fn = IE(f jFn0 )� IE(f jFn�10 ) for n � 1a) f 2 G if and only if supN 1Xj=o kIE( NXn=0 fn+j � �njF10 )k2 < +1:b) This is satis�ed if Xm�0sXk�m kfkk2 < +1and then the ~g associated with f in (1) is such that k~gk �Pm�0qPk�m kfkk2:c) This is also sati�ed if Xm�0pmkfmk < +1and then the ~g associated with f in (1) is such that k~gk �Pm�0pmkfmk.



| 6Proof. The existence of the decomposition (3) for any f 2 L2(F+10 ) comes from the fact thatNXn=1 fn = IE(f jFN0 )� IE(f jF00 )is a martingale which converges in L2.Let f 2 L2(F+10 ), and put ~f = f � IEf . Using the fact that for n � 0, T n ~f = IE[ ~f � �njF10 ]we get T n ~f = Xk�n IE[fk � �njF10 ]because for k < n, fk � �nis F�1�1-measurable. It follows thatNXn=0 T n ~f = NXn=0Xk�n IE[fk � �njF10 ](4) = 1Xj=0 IE( NXn=0 fn+j � �njF10 ):But the random variables ZNj = IE( NXn=0 fn+j � �njF10 )form an orthogonal sequence and thereforek NXn=0 T n ~fk2 = 1Xj=0 kZNj k2and part a) follows from lemma 1.From the equality (4) we have alsok NXn=0 T n ~fk � NXn=0 kXk�n IE[fk � �njF10 ]k:For every �xed n the sequence (IE(fk � �nkF10 ))k�n is orthogonal, and sokXk�n IE[fk � �njF10 ]k = 0@Xk�n kIE[fk � �njF10 ]k21A1=2� 0@Xk�n kfkk21A1=2which gives part b).Taking once more the equality (4) rewritten asNXn=0 T n ~f = 1Xm=0 IE(fm + fm � � + � � �+ fm � �m^N jFN0 )gives k NXn=0 T n ~fk � 1Xm=0 kfm + fm � � + � � � + fm � �m^Nk



| 7� 1Xm=0pmkfmk;by the fact that the sequence fm � �m^N ; fm � �m^N�1; : : : ; fm is orthogonal. Part c) follows bythe same arguments.If T is an almost �nite stopping time of the �-�elds (Fn0 )n�0 and if f is an FT0 -measurablerandom variable, f can be written as f = Xk�0 f 1fT=kgwith f 1fT=kg Fk0 -measurable. This is a particular case of the following situation:Proposition 6 Let f 2 L2(F10 ) admit the following representation converging in L2:f = 1Xk=0 fk with fk Fk0 -measurable:If the condition 1Xk=0 kkfk � IEfkk < +1(5)is ful�lled, then f 2 G, and the associated ~g satis�esk~gk � 1Xk=0pk + 1kfk � IEfkk:(6)Proof. By the fact that T n(fk � IEfk) = 0 for n > k,T n(f � IEf) = Xk�n T n(fk � IEfk)and therefore under condition (5) the series Pn T n(f � IEf) is normally convergent and f 2 G.Let us put g(fk) = Pn�0 T n(fk � IEfk) and g(f) =Pn�0 T n(f � IEf). Under condition (5)we have thus g(f) = Xk�0 g(fk);the series converging normally. Thereforeg(f) � IE(g(f)jF10 ) = Xk�0[g(fk)� IE(g(fk)jF10 )];the series again converging normally. But by lemma 7 below and proposition 5 applied to fkwe have kg(fk)� IE(g(fk)jF10 )k � pk + 1kfk � IEfkkso that kg(f)� IE(g(f)jF10 )k �Xk pk + 1kfk � IEfkkwhich proves the proposition.



