//\begin{verbatim} // exec sustainable_yield_tuna.sce R_tuna=2.25; // discrete-time intrinsic growth R=R_tuna; K_tuna = 250000; // carrying capacity in metric tons K = K_tuna; c_tuna=2500; // unit cost of effort in dollars per standard fishing day p_tuna=600; // market price in dollars per metric ton // BEVERTON-HOLT DYNAMICS R_BH = R_tuna ; b_BH = (R_BH-1) / K ; // SUSTAINABLE YIELD FUNCTION function [SY]=sust_yield(B) SY=B-( B ./ ( R_BH - b_BH *B ) ) ; endfunction B_MSE = ( R_BH - sqrt(R_BH) ) / b_BH ; // maximum sustainable equilibrium MSY=sust_yield(B_MSE) ; // maximum sustainable yield xset("window",1); xbasc(); abcisse=linspace(0,K,100); plot2d(abcisse,sust_yield(abcisse),rect=[0,0,K,1.1*MSY]); H_MSY=linspace(0,MSY,20); plot2d(B_MSE*ones(H_MSY),H_MSY,style=-6); xtitle("Sustainable yield for the ... Beverton-Holt model (tuna)",... "biomass (metric tons)","catches (metric tons)"); // private property equilibrium cost=c_tuna; price=p_tuna; B_PPE = ... ( R_BH - sqrt(R_BH - (b_BH * cost / price) ) ) / b_BH ; //\end{verbatim}