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Resume of topics

Study quantum transport within density functional theory.

@ Junction of two 1-d embedded in 3d periodic systems. (A warming up
problem)

@ Quantum transport : i.e., conductivity etc.

@ Coupling with phonons (Extension of Thomas- Fermi -von Weizsacker
model)

Other interesting topics :

@ Topological insulators, bulk-edge correspondence, Quantum Hall
Effect, etc.
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Prelimilary : Schatten Class

@ §: a separable Hilbert space (usually used : L2(R3), H}(R3)) with (t;)%2,
as orthogonal basis.

@ L($): bounded operator on £.

@ For A € L($) which is positive, define its trace:

Z i, A).

For Probabilists, please consider this as some form of expectation of some
r.v.

@ Schatten class G”($)) (Non-commutative LP space) :
Ac&P(H) < Tr(JAP)/P <o,  |Al=VA*A (1)

@ Ais in trace-class <= A € G1($), A is in Hilbert-Schmidt <= A € G,(9).
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Junction of two 1-d embeded in 3d periodic systems

Motivation: study the junction of two 1-d embeded in 3d periodic systems
with reduced Hartree-Fock model.

o Calculate its ground state — minimization of energy functional.

o Existence of ground state — existence of minimizer of energy
functional.
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reduced Hartree-Fock model

For N nonrelativistic quantum electrons, reduced Hartree-Fock model is a
mean-field model

@ the state of N electrons described by one-body density matrix v, where
yepPN:

PV = {y € BILA(R) |0 <7 < 1,Te(7) = N, Tx (V=B9v/=A) < o0}
@ N-body space of fermionic wavefunctions : AN H(RR3).

@ Hartree-Fock state : ® := ¢ Apa A--- Ay € /\,N:lHl(]R3).

o v = vazl [1;) (1;] density matrix of & — diagonalizable in an orthogonal
basis (1) of L2(R®) : y = 377% nigi) (6], 0 < mi < 1.
@ Density associated with v: p,(x) = v(x,x) = > iy nid?(x) > 0.
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reduced Hartree-Fock model

@ Nuclei density of charge ppyc.

@ reduced Hartree-Fock energy functional :

1 1
) =T (<30) + 300~ st ~pme)- ()

D(f,g):/ dedyzw/ etk
®xEs X — Y| r K|
@ The variational problem is :

Irnr = inf {ngF(’Y),’Y € PN}

Theorem : for neutral or positively charged systems, the variational problem
has a minimizer v and p, is unique .
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1-d embeded in 3d periodic system

Bloch decomposition for 1d embedded in 3d periodic infinite system:
Unit cell: T :=[-1/2,1/2) x R2.
The first Brillouin zone (dual lattice): I := [-m,7) x {0}2 = [, 7)

Translation operator : Txu(x, r) = u(x — k,r),Vk € R

Density matrix of the electrons: «y, which is a self-adjoint operator acting on
L2(R¥) and 0 <y < 1.

Bloch decomposition:
={ue L} (R [*(R?)) | rhu = e *u Yk € Z}

1

or ). s e € S(LED)

v =
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1-d embeded in 3d periodic system

We can define a 1d embeded in 3d periodic rHF energy for v € Ppe,:

1
‘C"Per(7) 27T / TrLZ(F) (_A’)/f) dé + DG(p’Y Hpers Py — Mper) (3)

The periodic rHF ground state energy (per unit cell) is given by

lper = inf {Eper(”y),'y € Pper; /rpﬂ, = Z} 4)

c(f,g): // x—y )g(y)dxdy

p~: density associate with .
G(+): Green function
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1-d embeded in 3d periodic system

Theorem

(Definition of the 1d periodic rHF minimizer) Let Z € N\{0}. The

minimization problem (4) admits a unique minimizer yper. Moreover, Yper
satisfies the following self-consistent equation:

’}/per = ]]'(—OO,GF](HPQY) (5)
Hper o= _%A + (pper - Mper) s G

where er is a Lagrange multiplier called Fermi level (chemical potential).
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Junction of two 1-d embeded in 3d periodic systems

Difficulty: if not the same periodicity, there is breaking translation
symmetry — Bloch decomposition cannot be applied — need to find a
reference state.

e Periodic density operator corresponding to the left (right) system:
Yper,t (Yper,r) solution of (5), with nuclei density fiper s (fper,r) and
electronic density ppere (Pper,r)-

@ Density operator of junction system: ~s, with associated density ps.

