Young Researchers CERMICS Seminar Solving the Firefighter problem on trees

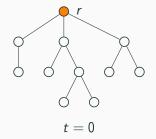
Adèle Pass-Lanneau

October 10, 2017

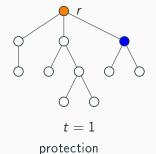
Internship Director:

Frédéric Meunier

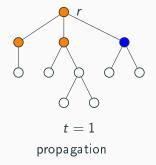
- A graph, for us: a tree T with root r
- A fire starts at r
- At each time step
 - 1 new vertex can be protected
 - The fire spreads
- **Objective:** maximize the number of saved vertices



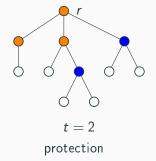
- A graph, for us: a tree T with root r
- A fire starts at r
- At each time step
 - 1 new vertex can be protected
 - The fire spreads
- **Objective:** maximize the number of saved vertices



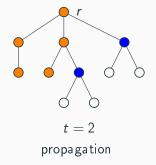
- A graph, for us: a tree T with root r
- A fire starts at r
- At each time step
 - 1 new vertex can be protected
 - The fire spreads
- **Objective:** maximize the number of saved vertices



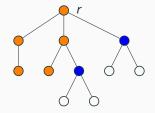
- A graph, for us: a tree T with root r
- A fire starts at r
- At each time step
 - 1 new vertex can be protected
 - The fire spreads
- **Objective:** maximize the number of saved vertices



- A graph, for us: a tree T with root r
- A fire starts at r
- At each time step
 - 1 new vertex can be protected
 - The fire spreads
- **Objective:** maximize the number of saved vertices



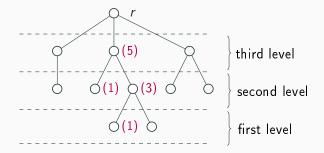
- A graph, for us: a tree T with root r
- A fire starts at r
- At each time step
 - 1 new vertex can be protected
 - The fire spreads
- **Objective:** maximize the number of saved vertices



 $\longrightarrow 6$ vertices saved

An Integer Programming formulation

- Level: set of vertices with same distance to the root
- Weight: if v protected, w_v vertices saved



Decision variables: $x_v = 1$ iff v is protected

$$\begin{array}{ll} \max & \sum_{v \in V \setminus \{r\}} x_v w_v \\ \text{s. t.} & x_u + x_v \leq 1 \quad \forall \ u, v \text{ on same level} & (1) \\ & x_u + x_v \leq 1 \quad \forall \ u \text{ ancestor of } v & (2) \\ & x_v \in \{0, 1\} \end{array}$$

(1): 1 vertex protected per level(2): a vertex already saved must not be protected

- Firefighter problem is NP-hard on trees (Finbow et al., 2009)
- We are interested in methods for solving it

Different approaches:

- Polynomial algorithms in special cases
- Methods based on integer programming
- Lagrangian relaxation

1. Firefighting and Stable Set problems

2. Perfect graphs: a polynomial case for the Firefighter problem

3. Facets of polyhedra: description of the Firefighter polytope

4. Numerical resolution through Lagrangian relaxation

Firefighting and Stable Set problems

Stable Sets

Stable set

Given a graph G = (V, E), a subset of vertices $S \subset V$ is *stable* if $\forall u, v \in S$, u and v are not adjacent, i.e., $(u, v) \notin E$.

- Classical problems: stable set of maximum size, of maximum weight ∑_{v∈S} w_v
- Max Stable Set is NP-complete; even hard in practice with a thousand vertices.

• Task scheduling: given a set of jobs with begin/end date, find the max number of tasks that can be scheduled on a single machine. Pilot-Copilot allocation: given a set of persons speaking different languages, find maximum number of pairs speaking the same language. *

	IP for stable set		IP for Firefighter			
max	$\sum_{\nu \in V} x_{\nu} w_{\nu}$		$\sum_{v\in V\setminus\{r\}}x_vw_v$			
s. t.	$x_u + x_v \leq 1 \forall (u, v) \in E$	s. t.		$\forall \ u, v \text{ on same level} \\ \forall \ u \text{ ancestor of } v $		
	$x_{\nu} \in \{0,1\}$		$x_{v} \in \{0,1\}$			

IP for stable set		IP for Firefighter			
max	$\sum_{v \in V} x_v w_v$	max	$\sum_{v \in V \setminus \{r\}} x_v w_v$		
s. t.	$x_u + x_v \leq 1 \forall (u, v) \in E$	s. t.		$\forall u, v \text{ on same level}$ $\forall u \text{ ancestor of } v$	
	$x_{\nu} \in \{0,1\}$		$x_{\nu} + x_{\nu} \ge 1$ $x_{\nu} \in \{0, 1\}$		

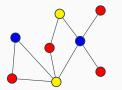
Observation

The Firefighter problem is a Max Weight Stable Set problem in an appropriate graph, called *Firefighter graph*, with weights *w*.

