Error calculus and regularity of Poisson functionals:
the lent particle method.
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Abstract

We propose a new method to apply the Lipschitz functional calculus of local Dirichlet
forms to Poisson random measures.

Résumé

Calcul d’erreur et régularité des fonctionnelles de Poisson : la méthode de
la particule prétée. Nous proposons une nouvelle méthode pour appliquer le calcul
fonctionnel lipschitzien des formes de Dirichlet locales aux mesures aléatoires de Poisson.

1 Notation and basic formulae.

Let us consider a local Dirichlet structure with carré du champ (X, X,v,d,~) where
(X, X,v) is a o-finite measured space called bottom-space. Singletons are in X and v is
diffuse, d is the domain of the Dirichlet form e[u] = 1/2 [ y[u]dv. We denote (a,D(a))
the generator in L?(v) (cf. [3]).

A random Poisson measure associated to (X, X', v) is denoted N. 2 is the configuration
space of countable sums of Dirac masses on X and A is the o-field generated by N, of law
P on Q. The space (2, A, P) is called the up-space. We write N(f) for [ fdN. If p € [1,00]
the set {eNU) : f real, f € L' N L2(v)} is total in LA(Q, A,P). We put N = N —v. The
relation E(Nf)? = [ f2dv extends and gives sense to N(f), f € L*(v). The Laplace
functional and the differential calculus with v yield
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2 Product, particle by particle, of a Poisson random
measure by a probability measure.

Given a probability space (R, R,p), let us consider a Poisson random measure N ® p
on (X x R,X x R) with intensity v X p such that for f € L'(v) and g € L'(p) if
N(f)=>_ f(x,) then (N ® p)(fg) =>_ f(x,)g(r,) where the r,’s are i.i.d. independent
of N with law p. Calling (Q, A, I@’) the product of all the factors (R, R, p) involved in the
construction of N ® p, we obtain the following properties : For an A4 x X x R-measurable
and positive function F, I@fF(w,:t,r)N ® p(dxdr) = [ F dpdN P-as.

Let us denote by Py the measure P(dw)N,(dz) on (2 x X, A x X). We have

Lemma 2.1 Let F' be A x X x R-measurable, F € L*(Px X p) and such that R
[ F(w,z,r) p(dr) =0 Py-a.s., then [ F d(N®p) is well defined, belongs to L*(P xP)
and

(2) E(/F d(N @ p))? = /F2 dNdp  P-a.s.

The argument consists in considering F;, satisfying
E [ F? dvdp < 400 and E [([ |F,| dv)*dp < +oco and then using the relation
E([ F, d(N ® p))? = ([ FudpdN)? — [([ Fudp)?dN + [ F2dpdN P-a.s.

3 Construction by Friedrichs’ method and expression
of the gradient.

a) We suppose the space by d of the bottom structure is separable, then a gradient exists
(cf. [3] Chap. V, p.225 et seq.). We denote it b and choose it with values in the space
L2(R,R,p). Thus, for u € d we have u> € L*(v x p), v[u] = [(u’)?dp and b satisfies the
chain rule. We suppose in addition, what is always possible, that b takes its values in the
subspace orthogonal to the constant 1, i.e.

(3) Yued /ub dp=0 v-as.

This hypothesis is important here as in many applications (cf. [2] Chap V §4.6). We
suppose also, but this is not essential (cf. [3] p44) 1 € djp 7[1] = 0 so that 1° = 0.
b) We define a pre-domain Dy dense in LZ(P) by

Do={> Ne™im e N\, € C, f, € D(a) N L' (v)}.

p=1

¢) We introduce the creation operator inspired from quantum mechanics (see [7], [8],
9], [1], [5],[6] and [10] among others) defined as follows

(4) el (w) equals w if z € supp(w), and equals w + ¢, if z ¢ supp(w)
so that
(5) ef(w)=w Nyae r and &f(w)=w+e, rv-ae x



This map is measurable and the Laplace functional shows that for an A x X-measurable
H >0,

(6) ]E/s*Hdz/:IE/HdN.

