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Abstract. Equipping the probability space with a local Dirichlet form with square field opera-
tor I and generator A allows to improve Monte Carlo simulations of expectations and densities
as soon as we are able to simulate a random variable X together with I'[X] and A[X]. We give
examples on the Wiener space, on the Poisson space and on the Monte Carlo space. When X
is real-valued we give an explicit formula yielding the density at the speed of the law of large
numbers. To cite this article: N. Bouleau, C. R. Acad. Sci. Paris, Ser. I ... (2005).
Résumé. Nous montrons que, dans les situations ou l'espace de probabilité est équipé d’une
forme de Dirichlet locale avec carré du champ I' et générateur A, la possibilité de simuler une
variable aléatoire X ainsi que I'[X] et A[X] permet d’accélérer le calcul de I'espérance de X
et de sa densité. Nous donnons des exemples dans les cas de 'espace de Wiener, de 1'espace
de Poisson et de I'espace de Monte Carlo. Lorsque X est a valeurs réelles nous donnons une
formule explicite permettant d’obtenir la densité a la vitesse de la loi des grands nombres. Pour
citer cet article : N. Bouleau, C. R. Acad. Sci. Paris, Ser. I ... (2005).

1 Introduction

The efficiency of Dirichlet forms is known in order to obtain existence of densities under weak
hypotheses (cf [3]). We show here that they are still usefull for the computation of such densities.
Our framework is an error structure (2, A, IP,ID,T"), i.e. a probability space equipped with a
local Dirichlet form (£,ID) admitting a square field operator I' (cf [2],[3]). The associated
L2-generator is denoted (A, DA).

We consider a random variable X € DA such that X, I'[X] and A[X] are simulatable.

Example 1. Wiener space.
Let us consider a stochastic differential equation (sde) defined on the Wiener space equipped
with the Ornstein-Uhlenbeck error structure (cf [2],[3])
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By the functional calculus for the operators I' and A, if the coefficients are smooth, the triplet



(X4, I[Xy], A[X}]) is a diffusion, solution to the equation
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Denoting Y; the column vector (X, T'[X,], A[X;]) this equatlon writes Y; = Yj +f0 (Y s )dBs+
J§ b(Ys, s)ds and applying the Euler scheme with mesh £ on [0,T] : Y, = Yo+ /3 (Y[n_s, - 1\ dB,+
Jab(Yn ”S])ds yields a process ;" = (X7, (T[X])7, (A[X])?)" for which it is easy to verify
that F[Xt”] = ([[X])) and A[X]'] = (A[X])}"

By known results (cf [1] [4] [5]) in order to compute the density of X7, we may approximate

it by the solution X7 of the Euler scheme. Thus, we have then to simulate X7 in a situation
where we are also able to simulate I'[X%] and A[X7].

Example 2. Poisson space.

Let (IRY, B(IRY), j1,d, ) be an error structure on IR?, (a,Da) its generator. Let N be
a Poisson point process defined on (€, A,IP) with state space R? and intensity measure p.
(Q, A, IP) may be equipped with a so-called “white” error structure (2, A, 1P, ID,T) (cf [2]
with the following properties : if h € Da then N(h) € DA, I'|N(h)] = N(vy[h]) and A[N(h)] =
N(a[h]).

In order to simulate N(§) we have only to draw a finite (poissonian) number of i.i.d. random
variables with law p so that we are indeed in a situation where N(h), '[N (h)], and A[N(h)]
are simulatable.

Example 3. Monte Carlo space.

Let X = F(Uy, Uy, ...,Upn,y...; Vo, Vi,...,V,,...) be arandom variable defined on the space
([0, 11N, B([0, 1]N), dz™) x ([0, 1]N, B([0, 1]%), d=™) where the U; are the coordinates of the first
factor with respect to which X is supposed to be regular, V; the ones of the second factor with
respect to which X is supposed to be irregular or discontinuous (rejection method, etc.).

Let us put on the U; the following error structure

([0, 1%, B([0,1]Y), d=™, D, T) = ([0,1], B([0, 1]), d, d, 7)™
where (d, ) is the closure of the operator v[u|(z) = 22(1 — z)*u*(z) for u € C*([0,1]).
Then under natural regularity assumptions, we have T'[X] = 3252, F/2U?(1 — U;)?. and

A[X] = S (GFIUEL = U + U1 = U)(1 = 207)

so that X, I'[X] and A[X] are simulatable.