Perfect (Firefighter) graphs

G = (V, E) is a graph.

- Induced subgraph G[X] of G: take a subset of vertices X and all edges of G between them.
- Clique-number ω(G): size of the biggest clique in G, i.e., induced subgraph where all edges exist.
- Chromatic number χ(G): minimum number of colors needed in a valid coloring of G. In a valid coloring, every vertex has one color and every color form a stable set.



$$\begin{split} &\omega(G)=3\\ &\text{Valid coloring with 3 colors: } \chi(G)\leq 3\\ &\text{Always } \omega(G)\leq \chi(G)\\ &\text{Hence } \chi(G)=3 \end{split}$$

Perfect graphs

Definition (Claude Berge, 1960)

A graph G is *perfect* if for every induced subgraph H of G, the equality $\chi(H) = \omega(H)$ holds.

Are they perfect?

• A clique?

• A cycle of length 5?

The Strong Perfect Graph Theorem

SPGT

A graph is perfect if and only if it contains no induced odd hole nor odd antihole.

- Conjectured by Berge in 60s, remained open for 40 years
- Proven by Chudnovsky, Robertson, Seymour and Thomas in 2002-2006

Hole of length 7 Antihole of length 7

Polyhedral characterization of perfect graphs

Another characterization of perfect graphs is on their **Stable Set polytope** (in next section).

[Grötschel, Lovász, Schrijver, 1988]

The Max Weight Stable Set problem can be solved in polynomial time in perfect graphs.

- Reminder: Firefighter ⇐⇒ Max Weight Stable Set in Firefighter graphs
- Perfect Firefighter graphs are a polynomial case
- But polynomiality is provided by big theoretical result: no specialized algorithm
- Our main result: a combinatorial polynomial algorithm in this case.

The Stable Set polytope of Firefighter graphs

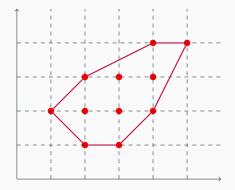
Continous relaxation of the IP: linear program obtained by dropping integrality constraints.

$$\begin{array}{ll} \max & \sum_{v \in V_G} x_v w_v \\ \text{s. t.} & x_u + x_v \leq 1 \quad \forall \ (u,v) \in E_G \\ & x_v \in \{0,1\} \end{array}$$

- Linear Programming is easy: simplex, integer points methods; polynomiality.
- Integer Programming is hard: ex. NP-hard for Stable Set problem.

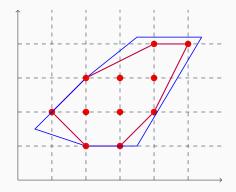
Strengthening a continuous relaxation

- Objective for solving IPs: get continuous relaxation as close as possible to convex hull of integer points
- Adding *cuts* given by *valid inequalities*
- The "strongest" valid inequalities are *facets*



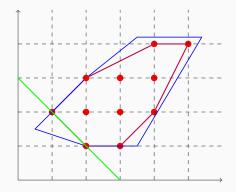
Strengthening a continuous relaxation

- Objective for solving IPs: get continuous relaxation as close as possible to convex hull of integer points
- Adding *cuts* given by *valid inequalities*
- The "strongest" valid inequalities are *facets*



Strengthening a continuous relaxation

- Objective for solving IPs: get continuous relaxation as close as possible to convex hull of integer points
- Adding *cuts* given by *valid inequalities*
- The "strongest" valid inequalities are *facets*



Describing the Stable Set polytope

• Stable set polytope:

 $STAB(G) = conv\{x \in \{0, 1\}^{|V|} \mid x_u + x_v \le 1 \ \forall (u, v) \in E\}$

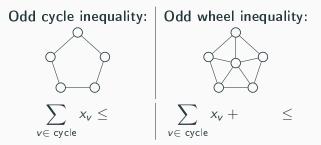
• Polytope of continuous relaxation

$$P = \{x \in \mathbb{R}^{|V|}_+ \mid x_u + x_v \leq 1 \ orall (u, v) \in E\}$$

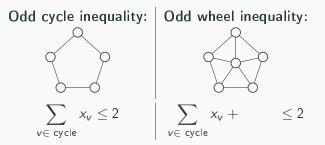
In most cases, $STAB(G) \subsetneq P$

- Finding facets of the Stable Set polytope is a major problem in combinatorial optimization
- Useful in practice to design efficient algorithms
- Results in graph classes, e.g., line-graphs (Edmonds), claw-free graphs, etc.

