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This year marks the centenary of the birth of Kolmogorov. It is a pleasure for me to
acknowledge this occasion by giving a lecture in connection with his life’s work. My purpose
herein is certainly not to present a whole historical study of Kolmogorov’s output, but rather
provide some remarks on specific mathematical topics in which he played an active role. As
you know, Kolmogorov produced some eight hundred publications encompassing all the main
fields of mathematics: functional analysis, ergodic theory, turbulence, probability theory and
statistics, and logic.

Andrëi Nikoläievitch Kolmogorov

He even delivred five seminal papers in the restricted domain of probability and stochastic
processes foundations between 1931 to 1936, which make him one of the founders of the theory
of continuous-time Markov processes or diffusions1. The subject I would like to discuss pertains
to his famous ”Grundbegriffe der Wahrscheinlichkeitsrechnung”, which partially lies beyond his
main body of mathematical work, in some respects it serves as a manifesto for how to tackle
probability and probabilistic problems within the field of mathematics. I will be providing

1These significant articles are the following:
- Über die analytischen Methoden in der Wahrscheinlichkeitsrecgnung, 1931,
- Beitrage zur Masstheorie, 1933,
- Zur Theorie der stetigen zufälligen Prozessen, 1933,
- Grundbegriffe der Wahrscheinlichkeitsrechnung, 1993,
- Zur Theorie der Markoffschen Ketten, 1936.
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some remarks on axiomatized languages that display the cases of both probability theory and
of error calculus with Dirichlet forms. Based on these two examples, my aim is to emphasize
the importance, in order for a language to be useful, of having an extension tool readily available.

I. A brief history of random sequences theory

In order to draw a comparison with Kolmogorov’s axiomatic theory , it is helpful to explain
what the ”theory of random sequences” has become during the twentieth century. It did indeed
serve an alternative way for incorporating probability into mathematics. Its purpose has been
to describe a sequence of independent samples of a given quantity. In the simplest case, the
theory pertains to samples of a random integer or even a single digit, so as to model the fair
game of heads and tails, in the one-half / one-half perfectly symmetric case2.

I.1 The normal numbers of Borel (1909)

It is now easy, and Emile Borel was already able to make the proof in 1909, that if we
represent a real number over the unit interval [0, 1] by its binary expansion

(a0, a1, . . .) ∈ {0, 1}IN ←→ x =
∞∑

n=0

an
2n+1

∈ [0, 1]

to the independent one-half / one-half distribution of the digits corresponds the Lebesgue
measure on the interval [0, 1].

Emile Borel

As a consequence, for almost every real number x ∈ [0, 1], the asymptotic frequency of any
finite sequence is 1

2
to the power of the sequence length. A real number fulfilling this property

is said to be normal in the sense of Borel.
Now, proving that almost all real numbers are normal is just one step, another would be

to exhibit such a number ! For the number π determining whether it is normal or not consti-
tute a famous unsolved conjecture. Borel actually forwarded an effective, albeit sophisticated,
construction of a normal number.

In 1933 however, Champernowne showed that the sequence obtained by writing the integer
successively in dyadic representation is normal in the sense of Borel:

0 1 10 11 100 101 110 111 1000 1001 1010 1011 1100 1101 1110 1111 10000 ...
2This section is inspired by the very interesting study conducted by Claude Dellacherie entitled \Nom bres

au hasard de Borel à Martin Löf” Gazette des Mathématiciens n011, 1978



       

This clearly displays that the concept of a normal number does not capture the idea of random
sequence very well.

Already back in 1919, Von Mises had proposed an improvement toward the definition a
random sequence, by means of a new concept of “collective”3 which sought to describe a typical
game of heads and tails. The idea is to ask for more than asymptotic averages and to think
of a player gambling only at some random times depending on the evolution of the game : a
sequence of digits is a “collective” if it satisfies the law of large numbers and if any subsequence
obtained by a non-anticipative selection rule satisfies also the law of large numbers. This
interesting approach, which portends the notion of “stopping time”, does nevertheless have the
disadvantage of being difficult to apply in practical terms. A. Wald, one of the founders of
statistics and decision theory, proposed in 1937 the more precise notion of “collective relatively
to a family of rules”.

