Algorithms for train scheduling on a single line

Laurent DAUDET1

PhD advisor: Frédéric MEUNIER1

1CERMICS, Centre d’Enseignement et de Recherche en Mathématiques et Calcul Scientifique, ENPC

December 22nd, 2017
The context

Scientific chair between
- École Nationale des Ponts et Chaussées
- Eurotunnel
The context

Scientific chair between
- École Nationale des Ponts et Chaussées
- Eurotunnel

Questions?
- How to increase the global capacity with current means?
- How to improve the quality of service?
The tunnel under the Channel

- Line length: 50 km
- From Coquelles (France) to Folkestone (England)
- A tunnel for each direction (A) and a service tunnel (B)
 - High-Speed-Trains (Eurostar) 160 km/h
 - Freight trains 100-120 km/h
 - Passenger shuttles (PAX) 140 km/h
 - Freight shuttles (HGV) 140 km/h
The tunnel under the Channel

- Line length: 50 km
- From Coquelles (France) to Folkestone (England)
- A tunnel for each direction (A) and a service tunnel (B)
- High-Speed-Trains (Eurostar) 160 km/h
- Freight trains 100-120 km/h
- Passenger shuttles (PAX) 140 km/h
- Freight shuttles (HGV) 140 km/h
The tunnel under the Channel

- Line length: 50 km
- From Coquelles (France) to Folkestone (England)
- A tunnel for each direction (A) and a service tunnel (B)
- High-Speed-Trains (Eurostar) 160 km/h
- Freight trains 100-120 km/h
- Passenger shuttles (PAX) 140 km/h
- Freight shuttles (HGV) 140 km/h
1. General context

2. One-hour schedules maximizing HGV shuttles

3. Joint scheduling and pricing problem

4. Minimizing the waiting time for a one-way shuttle service
One-hour schedules maximizing HGV shuttles

1. General context

2. One-hour schedules maximizing HGV shuttles

3. Joint scheduling and pricing problem

4. Minimizing the waiting time for a one-way shuttle service
What are the goals?

- Confirm optimality of current schedules.
- Compute schedules with new instances.
- “Price” the constraints for future investments and negotiations.
What are the goals?

- Confirm optimality of current schedules.
- Compute schedules with new instances.
- “Price” the constraints for future investments and negotiations.
What are the goals?

- Confirm optimality of current schedules.
- Compute schedules with new instances.
- "Price" the constraints for future investments and negotiations.
What are the goals?

- Confirm optimality of current schedules.
- Compute schedules with new instances.
- “Price” the constraints for future investments and negotiations.
The problem

Objective

Compute one-hour schedule with maximum number of HGV shuttles.

Constraints

- Fixed number of Eurostars, freight trains, and PAX shuttles.
- Security.
- Other constraints.

Output

- \(d = \{ d^{Eur}_j, d^{Fr}_j, d^{PAX}_j, d^{HGV}_j \} \): scheduled departure times of all trains.
- \(d^A_j \): \(j \)th departure time of train of type \(A \).
The problem

Objective

Compute one-hour schedule with maximum number of HGV shuttles.

Constraints

- Fixed number of Eurostars, freight trains, and PAX shuttles.
- Security.
- Other constraints.

Output

- $d = \{d_j^{\text{Eur}}, d_j^{\text{Fr}}, d_j^{\text{PAX}}, d_j^{\text{HGV}}\}$: scheduled departure times of all trains.
- d_j^A: jth departure time of train of type A.
The problem

Objective

Compute one-hour schedule with maximum number of HGV shuttles.

Constraints

- Fixed number of Eurostars, freight trains, and PAX shuttles.
- Security.
- Other constraints.

Output

- \(d = \{ d_j^{\text{Eur}}, d_j^{\text{Fr}}, d_j^{\text{PAX}}, d_j^{\text{HGV}} \} \): scheduled departure times of all trains.
- \(d_j^A \): \(j \)th departure time of train of type A.
Some other constraints

- **Commercial agreements**: Eurostars “equally” distributed in the period. → Eurostars grouped by pairs with departure times at d and $d + 30 \text{ min}$.

- Loading platforms: impossible to load three HGV or PAX shuttles at the same time.
 → at most 2 HGV shuttles in any 12-minute time-window.
 → at most 2 PAX shuttles in any 12-minute time-window.

- Discretization: departure times on full minutes.
Some other constraints

- **Commercial agreements**: Eurostars “equally” distributed in the period.
 → Eurostars grouped by pairs with departure times at d and $d + 30$ min.

- **Loading platforms**: impossible to load three HGV or PAX shuttles at the same time.
 → at most 2 HGV shuttles in any 12-minute time-window.
 → at most 2 PAX shuttles in any 12-minute time-window.

- **Discretization**: departure times on full minutes.
Some other constraints

- **Commercial agreements**: Eurostars “equally” distributed in the period. → Eurostars grouped by pairs with departure times at d and $d + 30$ min.

- **Loading platforms**: impossible to load three HGV or PAX shuttles at the same time.
 → at most 2 HGV shuttles in any 12-minute time-window.
 → at most 2 PAX shuttles in any 12-minute time-window.

- **Discretization**: departure times on full minutes.
Some other constraints

- **Commercial agreements:** Eurostars “equally” distributed in the period.
 → Eurostars grouped by pairs with departure times at \(d \) and \(d + 30 \) min.

- **Loading platforms:** impossible to load three HGV or PAX shuttles at the same time.
 → at most 2 HGV shuttles in any 12-minute time-window.
 → at most 2 PAX shuttles in any 12-minute time-window.

- **Discretization:** departure times on full minutes.

- ...
The model

Variables

- \(d = \{ d^\text{Eur}_j, d^\text{Fr}_j, d^\text{PAX}_j, d^\text{HGV}_j \} \): scheduled departure times of all trains.
- \(d^A_j \): \(j \)th departure time of train of type A.
- \(n \): number of scheduled HGV shuttles.

Mathematical model

where \(X = \) set of constraints

→ can be expressed with linear constraints

(only non immediate constraint: security headway [Serafini and Ukovich, 1989]).

⇒ Mixed Integer Linear Program

Solved by commercial solver CPLEX.
The model

Variables

- \(d = \{ d^{\text{Eur}}_j, d^{\text{Fr}}_j, d^{\text{PAX}}_j, d^{\text{HGV}}_j \} \): scheduled departure times of all trains.
- \(d^A_j \): \(j \)th departure time of train of type A.
- \(n \): number of scheduled HGV shuttles.