Let us remark also that by (5), for F' € L2(Py X p)
(7) /5+F d(N © p) = /Fd(N ©p) PxPas

d) We defined a gradient £ for the up-structure on Dy by putting for F' € Dy
(8) F? = / (e"FY d(N @ p)

this definition being justified by the fact that for P-a.e. w the map y — F(e} (w)) — F(w)
is in d, et F belongs to L>(P) ® d algebraic tensor product, and (¢ F — F)’ = (et F)’ €

L2(]P)N X ,0)
For F,G € Dy of the form
F=2 VI = (N (), N(fw) G = g™ = W(N (1), N(gn)
q
we compute using (2), (3) and (7) (in the spirit of prop. 1 of [9] or lemma 1.2 of [6])
(9) BFIGE] = 3 Afige N =Ny £, g
P

and we have

Proposition 3.1 If we put Ay[F]=3_ A, NI (N (alf,]) — SN(YIS,))) it comes
(10) E[Ao[F|G] = ——EZ ' UIN (Y[, 94))-

In order to show that Ay[F] does not depend on the form of F', by (10) it is enough to
show that the expression > @ W' N(v[fp, g4]) depends only on F and G. But this comes
from (9) since F* and G* depend only on F and G.

By this proposition, Ag is symmetric on Dy, negative, and the argument of Friedrichs
applies (cf [3] p4), Ay extends uniquely to a selfadjoint operator (A, D(A)) which defines
a closed positive (hermitian) quadratic form £[F] = —E[A[F]F]. By (10) contractions
operate and (cf. [3]) £ is a Dirichlet form which is local with carré du champ denoted I'
and the up-structure obtained (2, A, P, D, I") satisfies

(11) vfed, N(f)eD and T[N(f)] = N(y[f])

The operator  extends to a gradient for I' as a closed operator from L?(P) into L*(P x
P) with domain D which satisfies the chain rule and may be computed on functionals

O(N(f1),...,N(fm)), ® Lipschitz and C' and their limits in I (as done in [4]).
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Formula (8) for § can be extended from D, to D. Let us introduce the space D closure
of Dy ® d for the norm

1Hlp = (E / AH(w, ))(z) N(dz)"? + E / |H(w,2)|€(x) N(dz)

where ¢ > 0 is a fixed function such that N (&) € L*(P).

Theorem 3.1 The formula F* = [(¢*F)" d(N ® p) decomposes as follows

2

FeD &5 FeD 2 (7F) € L3(Py x p) Fte LA(P x P)

where each operator is continuous on the range of the preceding one, L(Py X p) denoting
the closed subspace of L*(Py X p) of p-centered elements, and we have

(12) T[F] = B|F*P = /7[5+F] dN.

4 The lent particle method.

Let us consider, for instance, a real process Y; with independent increments and Lévy
measure o integrating 22, Y; being supposed centered without Gaussian part. We assume
that o has an l.s.c. density so that a local Dirichlet structure may be constructed on
R\{0} with carré du champ v[f] = 22f?(x). If N is the random Poisson measure with
intensity dt x o we have fo dY [ Log(s (s)h(s)zN(dsdz) and the choice done for ~

gives fo fo h2(s sfor he L
the random varlable V= fo )dY where ¢ is Lipschitz and C!, we have two ways:

2 (dt). In order to study the regularity of
a) We may represent the gradlent 1 as Ytﬁ = By}, where B is standard auxil-
iary mdependent Brownian motion. Then by the chain rule V* = fo ¢'( Y, )*dY, +

fo _)dByy), now, using (Y;_)* = (Y})_, a classical but rather tedious stochastlc com-
putatlon ylelds

(13) [[V] = BV¥] = 3,0, AY2(f, ' (Yoo )dYs + o(Ya))

Since V has real values the energy image density property holds, and V has a density as
soon as I'[V] is strictly positive a.s. what may be discussed using the relation (13).

b) Another more direct way consists in applying the theorem. For this we define b by
choosing 7 such that fol n(r)dr =0 and fol n?(r)dr = 1 and putting f°> = xf'(z)n(r).

1°. First step. We add a particle (o, x) i.e. a jump to Y at time o with size x what
gives
eV =V = p(Ya)u + [, (p(Ye + ) — oY, ))dY,

20. V" =0 smce V does not depend on x, and
(etV) = (o(Yo )z + f (Yoo 4+ 2)2dY,)n(r)  because 2° = xn(r).

3°. We compute y[etV] = [(e"V)2dr = (o(Yo_ )z + f '(Yie + x)adY)?



4°. We take back the particle we gave, because in order to compute f v[eTV]dN the
integral in N confuses etw and w.

That gives [y[e*V]AN = [(p(Ya-) + fi, ¢/ (Ya-)dY,)22? N(dadz) and (13).

We remark that both operators F + ¢*F, F + (¢tF)” are non-local, but instead
F [(etF)d(N ®p) and F — [~[etF]dN are local : taking back the lent particle
gives the locality.
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