| 8Lemma 7 If f 2 L2 depends only on d consecutive coordinates thenlim supN jf + f � � + � � �+ f � �N�1 �NIEf jp2N log logN � pdkf � IEfkProof. This is a simple application of the LIL of Hartman-Wintner for independent variables.Let us put N � 1 = pd + q with 0 � q < d, and let us suppose f to be centred. ThenN�1Xi=0 f � � i = d�1Xk=0 p�1Xj=0 f � � jd+k + pd+qXn=pd f � �n:(7)By the fact that for every �xed klim supp jPp�1j=0 f � � jd+kjp2p log log p = kfkwe have lim supN jPd�1k=0Pp�1j=0 f�� jd+kjp2N log logN � dkfk lim p2p log log pp2N log logN� pdkfk:Now the second term of (7) givesjPpd+qn=pd f � �njp2N log logN � Pd�1j=0 jf j � � pd+jp2N log logNwhich vanishes almost surely as N " 1 by the ergodic theorem because f 2 L2. The lemmafollows from these estimates.Remark. For f 2 L2(F10 ) admitting the representation f = Pk fk converging in L2 withfk Fk0 -measurable, we dont know whether the sole hypothesis Pkpk + 1kfk � IEfkk < +1su�ces to imply lim supN jPNn=0(f � IEf) � �njp2N log logN �Xk pk + 1kfk � IEfkk:The following result, whose statement is simple, is a rather rough consequence of the pre-ceding proposition.Proposition 8 Let T be an a.s. �nite stopping time of (Fn0 )n�0, and f 2 L2(FT0 ):If there is an � > 1 such that IE[f2T 3 log� T ] < +1then lim supN jPNn=0(f � IEf) � �njp2N log logN � p6� kf(T + 1)3=2k:Proof. Putting fk = f 1fT=kg we haveXk�1 kkfk � IEfkk �Xk kkfkk =Xk 1pk log� kkqk3 log� kfkk



| 9which by the Cauchy-Schwarz inequality, is bounded by�vuutXk 1k log� ksXk k3 log� kfk � cqIE[T 3 log� Tf2]:Therefore the inequality (5) is satis�ed and similarly1Xk=0pk + 1kfk � IEfkk � p6� kf(T + 1)3=2k:Remark. It is worth noting that if f 2 G it can of course happen thatk~gk < kf � IEfk:This is the case if f � IEf = h � ��1�h with h 2 L2 and other examples are easily constructedby the Gordin decomposition. This can occur even when f depends only on a �nite number ofcoordinates. In this case integration by the shift method runs (asymptotically) faster than byclassical Monte Carlo.Nevertheless, the principal interest of the shift method does not come from this phenomenonbut from certain facilities a�orded by its implementation (see [5]).II. Criteria of membership to the Gordin classII.1. The case of the torus T sLet us consider the following transform of T s � T s((x1; : : : ; xs); (y1; : : : ; ys)) ��! (([2x1]; : : : ; [2xs])); (2x1 � [2x1] + y12 ; : : : ; (2xs � [2xs] + ys2 ))where [x] is the fractional part of x 2 IR, which is easily seen to correspond to the bilateralBernoulli shift by binary expansion of real numbers.We have for this transformation and for f 2 L2(T s; dy1 � � � dys):Tf(y) = Xn2f0;1gs 12sf(n2 + y2)T nf(y) = Xk2f0;:::;2n�1gs 12ns f( k2n + y2n ):Using then the Fourier representation of ff(y) = Xm2Zs am e2i�<m;y>one easily obtains that if IEf = 0NXn=0 T nf(y) = Xq2Zs; q 6=0 NXn=0 a2nq e2i�<q;y>and we get:



| 10Proposition 9 The function f 2 L2(T s) belongs to G if and only ifsupN Xq2Zs; q 6=0 j NXn=0 a2nqj2 < +1in which case 8q 6= 0, PNn=0 a2nq !N"1 bq with Pq jbqj2 < +1 and the ~g of f in (1) satis�esk~gk2 � Pq jbqj2.Corollary 10 Let f 2 L2(T s) be such that there are cn � 0 with P1n=0 cn < +1 and ja2nmj �cnjamj 8m 2 Zsnf0g. Then f 2 G andk~gk � kf � IEfk 1Xn=0 cn:Example. Letting f belong to the Sobolev space H�(T s) de�ned by Pp2Zs japj2(Psi=0 p2i )� <+1 for some � > 0. Then f 2 G and k~gk � c(Pp japj2(Psi=0 p2i )�)1=2:II.2. Case of the in�nite dimensional torusWe consider here the Bernoulli shift ( to the right) on ([0; 1]s;B([0; 1]s); dx)Z:The property of membership to the Gordin class is strongly related to the dependence of fon the size of the derivatives of f (when they exist) with respect to the faraway coordinates.This is particularly simple to espress by means of Dirichlet forms:Let us consider a Dirichlet form (dI; ") on L2([0; 1]s; dx) possessing a carr�e du champ operator (cf [7]) and let us consider the product Dirichlet structure (cf [8]):(
;A; IP;dI; E) = ([0; 1]s;B([0; 1]s); dx;dI; ")
ZThis structure has a carr�e du champ � given by�(f; f) =Xi2Z i(f; f) 8f 2 IDwhere i operates on the i-th coordinate. We consider the shift � given byXn � � = Xn�1where (Xn)n2Z are the coordinates. For F 2 L2(
;F10 ) there holdsTf(x0; x1; : : : ; xn; : : :) = Zx2[0;1]s f(x; x0; x1; : : :)dx:We make the following assumption (8): Let L20 = ff 2 L2 IEf = 0g( There exists K > 0 such that8f 2 ID \ L20 kfk2L2 � KE(f; f)(8) Then the space ID \ L20 is a Hilbert space for the norm qE(f; f) which is invariant by � .Let ID0 = ff 2 ID; IEf = 0; f is F10 -measurableg which is closed in IDProposition 11 Under hypothesis (8), let f 2 ID0 be such that1Xk=0( 1Xi=k IE[i(f; f)])1=2 < +1:Then f 2 G.



