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Introduction to Fire�ghting

The Fire�ghter problem (Hartnell, 1995):

models propagation of a �re in a network

(or disease in a population, virus in computer network, etc)

• A graph, for us: a tree T with root r

• A �re starts at r

• At each time step

� 1 new vertex can be protected

� The �re spreads

• Objective: maximize the number of

saved vertices

r

t = 0
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An Integer Programming formulation

• Level: set of vertices with same distance to the root

• Weight: if v protected, wv vertices saved

r

�rst level

second level

third level(5)

(1) (3)

(1)
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An Integer Programming formulation

Decision variables: xv = 1 i� v is protected

max
∑

v∈V \{r}

xvwv

s. t. xu + xv ≤ 1 ∀ u, v on same level (1)

xu + xv ≤ 1 ∀ u ancestor of v (2)

xv ∈ {0, 1}

(1): 1 vertex protected per level

(2): a vertex already saved must not be protected
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Solving the Fire�ghter problem

• Fire�ghter problem is NP-hard on trees (Finbow et al., 2009)

• We are interested in methods for solving it

Di�erent approaches:

• Polynomial algorithms in special cases

• Methods based on integer programming

• Lagrangian relaxation
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Outline

1. Fire�ghting and Stable Set problems

2. Perfect graphs: a polynomial case for the Fire�ghter

problem

3. Facets of polyhedra: description of the Fire�ghter

polytope

4. Numerical resolution through Lagrangian relaxation
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Fire�ghting and Stable Set

problems



Stable Sets

Stable set

Given a graph G = (V ,E ), a subset of vertices S ⊂ V is stable if

∀u, v ∈ S , u and v are not adjacent, i.e., (u, v) /∈ E .

• Classical problems: stable set of maximum size, of

maximum weight
∑

v∈S wv

• Max Stable Set is NP-complete; even hard in practice with

a thousand vertices.
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Applications of Stable Set problems

• Task scheduling: given a set of jobs with begin/end date,

�nd the max number of tasks that can be scheduled on a

single machine.
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Applications of Stable Set problems

• Pilot-Copilot allocation: given a set of persons speaking

di�erent languages, �nd maximum number of pairs speaking

the same language.
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Fire�ghter and Stable Set

IP for stable set IP for Fire�ghter

max
∑
v∈V

xvwv max
∑

v∈V\{r}

xvwv

s. t. xu + xv ≤ 1 ∀ (u, v) ∈ E s. t. xu + xv ≤ 1 ∀ u, v on same level

xu + xv ≤ 1 ∀ u ancestor of v

xv ∈ {0, 1} xv ∈ {0, 1}

Observation

The Fire�ghter problem is a Max Weight Stable Set problem in

an appropriate graph, called Fire�ghter graph, with weights w .
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Perfect (Fire�ghter) graphs



Introduction to perfect graphs

G = (V ,E ) is a graph.

• Induced subgraph G [X ] of G : take a subset of vertices X

and all edges of G between them.

• Clique-number ω(G ): size of the biggest clique in G , i.e.,

induced subgraph where all edges exist.

• Chromatic number χ(G ): minimum number of colors needed

in a valid coloring of G . In a valid coloring, every vertex has

one color and every color form a stable set.

ω(G ) = 3

Valid coloring with 3 colors: χ(G ) ≤ 3

Always ω(G ) ≤ χ(G )

Hence χ(G ) = 3
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Perfect graphs

De�nition (Claude Berge, 1960)

A graph G is perfect if for every induced subgraph H of G , the

equality χ(H) = ω(H) holds.

Are they perfect?

• A clique?

• A cycle of length 5?
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The Strong Perfect Graph Theorem

SPGT

A graph is perfect if and only if it contains no induced odd hole

nor odd antihole.

• Conjectured by Berge in 60s, remained open for 40 years

• Proven by Chudnovsky, Robertson, Seymour and Thomas in

2002-2006

Hole of length 7 Antihole of length 7
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Polyhedral characterization of perfect graphs

Another characterization of perfect graphs is on their Stable Set

polytope (in next section).

[Grötschel, Lovász, Schrijver, 1988]

The Max Weight Stable Set problem can be solved in polynomial

time in perfect graphs.

• Reminder: Fire�ghter ⇐⇒ Max Weight Stable Set in

Fire�ghter graphs

• Perfect Fire�ghter graphs are a polynomial case

• But polynomiality is provided by big theoretical result:

no specialized algorithm

• Our main result: a combinatorial polynomial algorithm in

this case.
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The Stable Set polytope of

Fire�ghter graphs



Linear Programming vs. Integer Programming

Continous relaxation of the IP: linear program obtained by dropping

integrality constraints.

max
∑
v∈VG

xvwv

s. t. xu + xv ≤ 1 ∀ (u, v) ∈ EG

xv ∈ {0, 1}

• Linear Programming is easy:

simplex, integer points methods; polynomiality.