Mathematical model

\[
\text{Max} \quad n
\]

where \(X = \) set of constraints

can be expressed with linear constraints

(only non immediate constraint: security headway [Serafini and Ukovich, 1989]).

⇒ Mixed Integer Linear Program

Solved by commercial solver CPLEX.
One-hour schedules maximizing HGV shuttles

Model

The model

Variables

- \(d = \{ d_{j}^{E}, d_{j}^{F}, d_{j}^{P}, d_{j}^{H} \} \): scheduled departure times of all trains.
- \(d_{j}^{A} \): \(j \)th departure time of train of type A.
- \(n \): number of scheduled HGV shuttles.

Mathematical model

\[
\text{Max} (d, n) \in X \quad n
\]

where \(X = \) set of constraints

- can be expressed with linear constraints
 (only non immediate constraint: security headway [Serafini and Ukovich, 1989]).
- Mixed Integer Linear Program
- Solved by commercial solver CPLEX.
The model

Variables

\(d = \{ d_{\text{Eur}}^j, d_{\text{Fr}}^j, d_{\text{PAX}}^j, d_{\text{HGV}}^j \} \): scheduled departure times of all trains.

\(d_j^A \): \(j \)th departure time of train of type A.

\(n \): number of scheduled HGV shuttles.

Mathematical model

\[\text{Max} (d, n) \in X \ n \]

where \(X = \) set of constraints

\(\rightarrow \) can be expressed with linear constraints

(only non immediate constraint: security headway [Serafini and Ukovich, 1989]).

\(\Rightarrow \) Mixed Integer Linear Program

Solved by commercial solver CPLEX.
One-hour schedules maximizing HGV shuttles

Model

The model

Variables

- \(d = \{ d_{j}^{\text{Eur}}, d_{j}^{\text{Fr}}, d_{j}^{\text{PAX}}, d_{j}^{\text{HGV}} \} \): scheduled departure times of all trains.
- \(d_{j}^{A} \): \(j \)th departure time of train of type A.
- \(n \): number of scheduled HGV shuttles.

Mathematical model

\[\text{Max} (d, n) \in X \quad n \]

where \(X \) = set of constraints

- can be expressed with linear constraints
 (only non immediate constraint: security headway [Serafini and Ukovich, 1989]).

\(\Rightarrow \) Mixed Integer Linear Program
Solved by commercial solver CPLEX.
A current schedule

Instance: 4 Eurostars, 5 PAX shuttles, and 1 freight train.
A current schedule

Instance: 4 Eurostars, 5 PAX shuttles, and 1 freight train.

⇒ **Maximum 4 HGV shuttles in the schedule**
A current schedule

Instance: 4 Eurostars, 5 PAX shuttles, and 1 freight train.

⇒ **Maximum 4 HGV shuttles in the schedule**
Some schedule improvements

Parameters

- T: length of the period.
- L: 12-minute time-window.
- η: full minute discretization.
- C_{Eur}: 30-minute gap between grouped Eurostars.
Some schedule improvements

Parameters

- \(T \): length of the period.
- \(L \): 12-minute time-window.
- \(\eta \): full minute discretization.
- \(C^{\text{Eur}} \): 30-minute gap between grouped Eurostars.

Constraint relaxed

<table>
<thead>
<tr>
<th>Instance</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length cyclic period</td>
<td>(T: 1 \text{ h} \rightarrow 4 \text{ h})</td>
</tr>
<tr>
<td>Loading platforms</td>
<td>(L: 12 \text{ min} \rightarrow 0 \text{ min})</td>
</tr>
<tr>
<td>Full minute discretization</td>
<td>(\eta: 1 \text{ min} \rightarrow 1 \text{ s})</td>
</tr>
<tr>
<td>Agreements with Eurostar</td>
<td>(C^{\text{Eur}}: 30 \text{ min} \rightarrow [27 \text{ min}-33 \text{ min}])</td>
</tr>
</tbody>
</table>
Some other problems

- Compute one-hour schedules with minimum delays.
- Compute one-hour schedules with maximum number of HGV shuttles and minimum delays.

→ Stochastic Optimization, Sample Average Approximation.
Some other problems

- Compute one-hour schedules with minimum delays.
- Compute one-hour schedules with maximum number of HGV shuttles and minimum delays.

→ Stochastic Optimization, Sample Average Approximation.
General context

One-hour schedules maximizing HGV shuttles

Joint scheduling and pricing problem

Minimizing the waiting time for a one-way shuttle service
Why such a problem?

- Departures and prices computed jointly in airline companies.

→ Increase of customers' satisfaction and company's revenue.

- Same objective for rail transportation.

- Toy problem to challenge this idea.
Why such a problem?

- Departures and prices computed jointly in airline companies.
 - Increase of customers’ satisfaction and company’s revenue.

- Same objective for rail transportation.

- Toy problem to challenge this idea.
Why such a problem?

- Departures and prices computed jointly in airline companies.
 - Increase of customers’ satisfaction and company’s revenue.

- Same objective for rail transportation.

- Toy problem to challenge this idea.
Why such a problem?

- Departures and prices computed jointly in airline companies.
 - Increase of customers’ satisfaction and company’s revenue.

- Same objective for rail transportation.

- Toy problem to challenge this idea.
The problem (1/2)

- One-way trip.
The problem (1/2)

- One-way trip.
- Company wants to fix departures d of S trains and prices p.
The problem (1/2)

- One-way trip.
- Company wants to fix departures d of S trains and prices p.
- Each train has finite capacity C.
The problem (1/2)

- One-way trip.
- Company wants to fix departures d of S trains and prices p.
- Each train has finite capacity C.
- Q customers want to purchase tickets for this trip.
The problem (1/2)

- One-way trip.
- Company wants to fix departures d of S trains and prices p.
- Each train has finite capacity C.
- Q customers want to purchase tickets for this trip.

→ Buy tickets that satisfy them the most, or leave without purchasing.

<table>
<thead>
<tr>
<th>Departure</th>
<th>Arrival</th>
<th>Price</th>
</tr>
</thead>
<tbody>
<tr>
<td>17h29</td>
<td>19h26</td>
<td>87,00 €</td>
</tr>
<tr>
<td>17h53</td>
<td>19h56</td>
<td>97,00 €</td>
</tr>
<tr>
<td>18h41</td>
<td>20h44</td>
<td>78,00 €</td>
</tr>
<tr>
<td>18h59</td>
<td>20h56</td>
<td>82,00 €</td>
</tr>
<tr>
<td>19h29</td>
<td>21h26</td>
<td>45,00 €</td>
</tr>
</tbody>
</table>
The problem (1/2)

- One-way trip.
- Company wants to fix departures d of S trains and prices p.
- Each train has finite capacity C.
- Q customers want to purchase tickets for this trip.
- Buy tickets that satisfy them the most, or leave without purchasing.

