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If £ = (&) is an equidistributed sequence on the s-dimensional cube, the average of
the values of a function f on the sequence £ converges to the integral of f, for f Riemann
integrable. We study here the quite natural fact that a slight random perturbation of the
sequence ¢ allows to integrate more irregular functions. The notions used are defined in

[1] and [2].

1 Strongly p-distributed sequences

Let u be a probability measure on [0,1]%,s € N*, equipped with its natural topology.
Except what envolves the convolution product, the sequel could be extended to any l.c.d.
space.

Let (X,,) be a sequence of random variables with values in [0, 1]* defined on a probabi-
lity space (2, A, P). “Almost surely”, (a.s.), means P-almost surely. If, with probability
1, the sequence (X, (w)) is p-distributed on [0,1]?, i.e. if almost surely

1 N-1

(1) Ve C(0INR) 5 X F(Xa(w)) = [ fd

then (X,) will be said to be almost surely p-distributed.
Now, the example of i.i.d. random variables (X,) with common law p, shows that
some random sequences have the following stronger property:

Definition 1 A random sequence (X,,) is said to be strongly p-distributed if, for every
bounded p-measurable function f from [0,1]° into R,

(2) (%Jgf()(n) —>/fd/,c a.s.).

That a strongly p-distributed sequence (X,,) be almost surely p-distributed comes
from the fact that if D is a countable dense subset of C([0, 1]°, R) such a sequence satisfies

1 N-1
(Vf ep  + n; F(X,) — /fd/,L) a.s.



which implies easily
1 N-1
( Z EX,(w) — f narrowly ) a.s

Proposition 1 Let (X)) be a sequence of random variables with values in [0,1]°. If for
every open set A in [0,1]° it holds

(3) ( ! Nzl La(X0) = p(A) )

then (X,,) is strongly p-distributed.
We shall use the following lemma.
Lemma 1 Property (3) for open sets implies property (2) for continuous f's.

Proof. Let f be continuous. We may suppose 0 < f < 1. Then

(] o

n n

for an increasing sequence of open sets (y. Approximating uniformly up to ¢ the function

I by

K

fK = Z aklAk Wlth Ak = Gk+1\Gk

k=1
the fact that

N-1
(1 pr —>/de/,L a.s.)
gives
/fd/,c—25<hm—2f ) <Tim

which shows the lemma. O

For the proposition, consider a bounded p-measurable function f. By the Lusin pro-
perty, for every sequence ¢, decreasing to zero, there exists a sequence of open sets Gy
and a sequence of continuous functions f; such that

V. M(Gk) < &g, f = fk outside Gk? H fk HOOSH fk HOO :

Let us write

= 1 N=t 1 V=t
N 7;) [(X,) = N 7;) Ji(Xn) + N ;(f — fi)(Xa).



By the lemma the following inequalities hold a.s. :

T > /() < [fidi + S e n(G)

lims > f(Xa) = [ fedp = | lloo (),

hense a.s. hm— Z f(X /fd/,c O

Remark. The property that (2) be satisfied for continuous functions f is weaker than
the property (3) for open sets. It is indeed equivalent to the almost sure p-distribution
of (X,). And there exist almost surely p-distributed sequences which are not strongly
p-distributed : consider a deterministic equidistributed sequence ¢ = (£,), take X,, = &,,

and take f(x) = 1{pane,=a}

Proposition 2 Let & = (&,) be an equidistributed sequence on [0,1]° and V,, be a sequence
of i.i.d. random variables with absolutely continuous common law v on R’. Then the
sequence X, = {&, + Vi } is strongly As-distributed on the cube. (Here {x} means the

fractional part of ¥ component by component, and X is the Lebesque measure in dimension
s).

Proof. Let us define absolutely continuous probability measures u,, on the cube by

il A) = [ 146 + a))dv(a)

for every As-measurable subset A of [0, 1]°.