@ lis = ]IXSO * Pper,e + ]lxzo * Uper,r D(f g =4r fR?’ f(k g(k) dk.
@ (Infinite) energy functional for the junction system is FORMALLY.

1 1
55(’75) ="Tr <—2A’Ys) + ED(PS — Ms; Ps — NS) (6)

Objective: find a reference state ~,, and perturbative state Q, such that
Ys =7+ Q.
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Choice of reference state

Choice of reference state 7, :

@ Need to be an orthogonal spectral projector of some well-chosen
Hamiltonian, i.e., 0 <, <1, 'yf =, and v} = ~v,. (If not we do not
know yet how to treat its perturbation ...)

o Need to have enough regularity (Laplacian term ...)

@ Need to approach the real state s such that the difference can be
treated as perturbation (Very logic !)

— should be something that is very similar to 1x<q - Yper,e + Lx>0 - Yper,r-
(Not this one, lack of regularity, the smooth version is not a spectral
projector of some Hamiltonian ...)
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Choice of reference state

@ Introduce a smooth function x(x, y, z):
1 ifx<-—1/2
x(x,,-) =<0 if x>1/2 @)
smooth elsewhere, bounded between 0 and 1
@ A regular potential Vy := x*Vjere + (1 — X?) Vper,r =
X2 ((Pper,e = tper,e) xr G) 4 (1 = X?) ((Pper,r — tiper,r) *r G).

@ Define Hamiltonian associated with V, writes:

1
Hyi= =50+ Y, (8)

@ Define a spectral projector

Yr=TYx = ]1(—oo,ep](HX)
we have [y, Hy] = 0.
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Choice of reference state

© py—ity = —=AVy = (*(pper,e — bper,e) + (1= X?)(Pper.r — Hper,r)) +0x.
7y is local term.

@ p, and is a priori unknown, is decided by p, := T(_o ,](Hy).

@ Perturbative energy

formally
1 1
) = 600 = T (=38Q) 4 Dloy = 1y.r0) + 50(0a-r0)

1
= D(pq,vx) — D(px — by, vx) + ED(VX7VX)
9)
where
Uy = s — [y = (]1x§0 - X2),Uper,2 + (]IXZO - (1 - X2))Nper,r

) ) (10)
+ (X Pper.e + (1 = X7)Pper,r — Px) +1x

Objective: study the rigorous version of minimization problem (9).
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Perturbative energy

Proposition (Reference state density is exponentially close to the

smoothed real density)

Assume that Fermi level ez < 0 (Fermi level is strictly negative), and a gap
condition, we have x?pper,e + (1 — X?)pper,r — px € CL1(R3) N L2(R3). So

vy € CN LYH(R?) N L?(IR?). Moreover, denote B(Z) a unit cube centred at Z € Z,
and w(Z) the characteristic function of unit cube B(Z), there exists positive
constants ci, & and my, m», and for o € Z* and 8 € Z, such that

| /]R (szper,f(xﬁ K ) + (1 - Xz)ppenf(x’ K ) - pX(X> R )) W(ﬁ)dx| < Cle_m1|5|>

| /]R (szpene('v r, ) + (1 - Xz)ppenr('v r, ) - pX('v r, )) W(a)dr| < CQe_m2|a|'

v

Write all in spectral projector form and use Cauchy formula representation, have
norm estimations and by argument of duality to prove the result. ]

4
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Definition and minimization of perturbative energy Q.

Define &, by the Schatten class of operator acting on L?(R3) that have a
finite p trace, i.e., A€ &, < Tr(|AIP) < 0o. p=1(p =2) is trace-class
(Hilbert-Schmidt class).
@ @ is not necessarily to be trace-class = Definition of ll-trace class, Il
an orthogonal projector.
@ A self-adjoint compact operator A is said to be [l-trace class
(A€ &) if Ac &, and both MAM and (1 — M)A(1 — M) are in &5.

o Trp(Q) := Tr(NQM) + Tr((1 — M)Q(1 — M)
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Definition and minimization of perturbative energy Q.

