
A remark on random and equidistributed sequencesNicolas BOULEAULaboratoire de Mathematiques Appliqu�ees UA CNRS 1502ENPC La Courtine - 93167 Noisy-le-Grand CedexIf � = (�n) is an equidistributed sequence on the s-dimensional cube, the average ofthe values of a function f on the sequence � converges to the integral of f , for f Riemannintegrable. We study here the quite natural fact that a slight random perturbation of thesequence � allows to integrate more irregular functions. The notions used are de�ned in[1] and [2].1 Strongly �-distributed sequencesLet � be a probability measure on [0; 1]s; s 2 IN�, equipped with its natural topology.Except what envolves the convolution product, the sequel could be extended to any l.c.d.space.Let (Xn) be a sequence of random variables with values in [0; 1]s de�ned on a probabi-lity space (
;A; IP). \Almost surely", (a.s.), means IP-almost surely. If, with probability1, the sequence (Xn(!)) is �-distributed on [0; 1]s, i.e. if almost surely8f 2 C ([0; 1]s; IR) 1N N�1Xn=0 f(Xn(!))! Z fd�(1)then (Xn) will be said to be almost surely �-distributed.Now, the example of i.i.d. random variables (Xn) with common law �, shows thatsome random sequences have the following stronger property:De�nition 1 A random sequence (Xn) is said to be strongly �-distributed if, for everybounded �-measurable function f from [0; 1]s into IR, 1N N�1Xn=0 f(Xn)! Z fd� a:s:! :(2) That a strongly �-distributed sequence (Xn) be almost surely �-distributed comesfrom the fact that if D is a countable dense subset of C([0; 1]s; IR) such a sequence satis�es 8f 2 D 1N N�1Xn=0 f(Xn)! Z fd�! a:s:1



which implies easily  1N N�1Xn=0 "Xn(!) ! � narrowly ! a:s:Proposition 1 Let (Xn) be a sequence of random variables with values in [0; 1]s. If forevery open set A in [0; 1]s it holds 1N N�1Xn=0 1A(Xn)! �(A) a:s:!(3)then (Xn) is strongly �-distributed.We shall use the following lemma.Lemma 1 Property (3) for open sets implies property (2) for continuous f 0s.Proof. Let f be continuous. We may suppose 0 < f < 1. Thenf�1  "kn; k + 1n "! = Gk+1nGkfor an increasing sequence of open sets Gk. Approximating uniformly up to " the functionf by fK = KXk=1�k1Ak with Ak = Gk+1nGkthe fact that  1N N�1Xn=0 fK(Xn)! Z fKd� a:s:!gives Z fd� � 2" � lim 1N N�1Xn=0 f(Xn) � lim 1N N�1Xn=0 f(Xn) � Z fd� + 2"which shows the lemma.For the proposition, consider a bounded �-measurable function f . By the Lusin pro-perty, for every sequence "k decreasing to zero, there exists a sequence of open sets Gkand a sequence of continuous functions fk such that8k: �(Gk) � "k; f = fk outside Gk; k fk k1�k fk k1 :Let us write 1N N�1Xn=0 f(Xn) = 1N N�1Xn=0 fk(Xn) + 1N N�1Xn=0(f � fk)(Xn):2



By the lemma the following inequalities hold a.s. :lim 1N N�1Xn=0 f(Xn) � R fkd� + k f k1 �(Gk)lim 1N N�1Xn=0 f(Xn) � R fkd� � k f k1 �(Gk);hense a.s. lim 1N NXn=0 f(Xn) = Z fd�.Remark. The property that (2) be satis�ed for continuous functions f is weaker thanthe property (3) for open sets. It is indeed equivalent to the almost sure �-distributionof (Xn). And there exist almost surely �-distributed sequences which are not strongly�-distributed : consider a deterministic equidistributed sequence � = (�n), take Xn = �n,and take f(x) = 1fx:9n�n=xgProposition 2 Let � = (�n) be an equidistributed sequence on [0; 1]s and Vn be a sequenceof i.i.d. random variables with absolutely continuous common law � on IRs. Then thesequence Xn = f�n + Vng is strongly �s-distributed on the cube. (Here fxg means thefractional part of x component by component, and �s is the Lebesgue measure in dimensions).Proof. Let us de�ne absolutely continuous probability measures �n on the cube by�n(A) = ZIRs 1A(f�n + xg)d�(x)for every �s-measurable subset A of [0; 1]s.Lemma 2 For every f Lebesgue measurable and bounded on the cube,limN"1 1N N�1Xn=0 �n(f) = �s(f)Proof. The function g(y) = ZIRs f(fy + xg)d�(x)is continuous and bounded on IRs as convolution product of a function in L1(IRs) by afunction in L1(IRs). Hence1N N�1Xn=0 g(�n)! Z[0;1]s g(y)dy = Z[0;1]s f(y)dyNow, to achieve the proof of the proposition, we use a classical argument.Let ~SN = 1N N�1Xn=0 (f(Xn)� �n(f)) 3