Objective

Maximize the revenue of the company.
Each customer \(i \)

- has a preferred departure time: random variable \(\chi_i \)
- belongs to economic class \(b_i \) (e.g. business, tourist, low-cost, ...)
- "value of time" \(v_{b_i} \) for economic class \(b_i \)
Each customer i

- has a preferred departure time: random variable X_i
- belongs to economic class b_i (e.g. business, tourist, low-cost, ...)
- "value of time" v_{b_i} for economic class b_i
Each customer i:

- has a preferred departure time: random variable χ_i
- belongs to economic class b_i (e.g. business, tourist, low-cost, ...)
- "value of time" v_b for economic class b
The problem (2/2)

Each customer i
- has a preferred departure time: random variable χ_i
- belongs to economic class b_i (e.g. business, tourist, ...)
- “value of time” v_b for economic class b

We assume
- $v_1 \leq v_2 \leq \cdots$
- Customers of class 1 make their choice first, then 2, ...
The problem (2/2)

Each customer i
- has a preferred departure time: random variable χ_i
- belongs to economic class b_i (e.g. business, tourist, ...)
- “value of time” v_b for economic class b

We assume
- $v_1 \leq v_2 \leq \cdots$
- Customers of class 1 make their choice first, then 2, ...

Discrete choice model
- Each customer i and product j (departure d_j at price p_j)
- Random utility $U_{ij}(d, p)$ representing satisfaction.
The model (1/2)

- Denote by ξ vector representing uncertainty.
- Revenue of company $\rightarrow R(d, p, \xi)$ where ξ has been revealed.
- Easy to compute (simulation, Linear Programming).
- Objective function $\rightarrow f(d, p) = \mathbb{E}[R(d, p, \xi)]$.
- Remark: $f(d, p)$ well defined (for all $(d, p) \in X$, $R(d, p, \cdot)$ measurable and $\mathbb{E}[R(d, p, \xi)] < \infty$) and $\text{Var}[R(d, p, \xi)] < \infty$.
The model (1/2)

- Denote by ξ vector representing uncertainty.

- **Revenue of company** $\rightarrow R(d, p, \xi)$ where ξ has been revealed.

- Easy to compute (simulation, Linear Programming).

- Objective function $\rightarrow f(d, p) = \mathbb{E}[R(d, p, \xi)]$.

- Remark: $f(d, p)$ well defined (for all $(d, p) \in X$, $R(d, p, \cdot)$ measurable and $\mathbb{E}[R(d, p, \xi)] < \infty$) and $\text{Var}[R(d, p, \xi)] < \infty$.
The model (1/2)

- Denote by ξ vector representing uncertainty.

- Revenue of company $\rightarrow R(d, p, \xi)$ where ξ has been revealed.
- Easy to compute (simulation, Linear Programming).

- Objective function $\rightarrow f(d, p) = \mathbb{E}[R(d, p, \xi)]$.
- Remark: $f(d, p)$ well defined (for all $(d, p) \in X$, $R(d, p, \cdot)$ measurable and $\mathbb{E}[R(d, p, \xi)] < \infty$) and $\text{Var}(R(d, p, \xi)) < \infty$.
The model (1/2)

- Denote by ξ vector representing uncertainty.

- Revenue of company $\rightarrow R(d, p, \xi)$ where ξ has been revealed.

\rightarrow Easy to compute (simulation, Linear Programming).

- Objective function $\rightarrow f(d, p) = E[R(d, p, \xi)].$

\rightarrow Remark: $f(d, p)$ well defined (for all $(d, p) \in X, R(d, p, \cdot)$ measurable and $E[R(d, p, \xi)] < \infty$) and $\text{Var}[R(d, p, \xi)] < \infty$.
The model (2/2)

Mathematical model

$$\max_{(d, p) \in X} f(d, p) = \mathbb{E}[R(d, p, \xi)]$$

where $R(d, p, \xi)$ is revenue and X is set of constraints.
The model (2/2)

Mathematical model

$$\max_{(d,p) \in X} f(d,p) = \mathbb{E} [R(d, p, \xi)]$$

where $R(d, p, \xi)$ is revenue and X is set of constraints.

Compute d and p without knowing ξ!
Sample Average Approximation

- \((\xi_1, \ldots, \xi_\Omega)\) of \(\Omega\) independent and identically distributed realizations
 \(\Rightarrow\) \(\xi_\omega\) is not random variable!
- We approximate objective function \(f(d, p) = \mathbb{E}[R(d, p, \xi)]\) by
Sample Average Approximation

- $(\xi_1, \ldots, \xi_\Omega)$ of Ω independent and identically distributed realizations
 $\Rightarrow \xi_\omega$ is not random variable!

- We approximate objective function $f(d, p) = \mathbb{E}[R(d, p, \xi)]$ by...
Sample Average Approximation

- $(\xi_1, \ldots, \xi_\Omega)$ of Ω independent and identically distributed realizations
 \Rightarrow ξ_ω is not random variable!
- We approximate objective function $f(d, p) = \mathbb{E}[R(d, p, \xi)]$ by
 $$\hat{f}_\Omega(d, p) = \frac{1}{\Omega} \sum_\omega R(d, p, \xi_\omega)$$
Sample Average Approximation

- \((\xi_1, \ldots, \xi_\Omega)\) of \(\Omega\) independent and identically distributed realizations
 \(\Rightarrow \xi_\omega\) is not random variable!
- We approximate objective function \(f(d, p) = \mathbb{E}[R(d, p, \xi)]\) by
 \[
 \hat{f}_\Omega(d, p) = \frac{1}{\Omega} \sum_\omega R(d, p, \xi_\omega)
 \]
- New approximated optimization program
 \[
 \max_{(d, p) \in X} \hat{f}_\Omega(d, p)
 \]
Sample Average Approximation

- \((\xi_1, \ldots, \xi_{\Omega})\) of \(\Omega\) independent and identically distributed realizations

\[\Rightarrow \xi_\omega \text{ is not random variable!}\]