2 Diminishing the bias

Let (2, A4,IP,ID,I') be an error structure. For X € (DA), var[X] denotes the covariance
matrix of X, A[X] the column vector with components (A[X1],..., A[Xq4]), [[X] is the matrix

I'[X;, X;] and |/L'[X] denotes the positive symmetric square root of I'[X].



We follow the idea that the random variable X + ¢A[X] + \/e,/L[X]| G where G is an exo-
geneous independent reduced Gaussian variable, has almost the same law as X. Starting from
the fundamental relation of the functional calculus on A, an integration by parts argument
gives the following lemma.

Lemma 2.1 Let X € (DA)?. we suppose that X possesses a conditional density n(x,~,a) given
L[X]=7 et A[X]=a such that x +— n(z,v,a) be C* with bounded derivatives. Then Yz € R?

E[—(A[X])'V.n(x, L[X], A[X]) + %trace (L[X].Hess,n) (x, L[X], A[X])] = 0.

Theorem 2.2 Let g be the density of the normal law. Let X be as in the preceding lemma with
density f, the conditional density n(x,v,a) being C* bounded with bounded derivatives. When
e — 0, the quantity

L (Blg(e — X — cAIX] <TIX])] - ()

has a finite limit equal to

%]E[(A[X})t(HeSSzn)(%L[X],A[X])A[X]— > ALY, Xy, 0, (v, LIXT, A[XT)].

nwiwjxk =
irj k=1
Proof. If we write IE[g(x — X — cA[X],el[X])] = [ u(dy,da) [ g(z —y —ea,ev)n(y, v, a)dy
= [ p(dy,da)En(x — ea — \/e\/7G, 7, a) where G is an IR?-valued reduced Gaussian variable,
and if we expand with respect to /¢ and take the expectation, terms in /¢ and &4/ vanish
because G and G* are centered and the term in ¢ vanishes also thanks to the lemma. This gives

the result.
About the variance, we obtain

Proposition 2.3 Let X satisfying the assumptions of the lemma and such that (detL[X])’% €
L', then

n(z, L[X], A[X])
(47)%/2, [detD[X]

lim e Rg? (r— X —eA[X],eL[X]) = lim e varg(r— X —e A[X],eL[X]) = E [

The quantity Eg(z — X — ¢A[X],e['[X]) is obtained by simulation with the law of large
numbers, so that the approximation f of the density f of X is

1 N
=~ Z — e(A[X])n, e(L[X])n)

where the indices n denote independent drawings. The preceding results show that, with
respect to the usual kernel method, the speed, in the sense of the L?-norm, is the same as if
the dimension was divided by 2.

3 Direct formulae

In the case where X is real-valued, if in addition to X, A[X], '[X] we are able to simulate
I'[X, %}, it is possible to obtain the dentity of X at the speed of the law of large numbers thanks



to the following formulae :

Theorem 3.1 a) If X € DA with I'[X] € ID and I'[X] > 0 a.s. then X has a density f which
possesses an l.s.c. version f given by

TR : 1 2A[X]
flx) = 151ng §]E <s1gn(x — X)(T'[X, g—l—F[X]] + €—|—F[X])> :

b) If in addition =— € ID, then X has a density f which is absolutely continuous and given by

Iz]
1 24[X] >> |

1
rx! T T

fr) = L (sign<x — X)X,

The proof is based on the relation

r'[X] 1 2A[X]

valid for any C2-function ¢ with bounded derivatives which comes from the functional calculus
using the general relation E[u,v] = — < Afu],v > Vu € DA Vv € ID, and then applying it with

© = /A2 + (y — x)? in order to get the monotone convergence result.

Under the hypotheses of theorem 3.1, as soon as G € ID N L, there are similar formulae
for conditional expectations IE[G|X = z] :

F@)E[GIX = 2] = %]E <sign(m _xyrpx, =& 4 2GAK] ))

PSSP

Let us finally remark that in these formulae, the factor on the right of sign(z — X)) is centered
and a variance optimisation may be performed thanks to an arbitrary deterministic function
as done in [4] where direct formulae similar to those of section 3 are given in the case of the
Wiener space involving Skorokhod integrals instead of Dirichlet forms.
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