a) It holds ~SN2 ! 0 a:s.Indeed, IP(9N � m1 : j ~SN2j > ") � 1XN=m1 1"2 1N4 N2Xn=1[�n(f2)� (�n(f))2]� 1"2 1Xm1 1N2 k f k21thus limN j ~SN2j � " a.s.b) It holds ~SN ! 0 a.s.Indeed, if M2 � N � (M + 1)2j ~SN � ~SM2j �  jN �M2jM2 +N 2MNM2! k f k1� 4M k f k1! 0:So by the lemma 1N N�1Xn=0 f(Xn)! Z fd�s:2 ExtensionThe preceding proposition fails if � is no more absolutely continuous, as seen when �is a Dirac mass. But if � does not charge polar sets it is possible to integrate with (Xn)quasi-continuous functions and even a little more. For conveniency we work now with thetorus T s = (IR=Z)s instead of the cube.Proposition 3 Let � = (�n) be an equidistributed sequence on T s and Vn be a sequenceof i.i.d. random variables with values in T s with common law � which does not chargesets of Newton capacity zero. Let Xn = �n + Vn. Then 1N N�1Xn=0 f(Xn)! ZT s fd�s a:s:!(4)for every f from T s into IR with the following property :8><>: 8" > 0 9u; v quasi-continuous and bounded such thatu � f � v and RT s(v � u)d�s � "(5)Proofa) Let us suppose �rst that the probability � be a measure of �nite energy integralfor the classical Dirichlet structure on T s and that f be a quasi-continuous version of an4



element of H1(T s). Then approximating f in H1 by functions fn in H1 and continuous,and denoting �x the translation by x, givej < �xf � �xfn; � > j � C� k �xf � �xfn kH1= C� k f � fn kH1and that implies that the convolution product f � � is a continuous function on T s.b) Let us suppose now f be quasi-continuous and bounded and the probability mea-sure � do not charge polar sets. Then there exist probability measures of �nite energyintegrals �p such that � =Pp �p�p ; �p > 0; ��p = 1.Let Cp =k U1�p kH1 be the energy-norms of the �p 0s.Let " > 0. For each p let us choose a continuous function fp and an open set Gp suchthat k fp k1 �k f k1; f = fp outside Gp; Cap(Gp) � "2p:Cp :We have f � � = 1Xp=0�p(fp � �p + (f � fp) � �p)but j(f � fp) � �pj � 2 k f k1 e1(Gp) � �p � 2 k f k1 Cap(Gp):Cp = 2 k f k1 "2pwhere e1(Gp) is the equilibrium 1-potential of Gp.It follows that f �� is uniform limit of continuous functions and therefore is continuous.c) Under the hypotheses of part b), putting�n = ��n�it holds therefore by the equidistribution of (�n)1N N�1Xn=0 �n(f) ! ZTs fd�sthen the same argument that in the proof of proposition 2 shows that1N N�1Xn=0 f(Xn)! ZTs fd�s a:s:d) At last, if f satis�es property (5), we haveZT s ud�s � lim 1N N�1Xn=0 u(Xn) � lim 1N N�1Xn=0 f(Xn) �� lim 1N N�1Xn=0 f(Xn) � lim 1N N�1Xn=0 v(Xn) = ZTs vd�s5



almost surely. Hence lim 1N N�1Xn=0 f(Xn) = Z fd�s a:s:The functions satisfying (5) can be shown to be the functions which are bounded and�nely continuous at �s-almost every point of T s.REFERENCES[1] L. Kuipers and H.N. Niederreiter, Uniform distribution of sequences, Wiley (1974)[2] M. Fukushima, Dirichlet forms and Markov processes, North-Holland (1980)
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