- We approximate objective function \(f(d, p) = \mathbb{E}[R(d, p, \xi)]\) by

\[
\hat{f}_\Omega(d, p) = \frac{1}{\Omega} \sum_{\omega} R(d, p, \xi_\omega)
\]

- New approximated optimization program

\[
\max_{(d, p) \in X} \hat{f}_\Omega(d, p)
\]

We denote by

- \(v^* = \max_{(d, p) \in X} f(d, p)\)
- \(\hat{v}_\Omega = \max_{(d, p) \in X} \hat{f}_\Omega(d, p)\)
SAA properties

Proposition, Shapiro et al., 2009

We have

(i) \(\mathbb{E}[\hat{f}_\Omega(d, p)] = f(d, p) \), for all \((d, p) \in X\),

(ii) \(\hat{f}_\Omega(d, p) \) converges to \(f(d, p) \) w.p. 1, for all \((d, p) \in X\),

(iii) \(\mathbb{E}[\hat{v}_\Omega] \geq v^* \), and

(iv) \(\hat{v}_\Omega \) converges to \(v^* \) w.p. 1.

- \(\mathbb{E}[\hat{v}_\Omega] \) is an upper bound on \(v^* \) (iii).
- With the Central Limit Theorem, we can compute \((1 - \alpha)\)-confidence interval.
- For any solution \((\hat{d}, \hat{p}) \in X, f(\hat{d}, \hat{p}) \leq v^* \) \((= \max_{(d, p) \in X} f(d, p)) \)
 \(\Rightarrow \) lower bound on \(v^* \).
- With (i) and the Central Limit Theorem, we can compute \((1 - \alpha)\)-confidence interval.
SAA properties

Proposition, Shapiro et al., 2009

We have

(i) \(\mathbb{E}[\hat{f}_\Omega(d, p)] = f(d, p) \), for all \((d, p) \in X\),

(ii) \(\hat{f}_\Omega(d, p) \) converges to \(f(d, p) \) w.p. 1, for all \((d, p) \in X\),

(iii) \(\mathbb{E}[\hat{v}_\Omega] \geq v^* \), and

(iv) \(\hat{v}_\Omega \) converges to \(v^* \) w.p. 1.

- \(\mathbb{E}[\hat{v}_\Omega] \) is an upper bound on \(v^* \) (iii).

\(\Rightarrow \) With the Central Limit Theorem, we can compute \((1 - \alpha)\)-confidence interval.

- For any solution \((\bar{d}, \bar{p}) \in X\), \(f(\bar{d}, \bar{p}) \leq v^* \) \((= \text{Max}_{(d, p) \in X} f(d, p)) \)
 \(\Rightarrow \) lower bound on \(v^* \).

\(\Rightarrow \) With (i) and the Central Limit Theorem, we can compute \((1 - \alpha)\)-confidence interval.
SAA properties

Proposition, Shapiro et al., 2009

We have

(i) \(\mathbb{E}[\hat{f}_\Omega(d, p)] = f(d, p) \), for all \((d, p) \in X\),

(ii) \(\hat{f}_\Omega(d, p) \) converges to \(f(d, p) \) w.p. 1, for all \((d, p) \in X\),

(iii) \(\mathbb{E}[\hat{v}_\Omega] \geq v^* \), and

(iv) \(\hat{v}_\Omega \) converges to \(v^* \) w.p. 1.

- \(\mathbb{E}[\hat{v}_\Omega] \) is an upper bound on \(v^* \) (iii).

→ With the Central Limit Theorem, we can compute \((1 - \alpha)\)-confidence interval.

- For any solution \((\bar{d}, \bar{p}) \in X\), \(f(\bar{d}, \bar{p}) \leq v^* \) \(\left(= \text{Max}_{(d, p) \in X} f(d, p) \right) \)

 ⇒ lower bound on \(v^* \).

→ With (i) and the Central Limit Theorem, we can compute \((1 - \alpha)\)-confidence interval.
A first heuristic: a sequential heuristic

→ Try to mimic natural way of scheduling and then fixing prices.

1. Compute departure times d with optimization problem maximizing utilities U_{ij} with prices $p = 0$.
A first heuristic: a sequential heuristic

→ Try to mimic natural way of scheduling and then fixing prices.

1. Compute departure times d with optimization problem maximizing utilities U_{ij} with prices $p = 0$.

$$\max_{d \in X_d} \sum_{i,j} \mathbb{E} [U_{ij}(d, 0)]$$
A first heuristic: a sequential heuristic

→ Try to mimic natural way of scheduling and then fixing prices.

1. Compute departure times d with optimization problem maximizing utilities U_{ij} with prices $p = 0$.

$$\max_{d \in X_d} \sum_{i,j} \mathbb{E} [U_{ij}(d, 0)]$$

2. Compute prices p with previous two-stage recourse program (with fixed departure times \tilde{d}).

$$\max_{p \in X_p} \hat{f}_\Omega(\tilde{d}, p)$$
A second heuristic: a Gauss-Seidel heuristic

1. Initialize \((d, p)\) to some \((d^0, p^0)\).
2. Let \(m \in \mathbb{Z}_+\) and \(J_1 \cup J_2 \cup \cdots \cup J_m\) be a partition of \(\{1, \ldots, S\}\).
3. Generate sequence of feasible solutions \((d^k, p^k)\):
A second heuristic: a Gauss-Seidel heuristic

1. Initialize \((d, p)\) to some \((d^0, p^0)\).

2. Let \(m \in \mathbb{Z}_+\) and \(J_1 \cup J_2 \cup \ldots \cup J_m\) be a partition of \(\{1, \ldots, S\}\).

3. Generate sequence of feasible solutions \((d^k, p^k)\):
A second heuristic: a Gauss-Seidel heuristic

1. Initialize \((d, p)\) to some \((d^0, p^0)\).
2. Let \(m \in \mathbb{Z}_+\) and \(J_1 \cup J_2 \cup \cdots \cup J_m\) be a partition of \(\{1, \ldots, S\}\).
3. Generate sequence of feasible solutions \((d^k, p^k)\):
A second heuristic: a Gauss-Seidel heuristic

1. Initialize (d, p) to some (d^0, p^0).
2. Let $m \in \mathbb{Z}_+$ and $J_1 \cup J_2 \cup \cdots \cup J_m$ be a partition of $\{1, \ldots, S\}$.
3. Generate sequence of feasible solutions (d^k, p^k):

$$(d_{J_1}^{k+1}, p_{J_1}^{k+1}) \in \text{argmax}_{d, p} f((d, d_{J_2}^k \ldots, d_{J_m}^k), (p, p_{J_2}^k \ldots, p_{J_m}^k))$$
A second heuristic: a Gauss-Seidel heuristic