R. Von Mises A. Wald A. Church

Yet it would take the famous logician A. Church in 1940, with the first contribution from the
field of logic into the debate, to propose an “absolute notion of collective” that uses the set
of all effective non-anticipative rules as regards recursive functions theory. It thus appeared
that the goal has been achieved by applying this new theory of effectiveness stemming from the
recent works of the logicians in the 1930’s (Gödel, Turing, Church).

Over this same period however, just prior to the Second World War, unsuspected new
difficulties arose concerning the notion of “collective”. In his work Etude critique de la notion
de collectif (1939), Jean Ville demonstrated that random sequences possess some probabilistic
properties that a “collective” may not always fulfill. A“collective” does not generally feature
the right magnitude of fluctuations. In his argument Jean Ville uses the modern concept of
mathematical martingale whose properties would be improved by J. L. Doob in particular
during the 1950’s. By transfering the term martingale from gambling to mathematics Ville
added a spark to this notion and likely contributed to its subsequent importance.

We would have to wait until the 1960’s to obtain a satisfactory answer to the question of
random sequence. This answer came from mathematical logic and is owed to Martin Löf4.
Roughly speaking, a random sequence successfully passes all effective statistical randomness
tests. For a real number in [0, 1], being random in the sense of Martin Löf signifies that it does
not belong to any effective Lebesgue negligible set in [0, 1]. Such a number cannot be given by
an algorithm, it is random in the sense of Church yet avoids Ville’s critiques.

Although quite fascinating, the theory of random sequences remained useless for proba-
bilists. The outstanding twentieth century development of probability theory, which began as
a subsidiary field and became one of the primary domains of applied and even pure mathemat-
ics, is based on another approach : the construction of a language for handling probabilistic
calculations.

3\Grundlagen der Wahrscheinlichkeitsrechnung” Math. Zeitung 5, 52-99, 1919.
4\The definition of a random sequence” Information and control 9, 602-619, (1966).



          

We would like to examine the reason behind this language’s fruitfulness.

II. Axiomatization of Kolmogorov and σ-additivity

The paper entitled Grundbegriffe der Wahrscheinlichkeitsrechnung is an appeal to include
probabilistic calculus into measure theory. Kolmogorov does not presume this idea is new,
instead, he cites several authors who have already applied Lebesgue measure theory for prob-
abilistic investigations, in particular Borel, Fréchet, Steinhaus, Lévy. He did proposes however
new arguments, which proved to be highly valuable for subsequent research : the construc-
tion of probabilities on infinite dimensional spaces and the definition of conditional laws and
conditional expectations using the Radon-Nikodym theorem.

M. Fréchet H. Steinhaus P. Lévy

He did not consider axiomatization as a pure formal system, but rather as a language that
makes sense and that allows conducting thought and reasonning. In remarking that “every
axiomatic theory admits, as is well known, an unlimited number of concrete interpretations”5,
he emphasizes the intuitive interpretation of his axiomatization. He went on to display a dic-
tionary between random events and sets:

Theory of sets Random events
1. A and B do not intersect, i.e. AB = 0 1. Events A and B are incompatible
2. AB . . . N = 0 2. Events A,B, . . . , N are incompatible
3. AB . . . N = X 3. Event X is defined as the simultaneous

occurrence of events A,B, . . . , N
4. A ∪ B ∪ . . . ∪N = X 4. Event X is defined as the occurence

of at least one of the events A,B, . . . , N
5. The complementary set Ac 5. The non-occurence of event A
6. A = 0 6. Event A is impossible
7. A = E 7. Event A must occur
8. Disjoint decomposition of E 8. Possible results A1, A2, . . . , An
A1 + A2 + · · ·+ An = E of an experiment
9. B is a subset of A 9. From the occurence of event B
B ⊂ A follows the inevitable occurence of A