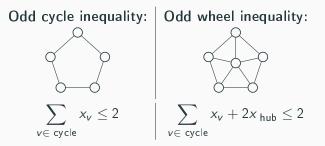
Many known valid inequalities can be added, such as:



Many known valid inequalities can be added, such as:



Many known valid inequalities can be added, such as:



We studied the Firefighter polytope, i.e., STAB(G) where G is a Firefighter graph.

Our main results:

- New facets with "handmade" proofs
- Generic methods to compute facets
- Further results on characterizing all facets of STAB(G)

A Lagrangian-based exact method

- IP formulation is **too large**: quadratic number of constraints even continuous relaxation is unpracticable
- We are interested in large instances (epidemiology, computer network, etc.)
- Approximated solutions (with guarantee) in minutes can be better than optimum in hours

Remember the canonical IP:

$$\begin{array}{ll} \max & \sum_{v \in V \setminus \{r\}} x_v w_v \\ \text{s. t.} & \boldsymbol{x(L)} \leq 1 & \forall \text{ level } L \\ & x_u + x_v \leq 1 & \forall u \text{ ancestor of } v \\ & x_v \in \{0, 1\} \end{array}$$

- Without level constraints, the problem is easy!
- Solvable through Dynamic Programming.

Recap on Lagrangian relaxation

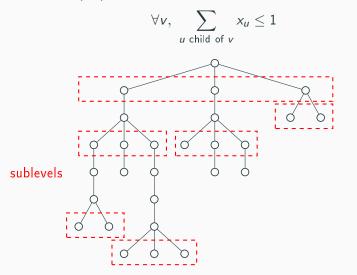
Introduce Lagrange multipliers λ associated with level constraints

$$DPT = \max\{w^{T}x \mid x \in X, \ x(L) \le 1 \ \forall L\}$$
$$= \max_{x \in X} \inf_{\lambda \ge 0} \left(w^{T}x + \sum_{L} \lambda_{L} \cdot (x(L) - 1)\right)$$
$$\leq \inf_{\lambda \ge 0} \max_{x \in X} \left(w^{T}x + \sum_{L} \lambda_{L} \cdot (x(L) - 1)\right)$$
$$dual function G(\lambda)$$

- For every λ , $\mathcal{G}(\lambda)$ is an **upper bound**
- $\mathcal{G}(\lambda)$ is easy to compute (solving relaxation with DP)
- Infimum of ${\mathcal G}$ is computed by gradient descent algorithm
- ... but bad bound if all levels dualized

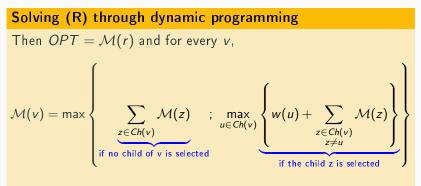
An example of stronger relaxation 1/2

Relaxation (R^1) : remove level constraints, add *sublevel* constraints:



Relaxation (R^1) is still easy to solve

Let \mathcal{M} be the optimum of (R^1) in the subtree rooted at v, but with $x_v = 0$.



An algorithm for the Firefighter problem

- Relaxation (R¹) can be generalized into a family of relaxations (R^p) such that:
 - Quality of bound increases with p
 - Computation time increases with p
- By tuning parameter *p*, we found good trade-off between quality of bound and computation time.
- Other features are added:
 - Greedy initialization heuristic
 - Repair lagrangian heuristic
 - Pruning technique to eliminate useless vertices

Numerical results

- Lagrangian method finds optimum and proves optimality (LB = UB)
- It outperforms linear programming
- Heuristics are good; the difficult part is to **certify optimality**: lagrangian relaxation is appropriate

Instance		Greedy	Cplex		Lagrangian method	
n	id	solution	solution	time	solution	time
100	1	79	81*	<1s	81*	<1s
1000	1	828	837*	51s	837*	3s
5000	1	4136	4228*	27m 04s	4228*	25s
10000	1	8309	8495*	4h 26m 11s	8495*	1m 07s

Thank you for your attention!