1. Initialize \((d, p)\) to some \((d^0, p^0)\).
2. Let \(m \in \mathbb{Z}_+\) and \(J_1 \cup J_2 \cup \cdots \cup J_m\) be a partition of \(\{1, \ldots, S\}\).
3. Generate sequence of feasible solutions \((d^k, p^k)\):

\[
(d^{k+1}_{J_1}, p^{k+1}_{J_1}) \in \arg \max_{d, p} f((d, d^k_{J_2}, \ldots, d^k_{J_m}), (p, p^k_{J_2}, \ldots, p^k_{J_m}))
\]

\[
(d^{k+1}_{J_2}, p^{k+1}_{J_2}) \in \arg \max_{d, p} f((d^k_{J_1}, d, d^k_{J_3}, \ldots, d^k_{J_m}), (p^k_{J_1}, p, p^k_{J_3}, \ldots, p^k_{J_m}))
\]
A second heuristic: a Gauss-Seidel heuristic

1. Initialize \((d, p)\) to some \((d^0, p^0)\).
2. Let \(m \in \mathbb{Z}_+\) and \(J_1 \cup J_2 \cup \cdots \cup J_m\) be a partition of \(\{1, \ldots, S\}\).
3. Generate sequence of feasible solutions \((d^k, p^k)\):

\[
(d_{J_1}^{k+1}, p_{J_1}^{k+1}) \in \arg\max_{d,p} f((d, d_{J_2}^k, \ldots, d_{J_m}^k), (p, p_{J_2}^k, \ldots, p_{J_m}^k))
\]

\[
(d_{J_2}^{k+1}, p_{J_2}^{k+1}) \in \arg\max_{d,p} f((d_{J_1}^{k+1}, d, d_{J_3}^k, \ldots, d_{J_m}^k), (p_{J_1}^{k+1}, p, p_{J_3}^k, \ldots, p_{J_m}^k))
\]

\[
\vdots
\]

\[
(d_{J_m}^{k+1}, p_{J_m}^{k+1}) \in \arg\max_{d,p} f((d_{J_1}^{k+1}, \ldots, d_{J_{m-1}}^{k+1}, d), (p_{J_1}^{k+1}, \ldots, p_{J_{m-1}}^{k+1}, p))
\]
The results

Academic instance:
- Realistic distribution for preferred departure times.
- Gumbel distribution for random part of utilities.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Lower bounds (20 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frontal SAA</td>
</tr>
<tr>
<td>Q</td>
<td>S</td>
</tr>
<tr>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>200</td>
<td>5</td>
</tr>
</tbody>
</table>
The results

Academic instance:
- Realistic distribution for preferred departure times.
- Gumbel distribution for random part of utilities.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Lower bounds (20 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frontal SAA</td>
</tr>
<tr>
<td>Q</td>
<td>S</td>
</tr>
<tr>
<td>100</td>
<td>3</td>
</tr>
<tr>
<td>200</td>
<td>5</td>
</tr>
</tbody>
</table>
The results

Academic instance:

- Realistic distribution for preferred departure times.
- Gumbel distribution for random part of utilities.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Lower bounds (20 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frontal SAA</td>
</tr>
<tr>
<td>Q S</td>
<td>C</td>
</tr>
<tr>
<td>100 3</td>
<td>33</td>
</tr>
<tr>
<td>200 5</td>
<td>40</td>
</tr>
</tbody>
</table>
The results

Academic instance:
- Realistic distribution for preferred departure times.
- Gumbel distribution for random part of utilities.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Lower bounds (20 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frontal SAA</td>
</tr>
<tr>
<td>100</td>
<td>1159.6 ± 0.8</td>
</tr>
<tr>
<td>200</td>
<td>4290.7 ± 2.2</td>
</tr>
</tbody>
</table>
The results

Academic instance:
- Realistic distribution for preferred departure times.
- Gumbel distribution for random part of utilities.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Lower bounds (20 min)</th>
<th>Upper bounds (1 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Q S C</td>
<td>Frontal SAA</td>
</tr>
<tr>
<td>Q S C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 3 33</td>
<td>1159.6 ± 0.8</td>
<td>1162.7 ± 1.1</td>
</tr>
<tr>
<td>200 5 40</td>
<td>4290.7 ± 2.2</td>
<td>4353.1 ± 2.8</td>
</tr>
</tbody>
</table>
The results

Academic instance:

- Realistic distribution for preferred departure times.
- Gumbel distribution for random part of utilities.

<table>
<thead>
<tr>
<th>Instance</th>
<th>Lower bounds (20 min)</th>
<th>Upper bounds (1 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frontal SAA</td>
<td>Seq. heur.</td>
</tr>
<tr>
<td>Q S C</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 3 33</td>
<td>1159.6 ± 0.8</td>
<td>1162.7 ± 1.1</td>
</tr>
<tr>
<td>200 5 40</td>
<td>4290.7 ± 2.2</td>
<td>4353.1 ± 2.8</td>
</tr>
</tbody>
</table>

Other heuristic: Lagrangian relaxation
⇒ does not improve Frontal SAA for big instances.
Conclusion

- Joint scheduling and pricing: higher revenues.
- Upper bounds: not very precise...
1. General context

2. One-hour schedules maximizing HGV shuttles

3. Joint scheduling and pricing problem

4. Minimizing the waiting time for a one-way shuttle service
Why such a problem?

- Trucks arrive continuously on terminals.
- Huge waiting lines during peak hours.
- Design schedules to decrease congestion (waiting times).
Why such a problem?

- Trucks arrive continuously on terminals.
- Huge waiting lines during peak hours.
- Design schedules to decrease congestion (waiting times).
Why such a problem?

- Trucks arrive continuously on terminals.
- Huge waiting lines during peak hours.

⇒ Design schedules to decrease congestion (waiting times).
Why such a problem?

- Trucks arrive continuously on terminals.
- Huge waiting lines during peak hours.