For the axioms, the five first ones are elementary: Let F a set of subsets of a set E.
1. F is a field of sets
2. F contains the set E
3. To each set A in F is assigned a non negative real number P (A), called the probability

of event A

5We are in 1933 here and the works of Löwenheim and Skolem (1915-1920) are already known, which prove
the existence of a countable model for any consistent theory.



         

4. P (E) equals 1
5. If A and B have no elements in common, then P (A+B) = P (A) + P (A)

Kolmogorov underscores the importance of the sixth axiom : “In all future investigations we
shall assume that besides axioms 1 through 5, another axiom holds true as well :

6. For a decreasing sequence of events

A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · ·

in F for which ∩nAn = 0 the following relation holds limn P (An) = 0”.

This axiom of σ-additivity implies the probability P to be a measure in the sense of Lebesgue
and Borel, which then embeds probability theory into measure theory :

probability ←→ measure
event ←→ measurable set

random variable ←→ measurable function
expectation ←→ integral

independence ←→ product of measurable spaces
conditional expectation ←→ Radon-Nikodym derivative

Let’s remark that as late as 1938, the philosopher Karl Popper, whose main education
stemmed from the field of psychology, was not convinced of the interest in placing probability
theory within the framework of measure theory. Even in 1955, he still seemed proud to em-
phasize that a theory with only the first five axioms is more general. He wrote “Kolmogorov’s
system can be taken, however, as one of the interpretation of mine”6.

Karl Popper

We know clearly now, thanks to the development of stochastic analysis over the twentieth
century, that σ-additivity is the key tool making this language expansive. It allows defining the
probability of events or the expectation of functions that are not given by simple closed formulae,
but rather by limits. This fact is of absolutely prime importance since several mathematical
objects are defined by limits and the methods for defining these converging sequences of objects
are not a priori restricted.

This paves the way to the study of stochastic processes : if we know the probabilistic
properties of a finite number of coordinates Xn on a product space, without the σ-additivity
we cannot conclude anything about functions depending upon an infinite number of Xn’s.

6K. Popper, The logic of Scientific Discovery, Hutchinson, 1972, p319.



    

Thanks to σ-additivity, connections with functional analysis may be developed, thereby
giving rise to probabilistic interpretations. For example, potential theory is connected with
Markov processes theory and martingales theory. Let’s recall that J. L. Doob proved his exten-
sion of Fatou’s lemma at the boundary from conical limits to non-tangential limits, first using
a probabilistic argument and then, one year later, by means of a purely analytical approach.

III. Error calculus with Dirichlet forms

I would now like to present a more recent theory, in some repect a “cousin” to probability
theory, which also possesses a means of extension providing it with remarkable power and fruit-
fulness. I have in mind the theory of Dirichlet forms with its interpretation in terms of errors.
I shall begin with the ideas of Gauss about errors which are the elementary bases of the theory.

III.1. Gauss formulae for the propagation of errors

The ideas of Gauss were forwarded at the beginning of the XIXth century, at a time when
several mathematicians were concerned with measurements errors, especially in the field of
celestial mechanics. First of all, Legendre (Nouvelles méthodes pour la dtermination des orbites
des planètes, 1805) proposed the least squares principle to choose the best value of a quantity
obtained by several different measures.

F. Gauss in 1803 Legendre Laplace

Secondly, Gauss himself (Theoria motus coelestium, 1809) elaborated the famous argument
proving (with some implicit hypotheses) that once it has been assumed the arithmetic average
is the best value to retain from among several results of quantity measurements, then, the
probability law of the error is necessarily the normal law. This argument has been made
more rigorous by Poincaré at the end of the century. Thirdly, Laplace (Théorie analytique
des probabilités, 1811) demonstrated how the least squares method is usefull for solving linear
systems when the number of equations does not agree with the number of unknowns.