| 11Proof. This is straightforward by the fact thatE(T nf; T nf) � 12IE[ 1Xi=n i(f; f)]Corollary 12 Let f 2 L2(
;F10 ) be such that for every n 2 N ,[0; 1]s 3 xn �! f(x0; : : : ; xn : : :) 2 IRpossesses a derivative in the sense of distributions in L2(dxn) (dx0 � � � dxn�1dxn+1 � � �)-almostsurely.Then if 1Xi=2 i2(log� i)IE[f 02i ] < +1for an � > 1, then f 2 G.Proof. The preceding proposition is here applied to the case (dI; ") = (H1([0; 1]s; dx; R r2; dx)a) Let us prove �rst that the hypothesis (8) is ful�lled. For this we use the fact that thishypothesis is satis�ed on the Wiener space equipped by the Ornstein-Uhlenbeck semi-group, asit is easily seen by the spectral representation on the chaos. This is equivalent to saying that(8) is satis�ed on the Gaussian structure�IRs; B(IRs); Ns(0; 1); Z r2; H1(IRs; Ns(0; 1))�
Zwith the constant K = 1. The property is therefore true for every image structure of thisstructure (cf [8]) and the result comes then from the following easy fact :Let be '(x) = R x�1 1p2�e� y22 dy; thenZIR(f � ')02dN(0; 1) � 12� Z 10 f 02(x)dx:b) It remains only to prove that1X1=2 i2(log� i)a2i < +1) 1Xk=0( 1Xi=k a2i )1=2 < +1:which a consequence of the Cauchy-Schwarz inequality.II.3. The case of Wiener space3.a) The Wiener space as a product spaceLet us consider the space W = ff 2 C([0; 1]; IRd); f(0) = 0g equipped with its Borelian �-�eldB and with the Wiener measure m.On the space (
;A; IP) = Q+1n=�1(Wn;Bn;mn) where (Wn;Bn;mn) are copies of (W;B;m)we de�ne a Brownian motion (Bt)t2IR+ in the following manner: Letting Xn be the coordinatemap from 
 into Wn, for t 2] 12k+1 ; 12k ]; k 2 Z we putBt = 1Xn=k+1 Xn(1)2n+12 + Xk( t�1=2k+11=2k+1 )2 k+12 :



| 12The process thus de�ned is Gaussian centred with independent increments, tends to zero as tgoes to zero and its covariance is easily computed to be s ^ t times the identity matrix; it istherefore a standard IRd-valued Brownian motion.The transform � de�ned on 
 byXn � � = Xn�1 n 2 Zis a scaling Bt � � = 1p2B2tand the results of section I apply withF10 = �(Bs; s � 1)F11 = �(Bs; s � 12)Fk0 = �(Bs �B 12k+1 ; s 2] 12k+1 ; 1])We shall put Bt = �(Bs; s < t).3.b) Functionals of Lipschitzian SDE'sLet us consider maps � : IRm � IR+ ! IRm�d; b : IRm � IR+ ! IRmsatisfying the Lipschitz hypotheses:9C > 0 such that 8s 2 [0; 1]j�(x; s)� �(y; s)j+ jb(x; s)� b(y; s)j < Cjx� yjj�(x; s)j+ jb(x; s)j � C(1 + jxj)where j : j is one of the equivalent norms on Euclidean spaces.Let Xxt be the solution of the the SDE:Xxt = x+ Z t0 �(Xxs ; s)dBs + Z t0 b(Xxs ; s)ds x 2 IRmProposition 13 Let be f = h(Xxt ) for t � 1, with h : IRm ! IR H�olderian of exponent� 2]0; 1]. Then f 2 G:Proof. Let A be the H�older constant of h:jh(x)� h(y)j � Ajx� yj�and let (Pt)t�0 be the semi-group of the di�usion associated with the ow Xxt . By classicalestimates (cf [19] chapter 2) we havejPuh(x)� Puh(y)j = jIEh(Xxu )� IEh(Xyu)j � AIEjXxu �Xyu j�� Kjx� yj� 8u 2 [0; 1]for some constant K depending on the dimensions m;d and on the constants C and A.If ' is H�older with exponent �, we havevar['(Xxs )] = IEj'(Xxs )� IE'(Xxs )j2 � IEj'(Xxs )� '(E(Xxs ))j2