@ Define a v, -trace class:

Q={QeE |Q"=Q, [VIQE &, [VIQTV| €61, [VIQ V] € &

where Q1 := (1 —,)Q(1 —7y) and Q™™ := 7, Qv,. By construction, we

have Tr, (Q) = Tr(Q*") + Tr(Q~ ).

@ Define:

TrX(HXQ) = Tr(|HX - ’€|1/2(Q++ - Q__)|HX - K‘l/z) + “Trx(o)

(11)

@ Study the minimization problem of the following energy functional, which

comes from the energy contribution containing @ in (9):

£(Q) = Try(MyQ) ~ D(pa,) + 3 D(pa. po)
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Proposition (Definition of density pg for Q € Q,)

For Q € Q,, we have QV € &]* for any V = V4 + V, € C’ + L(R3). Moreover,
there exists a constant c s.t. :

Ty (QV)] < cll Rlle, (Valler + I Vall 2(r))

Thus the linear form V € C' + (L2(R3) N L°(R3)) — Tr, (QV) can be
continuously extended to C’ + L2(R3) and there exists a uniquely defined function
pQ € C + L?(R3) such that

YW =Vi+V, eC' +(LPX(R})NL®(R?), (po,Vi)ec +/ poVa = Try(QV).
R3
The linear map Q € Q, — pq € C( L?(R3) is continuous :

lpalle + llpelleme < cllRllo,
If @ € &1 € &%, then po(x) = Q(x,x) where Q(x, x) the integral kernel of Q.

v
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Proposition (Energy functional is bounded from below)

Assume that gap condition holds, for x € (£,%7,,), there are constants dy, db,
such that

£(Q) = £Try(Q) 2 dy (IQ " [le, + Q7 Nle, + VIR V[lls, + IIVIQ™ |V

1
+ & (IVIQIIE, + 1Ql&,) — 5D(vx; v)-

Hence £ — kTr, is bounded from below and coercive on KC,. When v, =0,
Q — &,(Q) — kTry(Q) is non-negative, 0 being its unique minimizer.
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Define an admissible set:
Ky ={Qe Q| -n<Q<1-%)

Introduce the following minimization problem:

|Ecr = inf{E,(Q) — erTr (@), Q € K, }| (13)

Proposition (Existence of minimizers with a chemical potential)
Assume that gap condition holds and Z € N\{0}. Then:

o (Existence) For any e € (X5,%7 ), there exists a minimizer Q, € K, for
(13). Problem (13) may have several minimizers, but they all share the same
density py = pg, . Any minimizer Q, of (13) satisfies the self-consistent

equation: _
{ QX P = n(fOO,EF](HQX) - Tx t 1)
Hc')X = Iih, 4 (p@x —Uy) % |- |*1

where ¢ is a finite rank self-adjoint operator satisfying 0 < 6 < 1 and
Ran(0) C Ker(Hg_— €F).

(14)

o (Regularity) Any @, € K, solution of (14) belongs to K, .

v
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Theorem (Independence of parameter)

px + pq, is independent of x, where @, is the solution of (14).

Theorem (Thermodynamic limit of the semi-infinite system)

. 1
im Joc,1,s(7s) = Ese,tx(Vxi) = Eerx _/ Vx (X2 Vper) + 5D(vy, vy)
L—o0 R3 2

Lingling CAO (Cermics) Quantum transport October 25, 2017 21 /23



Quantum transport model

Motivations : write a model for electrodes (modeled by 3d- infinite
electron gaz) with mean-field Coulombian interactions.

Key words : Perturbation theory, Lieb-Thirring inequality, Hilbert space
direct integral decomposition, etc ...
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Coupling with phonons : a dynamical system problem

@ Finite lattice, phonon dynamics coupling with Thomas-Fermi-von
Weizsacker model :

— Au(x, t) + u3(x, t) — d(x, t)u(x,t) =0, xely

u>0

— AD(x, t) = drp(x, t) = 47 ( > ulx — k= q(k, 1)) — P (x, t)>
kERN

m% = —(Vu®(x, 1), u(x —k—q(k, 1)), k€Rn

(15)

@ Interesting questions for (15): is it well-posed ? global/local stability ?
Extension to infinite lattice ? (Very difficult problem ).
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