        

F. Gauss in 1828 H. Poincaré

Within this same context, a few years later, Gauss became interested in the propagation of
errors through calculations (Theoria combinationis, 1821) and stated the following problem :

Given a quantity U = F (V1, V2, V3, . . .) function of the erroneous quantities V1, V2, V3, . . .,
compute the potential quadratic error to expect on U with the quadratic errors σ2

1, σ
2
2, σ

2
3, . . . on

V1, V2, V3, . . . being known and assumed small and independent.
His answer is the following formula :

σ2
U = (

∂F

∂V1

)2σ2
1 + (

∂F

∂V2

)2σ2
2 + (

∂F

∂V3

)2σ2
3 + · · ·(1)

He also provides the covariance between an error on U and an error on another function of the
Vi’s.

Formula (1) displays a property which makes it much to be preferred in several respects to
other formulae encountered in textbooks throughout the XIXth and XXth centuries. It features
a coherence property. With a formula such as

σU = | ∂F
∂V1

|σ1 + | ∂F
∂V2

|σ1 + | ∂F
∂V3

|σ3 + · · ·(2)

errors may depend on the way in which the function F is written. Already in dimension 2, we
can note that if the indentity map were written as the composition of an injective linear map
with its inverse, errors would be increased, which is hardly acceptable.

This difficulty does not arise in Gauss’ calculus. Introducing the differential operator

L =
1

2
σ2

1

∂2

∂V 2
1

+
1

2
σ2

2

∂2

∂V 2
2

+ · · ·

and supposing the functions to be smooth, we remark that formula (1) can be written as

σ2
U = L(F 2)− 2FLF

and coherence follows from the transport of a differential operator by an application. If u and
v are regular injective mappings, then, in denoting the operator ϕ→ L(ϕ ◦ u) ◦ u−1 by θuL, we
obtain θv◦uL = θv(θuL).

The errors on V1, V2, V3, . . . are not necessarily supposed to be independent nor constant and
may depend on V1, V2, V3, . . . Considering a field of positive symmetric matrices σij(v1, v2, . . .))
on IRn representing the conditional variances and covariances of errors on V1, V2, V3, . . . given
the values v1, v2, v3, . . . of V1, V2, V3, . . ., then the error on U = F (V1, V2, V3, . . .) given the values
v1, v2, v3, . . . of V1, V2, V3, . . . is

σ2
U =

∑

ij

∂F

∂V1

(v1, v2, v3, . . .)
∂F

∂V2

(v1, v2, v3, . . .)σij(v1, v2, v3, . . .)



            

which depends solely on F as mapping. This is the general form of the error calculus à la Gauss.

III.2 Error propagation through calculations : the error calculus based on Dirichlet forms

The error calculus of Gauss contains the limitation of supposing that both the function
F and the random variables V1, V2, V3, . . . are explicitely known. In probabilistic modelling
however, we are often confronted by a situation in which all the random variables, functions
and covariances matrices are given by limits. For such situations, a means of extension thereby
becomes essential.

Let the quantities be defined on the probability space (Ω,A, IP). The quadratic error on
a random variable X is itself random, let us denote it Γ[X]. Intuitively speaking we still
assume that the errors are infinitely small, even though this assumption does not appear in
the notation. It is as though an infinitely small unit were available for measuring errors fixed
throughout the entire problem. The extension tool lies in the following : we assume that if
Xn → X in L2(Ω,A, IP) and if the error Γ[Xm −Xn] on Xm −Xn can be made as small as we
wish in L1(Ω,A, IP) for m,n large enough, then the error Γ[Xn −X] on Xn −X goes to zero
in L1.