| 13� c1IEjXxs � IEXxs j2� � c2(1 + jxj2�)s�(cf [19] theorem 2.1)Now, let us remark thatT nf = IE[h(Xxt )jB 12n ] � �n = Pt� 12n h(Xx12n ) � �n:Hence by the preceding estimates we getkT n(f � IEf)k2 = var[T nf ] = var[Pt� 12n h(Xx12n )]� c(1 + jxj2�) 12n�and the series P kT n(f � IEf)k converges geometrically.Proposition 14 Let �(ds; dx) be a measure on [0; 1]� IRm such thatZ[0;1]�IRm(1 + jxj�)j�(ds; dx)j < +1with � 2]0; 1], and let g be a H�olderian function of exponent �. Then the functionalf = Z[0;1]�IRm g(Xxs )�(ds; dx)belongs to G.Proof. We haveT nf = Z 12n0 ZIRm g(Xxs )�(ds; dx) � �n + Z 112n ZIRm Ps� 12n g(X 12n )�(ds; dx) � �nand hencekT n(f � IEf)k � Z 12n0 ZIRm kg(Xxs )� g(IEXxs )kjd�j + Z 112n ZIRm(var[Ps� 12n g(X 12n )]) 12 jd�jand therefore by the estimates used in the preceding proof:kT n(f � IEf)k � Z 12n0 ZIRm A(1 + jxj�)s�2 j�(ds; dx)j + Z 112n ZIRm B(1 + jxj)�) 12n�2 j�(ds; dx)j:By hypothesis the second term is bounded by C 12n�2 . For the �rst one, let us remark that1Xn=0 1[0; 12n ](s)s�2is bounded on s 2 [0; 1] from which it followsX kT n(f � IEf)k < +1



| 143.c) Multiple Wiener integralsThe case of multiple Wiener integrals is important on one hand because their family is in somesense the universal di�usion process (cf [2] [3]) and on the other hand because most of themare quite irregular and such that every Borelian version is discontinuous at every point in theWiener space. Such functionals are not Riemann integrable and have to be approximated bymore regular functionals before simulation (cf [6]).Here we give some examples to illustrate which irregularity at the origin can have functionsin the Gordin class for scaling.Let F = Z0<t1<���<tm<1 h(t1; : : : ; tm) dBi1t1dBi2t2 � � � dBimtmwhere ik 2 f1; 2; : : : ; dg for k = 1; : : : ;m withZ0<t1<���<tm<1 h2(t1; : : : ; tm) dt1dt2 � � � dtm < +1:One has easily T nF = Z0<t1<���<tm<1 12nm2 h( t12n ; : : : ; tm2n ) dBi1t1dBi2t2 � � � dBimtm :Therefore F belongs to the Gordin class if and only ifsupN Z0<t1<���<tm<1( NXn=0 12nm2 h( t12n ; : : : ; tm2n ))2 dt1dt2 � � � dtm < +1Example 1. Let us take m = 1, h(x) = 1x� , � < 12. It is easily seen thatF = Z 10 1t� dBt 2 G 8� < 12 :Example 2. Let us take h(x) = 1px(� log x)� with � > 12 :Then F = Z 120 1pt(� log t)� dBtis in the Gordin class if � > 1, but F 2=G if � 2]12 ; 1] although h 2 L2[0; 1] in that case.Example 3. If we take h(x) = 1px sin(� log2 x)log xthe functional F = R 120 h(t) dBt gives an example of a functional in G such thatXn kT nFk = +1and such that R0 12 jh(t)j dBt 2=G:Example 4. Let us consider a real Brownian motion (d = 1), and a function F squareintegrable with the following Wiener chaos expansion:F = F0 +Xm Fm = F0 + 1Xm=1 Z0<t1<���<tm<1 h(t1; : : : ; tm) dBt1dBt2 � � � dBtm