⇒ Design schedules to decrease congestion (waiting times).
The problem

- One-way trip.
- Infinitesimal users arriving continuously (demand known in advance).
- Company wants to schedule S shuttles of capacity C.
- Peculiar loading process.
The problem

- One-way trip.
- Infinitesimal users arriving continuously (demand known in advance).
- Company wants to schedule S shuttles of capacity C.
- Peculiar loading process.
The problem

- One-way trip.
- Infinitesimal users arriving continuously (demand known in advance).
- Company wants to schedule S shuttles of capacity C.
- Peculiar loading process.
The problem

- One-way trip.
- Infinitesimal users arriving continuously (demand known in advance).
- Company wants to schedule S shuttles of capacity C.
- Peculiar loading process.
Minimizing the waiting time for a one-way shuttle service

Problem

The loading process

D vs t
The loading process
The loading process
Minimizing the waiting time for a one-way shuttle service

The problem

- One-way trip.
- Infinitesimal users arriving continuously (demand known in advance).
- Company wants to schedule S shuttles of capacity C.
- Peculiar loading process.
Minimizing the waiting time for a one-way shuttle service

Problem

The problem

- One-way trip.
- Infinitesimal users arriving continuously (demand known in advance).
- Company wants to schedule S shuttles of capacity C.
- Peculiar loading process.

Objectives

- Minimize maximum waiting time of users \Rightarrow Problem P_{max}
- Minimize average waiting time of users \Rightarrow Problem P_{ave}

\rightarrow Waiting time: time between arrival time on terminal and departure of shuttle.
The model (1/3)

Variables

- d_j: departure time of the jth shuttle.
- y_j: cumulative loads for shuttles 1 to j.

Parameters

- S: number of shuttles.
- C: capacity.
- ν: loading rate (loading x users takes a time νx).
- T: time horizon.
- $D: [0, T] \rightarrow \mathbb{R}_+$: cumulative demand known a priori (oracle).
- We assume that $D(\cdot)$ is upper semicontinuous.
The model (1/3)

Variables
- d_j: departure time jth shuttle.
- y_j: cumulative loads for shuttles 1 to j.

Parameters
- S: number of shuttles.
- C: capacity.
- ν: loading rate (loading x users takes a time νx).
- T: time horizon.
- $D : [0, T] \rightarrow \mathbb{R}_+$: cumulative demand known a priori (oracle).
- we assume that $D(\cdot)$ is upper semicontinuous.
The model (1/3)

Variables

- d_j: departure time jth shuttle.
- y_j: cumulative loads for shuttles 1 to j.

Parameters

- S: number of shuttles.
- C: capacity.
- ν: loading rate (loading x users takes a time νx).
- T: time horizon.
- $D: [0, T] \to \mathbb{R}^+$: cumulative demand known \textit{a priori} (oracle)

→ we assume that $D(\cdot)$ is upper semicontinuous.
The model (2/3)

Arrival time of user $y \rightarrow$ function $\tau(\cdot)$, pseudo-inverses of $D(\cdot)$:

$$\tau(y) = \inf \{ t \in [0, T] : D(t) \geq y \}.$$

Objective function

$$g^{\text{ave}}(d, y) = \frac{1}{D(T)} \sum_j \int_{y_{j-1}}^{y_j} (d_j - \tau(y)) \, dy$$
The model (2/3)

Arrival time of user $y \rightarrow$ function $\tau(\cdot)$, pseudo-inverses of $D(\cdot)$:

$$\tau(y) = \inf \{ t \in [0, T] : D(t) \geq y \}.$$

Objective function

$$g^{\text{ave}}(d, y) = \frac{1}{D(T)} \sum_j \int_{y_{j-1}}^{y_j} (d_j - \tau(y)) \, dy$$
The model (2/3)

Arrival time of user $y \rightarrow \text{function } \tau(\cdot)$, pseudo-inverses of $D(\cdot)$:

$$\tau(y) = \inf \{ t \in [0, T] : D(t) \geq y \} .$$

Objective function

$$g^{\text{ave}}(d, y) = \frac{1}{D(T)} \sum_j \int_{y_{j-1}}^{y_j} (d_j - \tau(y)) \, dy$$

Similar function $g^{\text{max}}(d, y)$ for maximum waiting time.
Minimizing the waiting time for a one-way shuttle service

The model (3/3)

\[
\begin{align*}
\text{Min}_{d, y} & \quad g(d, y) \\
\text{s.t.} & \quad y_j - y_{j-1} \leq C \\
& \quad y_{j-1} \leq y_j \\
& \quad d_{j-1} \leq d_j \\
& \quad y_S = D(T) \\
& \quad d_j \geq \tau(y_j) + \nu(y_j - y_{j-1}) \\
& \quad y_0 = 0.
\end{align*}
\]
When demand is a step function

Theorem

Assume that $D(\cdot)$ is a step function defined with K discontinuities, and that $\nu = 0$. There is an algorithm computing an optimal solution of P^{ave} in $O(K^2 S)$.
Minimizing the waiting time for a one-way shuttle service

Piecewise constant demand

Precision on \(\nu = 0 \)
Precision on $\nu = 0$
Precision on $\nu = 0$
An algorithm for P^{ave} and $C = \infty$

- Shortest path in S arcs minimizing sum on arcs in directed acyclic graph with $K + 1$ vertices
 \[\Rightarrow \text{complexity } O(K^2S). \]
- $C < \infty$, idem in graph with $O(K)$ vertices.
An algorithm for P^{ave} and $C = \infty$

- Shortest path in S arcs minimizing sum on arcs in directed acyclic graph with $K + 1$ vertices
 \Rightarrow complexity $O(K^2 S)$.
- $C < \infty$, idem in graph with $O(K)$ vertices.
An algorithm for P^ave and $C = \infty$

- Shortest path in S arcs minimizing sum on arcs in directed acyclic graph with $K + 1$ vertices
 \Rightarrow complexity $O(K^2 S)$.
- $C < \infty$, idem in graph with $O(K)$ vertices.
An algorithm for P^{ave} and $C = \infty$

- Shortest path in S arcs minimizing sum on arcs in directed acyclic graph with $K + 1$ vertices
 \Rightarrow complexity $O(K^2 S)$.
- $C < \infty$, idem in graph with $O(K)$ vertices.
An algorithm for P_{ave} and $C = \infty$

- Shortest path in S arcs minimizing sum on arcs in directed acyclic graph with $K + 1$ vertices
 \Rightarrow complexity $O(K^2S)$.
- $C < \infty$, idem in graph with $O(K)$ vertices.
An algorithm for P^{ave} and $C = \infty$

- Shortest path in S arcs minimizing sum on arcs in directed acyclic graph with $K + 1$ vertices
 \Rightarrow complexity $O(K^2 S)$.
- $C < \infty$, idem in graph with $O(K)$ vertices.
An algorithm for P^{ave} and $C = \infty$

- Shortest path in S arcs minimizing sum on arcs in directed acyclic graph with $K + 1$ vertices
 \Rightarrow complexity $O(K^2 S)$.