This idea can be interpreted as a reinforced coherence principle, it means that the error
on X is attached to X and furthermore, if the sequence of pairs (Xn, error on Xn) converges
suitably, it converges necessarily to a pair (X, error on X).

The axiomatization of these idea involves the notion of closed quadratic differential form or
Dirichlet form :

An error structure is a term
(Ω,A, IP, ID,Γ)

where (Ω,A, IP) is a probability space, satisfying the following properties
1) ID is a dense subvector space of L2(Ω,A, IP)
2) Γ is a positive symmetric bilinear map from ID × ID into L1(IP) fulfilling the functional

calculus of class C1 ∩ Lip, which means that if u ∈ IDm, v ∈ IDn, for F and G of class C1 and
Lipschitz from IRm [resp. IRn] into IR, one has F ◦ u ∈ ID, G ◦ v ∈ ID and

Γ[F ◦ u,G ◦ v] =
∑

ij

F ′i ◦ u G′i ◦ v Γ[ui, vj] IP− a.s.

3) the bilinear form E [f, g] = IE[Γ[f, g]] is closed, i.e. ID is complete under the norm

‖.‖ID = (‖.‖2
L2 + E [.])1/2.

(then the form E is a Dirichlet form.)

The main benefit of the extension tool is that error theory based on Dirichlet forms extends
to the infinite dimension, which allows for error calculus on stochastic processes (especially on
Brownian motion but also on the Poisson space), provides several new results on stochastic dif-
ferential equations, and gives applications to fluctuations in physics and to sensitivity analysis
in finance7.

7See the books of Malliavin, Fukushima, Ikeda-Watanabe, Bismut, Bichteler-Gravereau-Jacod, Watanabe,
Strook, Bouleau-Hirsch, Ma-Röckner, Nualart, Øksendal & al., Ustunel-Zakai, etc. and the papers of several
hundred of researchers.
Regarding the interpretation in terms of error propagation, see N. Bouleau, Error Calculus for Finance and
Physics, the Language of Dirichlet Forms, De Gruyter, 235p, 2003.



         

IV. Languages with extension tools and Richard’s paradox

In comparing Kolmogorov’s axiomatic theory of probability with the random sequences
theory, we have emphasized for the former

- the presence of a language (syntax and semantics)
- a powerful extension tool yielding, in some sense, risky results.
This may be placed in analogy with the language of Analysis that handles real numbers.

We know, indeed, the existence of 2ℵ0 real numbers, although only ℵ0 will ever be indicated
with precision. This is the situation highlighted by Richard’s paradox (1905).

Jules Antoine Richard (1862-1956)

The paradox can be stated as follows :
Let’s write all of the pairs using the 28 characters ( the 26 letters, the space and the comma

to separate words) in alphabetic order; then the triples, and so forth, all finite sequences. Every
definition of a real number will appear in the list.

Let’s cross out all the sequences which are not definitions of real numbers.
Let u1 be the real number defined by the first remaining definition;
u2 the one defined by the following definition;
u3 the one defined by the third one;
and so forth.
We thus obtain all the real numbers defined by finitely many words, written in a particular

order. The number a given by the definition “the number without entire part, each decimal of
which immediately follows the decimal of same rank of the number of same rank in the sequence
(un), the zero being considered as following the numeral nine” should be in the list, but cannot
be equal to any number un.

Mathematical logic is capable, of course, of overcoming the apparent contradiction in this
paradox. Nevertheless, a true phenomenon has indeed been highlighted : there are 2ℵ0 real
numbers, we dont know how large this cardinal 2ℵ0 actually is, and only ℵ0 real numbers will
ever be precisely defined.

In such a situation, we have opted for Analysis a language with an extension tool : the
Cauchy criterion. This strategy allows handling real numbers defined by limits regardless of
the construction of the used convergent sequence. This tool has then been carried from the
real case to the functional case by the notions of Hilbert space and Banach space which are
certainly ones of the most powerful concepts of XXth century Analysis.