Lemma 2 For every f Lebesque measurable and bounded on the cube,

1N1

lim ¥ nZ:: tin(f) = As(f)

Proof. The function

9(w) = [ Iy +2}dv(a)

is continuous and bounded on R® as convolution product of a function in L*(R’) by a
function in L'(RR*). Hence

1 N-1
— o) = dy = / d
N nZ:% 9(&) = | oWy = | S(y)dy
Now, to achieve the proof of the proposition, we use a classical argument.

Let- 8 = 1 32 (1) = )

=0
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a) It holds Sy: =0 a.s.

Indeed,
& 11 & 2 2
PEN 2w [l >0) € 3 S ()~ ()]
Nom, &N
1 &1
thus iy | Sz | < e as.
b) It holds Sy — 0 as.
Indeed, if M? < N < (M + 1)?
N N IN — M?| 2M
- 2| < N oo<_ 0
=Sl < (P N 1 s 7 1 D

So by the lemma
1 N-1
~ X J(X) —>/fd)\5.
n=0

2 Extension

The preceding proposition fails if v is no more absolutely continuous, as seen when v
is a Dirac mass. But if v does not charge polar sets it is possible to integrate with (X,,)
quasi-continuous functions and even a little more. For conveniency we work now with the

torus T° = (R/Z)* instead of the cube.

Proposition 3 Let £ = (&,) be an equidistributed sequence on T® and V,, be a sequence
of i.i.d. random variables with values in T® with common law v which does not charge
sets of Newton capacity zero. Let X, =&, +V,,. Then

(4) (1 Nzlf ) = /T Fd), a.s.)

for every f from T® into R with the following property :

Ve > 0 du,v  quasi-continuous and bounded such that

(5)

u< f<v and [p.(v—u)dr; <e

Proof
a) Let us suppose first that the probability v be a measure of finite energy integral
for the classical Dirichlet structure on 7 and that f be a quasi-continuous version of an
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element of H*(7T*). Then approximating f in H' by functions f,, in H' and continuous,
and denoting 7, the translation by z, give

| <mf = mfov > [ SO || f = fu = Co | f = Ju |l
and that implies that the convolution product f * v is a continuous function on 7.
b) Let us suppose now f be quasi-continuous and bounded and the probability mea-
sure v do not charge polar sets. Then there exist probability measures of finite energy
integrals v, such that v = 3" a,v, , o, >0, Xa, = 1.

Let C, =|| Urv, ||g1 be the energy-norms of the v,’s.

Let € > 0. For each p let us choose a continuous function f, and an open set G, such
that

. &
H fp HOO SH / Hom f= fp outside Gpv Cap(Gp) < o O
Lp
We have »
f*V:Zap(fp*Vp+(f_fp)*Vp)
p=0
but

((F = o) x1al <20 [ oo ea(Gy) x1p <2 f oo Cap(Gp)-Cp = 2| [ lloo ;—p

where e;((,) is the equilibrium 1-potential of G,,.
It follows that f*r is uniform limit of continuous functions and therefore is continuous.

c¢) Under the hypotheses of part b), putting
/’Ln = Tfny

it holds therefore by the equidistribution of (¢,)

1 N-1

X 2 wlh) = [ i

then the same argument that in the proof of proposition 2 shows that

1 N-1

~ n; F(X) = /T Fd), a.s.

d) At last, if f satisfies property (5), we have

N-1 1 N-1
[ wdn, <lime 3 w(X,) < limye 3 f(X0) <
Te =0 N n=0
_ 1 N-1 _ 1 N-1
<Tmw 3 f(X,) <Tme 3 o(X,) = / vd)s
N n=0 N n=0 Ts



almost surely. Hence
1 N-1
lim— 3 £(X) :/fd)\s a.s.
N n=0
O

The functions satisfying (5) can be shown to be the functions which are bounded and
finely continuous at A -almost every point of 7.
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