- $C < \infty$, idem in graph with $O(K)$ vertices.
An algorithm for P^{ave} and $C = \infty$

- Shortest path in S arcs minimizing sum on arcs in directed acyclic graph with $K + 1$ vertices
 \Rightarrow complexity $O(K^2 S)$.
- $C < \infty$, idem in graph with $O(K)$ vertices.
An approximation scheme for P^{ave}

Theorem

Suppose that $D(\cdot)$ admits right derivatives everywhere (denoted $D'_+(t)$) and $\inf_{t \in [0, T)} D'_+(t)$ is positive. Then, for any positive integer M, a feasible solution of value

$$\text{SOL} \leq \text{OPT} + O\left(\frac{S^2}{M}\right)$$

can be computed in $O(SM^3)$.
Some elements of proof (1/2)
Lemma

There exists a collection of problems \((P^n)\), with parameter \(\eta\), providing:

(i) lower bound \(LB^n\) of \(OPT\).
(ii) upper bound \(UB^n\) of \(OPT\).
(iii) \(\lim_{\eta \to 0} UB^n - LB^n = 0\).
Some elements of proof (1/2)

Lemma

There exists a collection of problems \((P^n)\), with parameter \(\eta\), providing:

(i) lower bound \(\text{LB}^n\) of \(\text{OPT}\).

(ii) upper bound \(\text{UB}^n\) of \(\text{OPT}\).

(iii) \(\lim_{\eta \to 0} \text{UB}^n - \text{LB}^n = 0\).
Some elements of proof (1/2)

Lemma

There exists a collection of problems \((P^n)\), with parameter \(\eta\), providing:

(i) lower bound \(LB^n\) of \(OPT\).

(ii) upper bound \(UB^n\) of \(OPT\).

\[\lim_{\eta \to 0} UB^n - LB^n = 0. \]
Some elements of proof (1/2)

Lemma

There exists a collection of problems \((P^n)\), with parameter \(\eta\), providing:

(i) lower bound \(LB^n\) of \(OPT\).

(ii) upper bound \(UB^n\) of \(OPT\).

(iii) \(\lim_{\eta \to 0} UB^n - LB^n = 0\).
Some elements of proof (1/2)

Lemma

There exists a collection of problems \((P^n)\), with parameter \(\eta\), providing:

(i) lower bound \(LB^n\) of \(OPT\).

(ii) upper bound \(UB^n\) of \(OPT\).

(iii) \(\lim_{\eta \to 0} UB^n - LB^n = 0\).

→ \(\eta\) depends on \(M\).

→ Problems \((P^n)\): Demand is discretized with step \(\eta\)
 ⇒ Shortest path in directed acircuitoic graph.
Elements of proof (2/2)
Existence of optimal solution of P^{ave}?

- $\tau(\cdot)$ lower semicontinuous \implies set of constraints is closed.
 \implies set of constraints is compact!
- $g^{\text{ave}}(d, y)$ continuous.
Existence of optimal solution of P^{ave}?

$$\text{Min}_{d,y} \quad g^{\text{ave}}(d, y) = \frac{1}{D(T)} \sum_j \int_{y_{j-1}}^{y_j} (d_j - \tau(y)) \, dy$$

s.t. $\quad y_j - y_{j-1} \leq C$

$\quad y_{j-1} \leq y_j$

$\quad d_{j-1} \leq d_j$

$\quad y_S = D(T)$

$\quad d_j \geq \tau(y_j) + \nu(y_j - y_{j-1})$

$\quad y_0 = 0.$

- $\tau(\cdot)$ lower semicontinuous \rightarrow set of constraints is closed.

\Rightarrow set of constraints is compact!

- $g^{\text{ave}}(d, y)$ continuous.
Minimizing the waiting time for a one-way shuttle service

Approximation scheme for P^ave

Existence of optimal solution of P^ave?

$$\text{Min}_{d,y} \quad g^\text{ave}(d, y) = \frac{1}{D(T)} \sum_j \int_{y_{j-1}}^{y_j} (d_j - \tau(y)) \, dy$$

s.t. \quad y_j - y_{j-1} \leq C

\quad y_{j-1} \leq y_j

\quad d_{j-1} \leq d_j

\quad y_S = D(T)

\quad d_j \geq \tau(y_j) + \nu(y_j - y_{j-1})

\quad y_0 = 0

\quad d_j \leq T + \nu C.

- $\tau(\cdot)$ lower semicontinuous \Rightarrow set of constraints is closed.

\Rightarrow set of constraints is compact!

- $g^\text{ave}(d, y)$ continuous.
Existence of optimal solution of P^ave?

$$\text{Min}_{d, y} \quad g^\text{ave}(d, y) = \frac{1}{D(T)} \sum_j \int_{y_{j-1}}^{y_j} (d_j - \tau(y)) \, dy$$

s.t.

$$y_j - y_{j-1} \leq C$$
$$y_{j-1} \leq y_j$$
$$d_{j-1} \leq d_j$$

$$y_S = D(T)$$
$$d_j \geq \tau(y_j) + \nu(y_j - y_{j-1})$$
$$y_0 = 0$$
$$d_j \leq T + \nu C.$$

- $\tau(\cdot)$ lower semicontinuous \rightarrow set of constraints is closed.
- Set of constraints is compact!
- $g^\text{ave}(d, y)$ continuous.
Existence of optimal solution of P^{ave}?

$$\min_{d,y} \quad g^{\text{ave}}(d, y) = \frac{1}{D(T)} \sum_j \int_{y_{j-1}}^{y_j} (d_j - \tau(y)) \, dy$$

s.t.

$$y_j - y_{j-1} \leq C$$
$$y_{j-1} \leq y_j$$
$$d_{j-1} \leq d_j$$
$$y_S = D(T)$$
$$d_j \geq \tau(y_j) + \nu(y_j - y_{j-1})$$
$$y_0 = 0$$
$$d_j \leq T + \nu C.$$

- $\tau(\cdot)$ lower semicontinuous \rightarrow set of constraints is closed.

\Rightarrow set of constraints is compact!