| 15and let us suppose jhm(t1; : : : ; tm)j � am 1t�m11 ���t�mmm with �mi < 12 8i = 1 : : : ;m: We get, by thefact that the chaos are invariant by T ,k NXn=0 T n(F � F0)k2 = 1Xm=1 k NXn=0 T nFmk2� 1Xm=1 a2m[1� 2(�m1 +���+�mm�m2 )]2Qmi=1(i� 2Pik=1 �mk )so that, if all �mi 's are equal to � < 12, F 2 G as soon as the series1Xm=1 a2mm!(1� 2�)mconverges.II.4. Other factorisations of the Wiener space.4.a)Let (�n(t))n�0 be an orthonormal basis of L2[0; 1] and let 'n(t) = R t0 �n(s) ds. Let (gn)n�0 bea sequence of independent standard Gaussian variables built as the coordinates of (
;A; IP) =(IRIN;B(IRIN); N(0; 1)
IN).The series Xn gn'n(9)converges in C([0; 1]) a.s. and in Lp((
;A; IP); C([0; 1])) p 2 [1;1[ and its sum is a Brownianmotion under IP.Indeed, if on the Wiener space we put ~�n(!) = R 10 �n(s) dBs and Fn = �(~�k; k � n), weobtain, denoting by B the identity map from C[0; 1] into itself,IE[BjFn] = nXk=0 ~�k'k(10)as can be seen by applying a continuous linear functional � on C[0; 1] to both sides of (10) andby remarking that (�; ~�0; : : : ; ~�n) is a Gaussian array. By the convergence properties of vectormartingales, we have therefore B = 1Xk=0 ~�k'k(11)a.s. and in Lp. Since the family of partial sums of the series (9) has the same law as the sumsof (11) the assertion is proved.Such a representation of the Brownian motionB = 1Xk=0 ~�k'kallows us to de�ne the shift, and the associated Gordin class clearly depends on the basis (�n)which is chosen.



| 164.b)The case of Haar functions is particularly interesting. Let us put � = 1[0; 12 [ � 1[ 12 ;1[ and�m;k(t) = 2m2 �(2mt� k)(12) 'm;k(t) = Z t0 �m;k(s) ds(13)for t 2 IR+, m 2 Z, k 2 IN.The functions (�m;k)m2Z; k2IN form an orthonormal basis of L2(IR+) and if gm;k are standardindependent Gaussian variables, the Brownian motion can be represented byB(!; t) = +1Xm=�1( 1Xk=0'm;k(t)gm;k(!))and the scaling studied in paragraph II.3 is the mapping which transforms the sequence(gm;k(!))m;kinto the sequence (gm�1;k(!))m;k:The space generated by the functions (�m;k)m�0; 0�k<2m is the subspace of L2[0; 1] orthogonalto the constants, and the process Zt = 1Xm=0 2m�1Xk=0 'm;k(t)gm;k(14)is a standard Brownian bridge vanishing at zero and one. The representation (14) is uniqueand converges in C00[0; 1] = ff 2 C[0; 1] f(0) = f(1) = 0g. The functions 'm;k form a Schauderbasis of this space. If f 2 C00[0; 1] withf(t) = 1Xm=0 2m�1Xh=0 'm;k(t)am;k(f)(15)there holds am;k(f) = [2f( k2m + 12m+1 )� f( k2m )� f(k + 12m )]2m2 :The Banach spaces of H�olderian functions of exponent � 2]0; 1[ of C00[0; 1] can be interpretedin terms of spaces `1 and c0 on the sequences (2m�am;k)m;k (cf [10]).To approach a continuous function by a partial sum of the series (15) is convenient practi-cally, and if we change the notations by putting a2m+k = am;k m � 0, k = 0; : : : ; 2m � 1 thesimple shift on the an i.e., the transformF (a1; : : : ; an; : : :) �! F � � = F (a0; a1; : : : ; an+1; : : :)(which does not correspond to a scaling) is quite thrifty in random drawings. By proposition11, a su�cient condition for a function F to be in the Gordin class for this transform is that itbe in L2 and possess partial derivatives such that1Xk=0( 1Xi=k IE(F 02i )) 12 < +1



| 17where the expectation is taken on (IRIN;B(IRIN); N(0; 1)
IN).Example. For �xed t 2 [0; 1], let us consider the functionalF (!) = Xn�0 1n + 1q'n(t)�Z 10 �n(s) dZs�2which, with the preceding notations F can be writtenF = Xn�0 1n+ 1q'n(t) a2n:Now F belongs to L2 by the fact that the seriesXn�0 1(n+ 1)2'n(t)converges and we have F 0i = 2i+1q'i(t)ai so that1Xk=0 1Xi=k IEF 02i = 1Xk=0 4k + 1'k(t) < +1because ( 1k+1 ) 2 `2. And thus F 2 G.
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