• Integer Programming is hard:

ex. NP-hard for Stable Set problem.
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Strengthening a continuous relaxation

• Objective for solving IPs: get continuous relaxation as close

as possible to convex hull of integer points

• Adding cuts given by valid inequalities

• The "strongest" valid inequalities are facets
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Describing the Stable Set polytope

• Stable set polytope:

STAB(G ) = conv{x ∈ {0, 1}|V | | xu + xv ≤ 1 ∀(u, v) ∈ E}

• Polytope of continuous relaxation

P = {x ∈ R|V |+ | xu + xv ≤ 1 ∀(u, v) ∈ E}

In most cases, STAB(G ) ( P

• Finding facets of the Stable Set polytope is a major

problem in combinatorial optimization

• Useful in practice to design e�cient algorithms

• Results in graph classes, e.g., line-graphs (Edmonds), claw-free

graphs, etc.
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Valid inequalities for Stable Set

Many known valid inequalities can be added, such as:

Odd cycle inequality: Odd wheel inequality:

∑
v∈ cycle

xv ≤

2

∑
v∈ cycle

xv +

2x hub

≤

2
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Facets of the Fire�ghter polytope

We studied the Fire�ghter polytope, i.e., STAB(G ) where G is a

Fire�ghter graph.

Our main results:

• New facets with "handmade" proofs

• Generic methods to compute facets

• Further results on characterizing all facets of STAB(G )
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A Lagrangian-based exact method



Why Lagrangian relaxation?

• IP formulation is too large: quadratic number of constraints

even continuous relaxation is unpracticable

• We are interested in large instances

(epidemiology, computer network, etc.)

• Approximated solutions (with guarantee) in minutes

can be better than optimum in hours

17/24



Back to the canonical IP

Remember the canonical IP:

max
∑

v∈V \{r}

xvwv

s. t. x(L) ≤ 1 ∀ level L
xu + xv ≤ 1 ∀u ancestor of v

xv ∈ {0, 1}

• Without level constraints, the problem is easy!

• Solvable through Dynamic Programming.
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Recap on Lagrangian relaxation

Introduce Lagrange multipliers λ associated with level constraints

OPT =max{wT x | x ∈ X , x(L) ≤ 1 ∀L}

=max
x∈X

inf
λ≥0

(
wT x +

∑
L

λL · (x(L)− 1)

)

≤ inf
λ≥0

max
x∈X

(
wT x +

∑
L

λL · (x(L)− 1)

)
︸ ︷︷ ︸

dual function G(λ)

• For every λ, G(λ) is an upper bound

• G(λ) is easy to compute (solving relaxation with DP)

• In�mum of G is computed by gradient descent algorithm

• ... but bad bound if all levels dualized
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An example of stronger relaxation 1/2

Relaxation (R1): remove level constraints, add sublevel constraints:

∀v ,
∑

u child of v

xu ≤ 1

sublevels
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An example of stronger relaxation 1/2

Relaxation (R1) is still easy to solve

LetM be the optimum of (R1) in the subtree rooted at v , but

with xv = 0.

Solving (R) through dynamic programming

Then OPT =M(r) and for every v ,

M(v) = max


∑

z∈Ch(v)

M(z)

︸ ︷︷ ︸
if no child of v is selected

; max
u∈Ch(v)

w(u) +
∑

z∈Ch(v)
z 6=u

M(z)

︸ ︷︷ ︸
if the child z is selected


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An algorithm for the Fire�ghter problem

• Relaxation (R1) can be generalized into

a family of relaxations (Rp) such that:

- Quality of bound increases with p

- Computation time increases with p

• By tuning parameter p, we found good trade-o� between

quality of bound and computation time.

• Other features are added:

- Greedy initialization heuristic

- Repair lagrangian heuristic

- Pruning technique to eliminate useless vertices
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Numerical results

• Lagrangian method �nds optimum and proves optimality

(LB = UB)

• It outperforms linear programming

• Heuristics are good; the di�cult part is to certify optimality:

lagrangian relaxation is appropriate

Instance Greedy Cplex Lagrangian method

n id solution solution time solution time

100 1 79 81* <1s 81* <1s

1000 1 828 837* 51s 837* 3s

5000 1 4136 4228* 27m 04s 4228* 25s

10000 1 8309 8495* 4h 26m 11s 8495* 1m 07s
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Thank you for your attention!
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