- $g^{\text{ave}}(d, y)$ continuous.
Existence of optimal solution of \(P^{\text{ave}} \)?

\[
\text{Min}_{d,y} \quad g^{\text{ave}}(d, y) = \frac{1}{D(T)} \sum_j \int_{y_{j-1}}^{y_j} (d_j - \tau(y)) \, dy
\]

s.t.

\[
\begin{align*}
y_j - y_{j-1} & \leq C \\
y_{j-1} & \leq y_j \\
d_{j-1} & \leq d_j \\
y_S & = D(T) \\
d_j & \geq \tau(y_j) + \nu(y_j - y_{j-1}) \\
y_0 & = 0 \\
d_j & \leq T + \nu C.
\end{align*}
\]

- \(\tau(\cdot) \) lower semicontinuous \(\rightarrow \) set of constraints is closed.
- \(\Rightarrow \) set of constraints is compact!
- \(g^{\text{ave}}(d, y) \) continuous.
Table of results

<table>
<thead>
<tr>
<th>p_{max}</th>
<th>p_{ave}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exact algorithm: $O(K^2 S)$

Approx. algorithm: $O(S M^3)$
Table of results

<table>
<thead>
<tr>
<th></th>
<th>(p_{\max})</th>
<th>(p_{\text{ave}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>(O(K^2 S'))</td>
<td>(O(K^2 S))</td>
</tr>
<tr>
<td>Approx.</td>
<td>(O(S M^3))</td>
<td></td>
</tr>
</tbody>
</table>

Laurent DAUDET
PhD Defense
December 22nd, 2017
Table of results

<table>
<thead>
<tr>
<th></th>
<th>p_{max}</th>
<th>p_{ave}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact</td>
<td>$O(K^2S')$</td>
<td>$O(K^2S)$</td>
</tr>
<tr>
<td>Approx.</td>
<td>$O\left(S\log\frac{S}{\varepsilon}\right)$</td>
<td>$O(SM^3)$</td>
</tr>
</tbody>
</table>

Latex code for the table:

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|}
\hline
 & p_{max} & p_{ave} \\
\hline
Exact & $O(K^2S')$ & $O(K^2S)$ \\
Approx. & $O\left(S\log\frac{S}{\varepsilon}\right)$ & $O(SM^3)$ \\
\hline
\end{tabular}
\end{table}
Table of results

<table>
<thead>
<tr>
<th></th>
<th>(P_{\text{max}})</th>
<th>(P_{\text{ave}})</th>
<th>(P_{\text{max return}})</th>
<th>(P_{\text{ave return}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact algorithm</td>
<td>(O(K^2 S'))</td>
<td>(O(K^2 S'))</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approx. algorithm</td>
<td>(O(S \log \frac{S}{\varepsilon}))</td>
<td>(O(SM^{-3}))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Minimizing the waiting time for a one-way shuttle service

Results
Table of results

<table>
<thead>
<tr>
<th></th>
<th>P_{max}</th>
<th>P_{ave}</th>
<th>$P_{\text{max \ return}}$</th>
<th>$P_{\text{ave \ return}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact algorithm</td>
<td>$O(K^2S')$</td>
<td>$O(K^2S')$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approx. algorithm</td>
<td>$O\left(S \log \frac{S}{\varepsilon}\right)$</td>
<td>$O\left(SM^3\right)$</td>
<td></td>
<td>$O\left(\beta^3 S M^{2S+1}\right)$</td>
</tr>
</tbody>
</table>
Table of results

<table>
<thead>
<tr>
<th></th>
<th>$\mathbf{p_{\text{max}}}$</th>
<th>$\mathbf{p_{\text{ave}}}$</th>
<th>$\mathbf{p_{\text{max return}}}$</th>
<th>$\mathbf{p_{\text{ave return}}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact algorithm</td>
<td>$O(K^2S)$</td>
<td>$O(K^2S)$</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Approx. algorithm</td>
<td>$O(S \log \frac{S}{\varepsilon})$</td>
<td>$O(SM^3)$</td>
<td>$O(\beta^3S M^{2S+1})$</td>
<td>?</td>
</tr>
<tr>
<td>Approx. algorithm</td>
<td>$O(SM^3)$</td>
<td>$O(SM^3)$</td>
<td>?</td>
<td>?</td>
</tr>
</tbody>
</table>
Table of results

<table>
<thead>
<tr>
<th></th>
<th>P_{max}</th>
<th>P_{ave}</th>
<th>$P_{\text{max return}}$</th>
<th>$P_{\text{ave return}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact algorithm</td>
<td>$O(K^2S)$</td>
<td>$O(K^2S)$</td>
<td>?</td>
<td>?</td>
</tr>
<tr>
<td>Approx. algorithm</td>
<td>$O\left(S\log\frac{S}{\varepsilon}\right)$</td>
<td>$O\left(SM^3\right)$</td>
<td>Approx. algorithm</td>
<td>$O\left(\beta^3S M^{2S+1}\right)$</td>
</tr>
<tr>
<td>Closed-form expression</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>Closed-form expression</td>
<td>$O(1)$</td>
</tr>
<tr>
<td>Exact algorithm</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>Exact algorithm</td>
<td>$O(S')$</td>
</tr>
</tbody>
</table>
Table of results

<table>
<thead>
<tr>
<th></th>
<th>P_{max}</th>
<th>P_{ave}</th>
<th>$P_{\text{max return}}$</th>
<th>$P_{\text{ave return}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exact algorithm</td>
<td>$O(K^2 S')$</td>
<td>$O(K^2 S')$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Approx. algorithm</td>
<td>$O(S \log \frac{S}{\epsilon})$</td>
<td>$O(S M^3)$</td>
<td>$O(\beta^3 S M^{2S+1})$</td>
<td></td>
</tr>
<tr>
<td>Closed-form expression</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(S')$</td>
</tr>
</tbody>
</table>

- K: number of stops
- S: number of passengers
- ϵ: precision
- β: parameter
- M: number of time slots
Conjecture

There exists an optimal solution of $P_{\text{ave}}^{\text{return}}$.
A conjecture for P_{ave} return

Conjecture

There exists an optimal solution of P_{ave} return.

→ If such conjecture true, similar theorem than for P_{max} return.
General conclusion

- Three main problems:
 - Operational scheduling problem with maximum number of shuttles.
 - Prospective scheduling and pricing problem with maximum revenue.
 - Theoretical scheduling problem with minimum waiting time.

- Various methods:
 - Mixed Integer Linear Programming.
 - Stochastic Optimization and Sample Average Approximation.
 - Lagrangian relaxation.
 - Heuristics.
 - Exact algorithms and approximation schemes.
Thank you for your attention.