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Optimization for subway stations

Paris urban railway transport system energy consumption =
% subway stations + % traction system

Subway stations present a significantly high particulate
matters concentration

We use optimization to harvest unexploited energy

ressources and improve air quality.
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@ Subway stations optimal management problem
@ Energy
e Air quality
@ Energy/Air management system
@ Multistage stochastic optimization problem formulation

© Two methods to solve the problem
@ We are looking for a policy
@ Dynamic programming in the non Markovian case
@ Model Predictive Control

e Numerical results
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@ Results and conclusion
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Outline

@ Subway stations optimal management problem
@ Energy
e Air quality
o Energy/Air management system
@ Multistage stochastic optimization problem formulation
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Subway stations typical energy consumption
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Subway stations have unexploited energy ressources
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Energy recovery requires a buffer
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Air quality
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Subways arrivals generate particulate matters
Rails/brakes wear and resuspension increase PM10 concentration

Train braking

Mechanical
Braking

2 mg of PM10 generated

Train braking

Regenerative
braking

Mechanical
Braking

Recovering energy improves air quality

1.5 mg of PM10 generated
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Energy /Air
management system
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Subway station microgrid concept
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We control the battery every 5 seconds

— Surplus
Train t
Demand B— B+ Recovered
EStation t Ut Ut ETrain t
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EStationt EBattm‘yt
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Some input variables display stochasticity

Braking energy and outside PM10 concentration every 5s
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We have many uncertainties

Let W; the random variables vector of uncertainties at time t:

Outdoor particles concentration : €St

Available
Train t

. . . Demand
Station consumption : ES/i2" .

Cost of electricity : Cost;

t
Regenerative braking : E

Particles generation : Qp;

Resuspension rate : pf,

Deposition rate : p”,
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Objective: We want to minimize energy consumption and
particles concentration

A parameter \ measures the relative weights of the 2 objectives:
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Z Cost; (EStationt + EBatteryt) +A CP t
t=0 ~~ -~ v
Grid supply PM10

D

o ,

K’%tr

oo’y
£-3

e
efficacity
Stations Optimal Management

May 17, 2017 12 /27



We formulate a

multistage stochastic
optimization problem
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We set a stochastic optimal control problem

minE(Z Cost,(ES"PPY o ESUP ) 4 \cln ) }Objective

Ueu Stationt Battery ¢
s.t
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Summary of the equations

Soc;
@ State of the system: X; = C/;”t
Fl
CP oort
B—
U;
e Controls: U; = Ukt |,
dVentil
t

@ Dynamics:
Xt+1 = ft(xta U, Wt+1)

@ We add the non-anticipativity constraints:

O‘(Ut) C (T(Wl, . Wt)
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Compact formulation of a
stochastic optimal control problem

We obtain a stochastic optimization problem consistent with the general
form of a time additive cost stochastic optimal control problem:

T-1
T,IBE<; Le(Xt, Up, Wep1) + K(XT)>

st Xer1 = fo(Xe, Up, Wepq)
O'(Ut) C U(XO; W17 sy Wt)
U; e U,
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Outline

© Two methods to solve the problem
@ We are looking for a policy
@ Dynamic programming in the non Markovian case
@ Model Predictive Control
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We are looking for a policy
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What is a solution?
In the general case an optimal solution is a function of past uncertainties:

Ut j O'(Xo, Wl, ceey Wt) = Ut = 7Tt(X0, Wl, ceey Wt)
This is an history-dependent policy

In the Markovian case (noises time independence) it is enough to restrict
the search to state feedbacks:

Ut = 7rt(Xt)

In the Markovian case we can introduce value functions:

T-1
Vx € Xy, Vi(x) = mﬂinﬂ«:( 3 Lo(Xe, o (Xe), Wer) + K(xT))
t'=t
st X; = x and dynamics
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Dynamic programming in
the non Markovian case
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Dynamic programming in the general case

Bellman equation does not hold in the non Markovian case.

Let P be the probability s.t (W;)¢c[j1, 7] are time independent but keep the
same marginal laws.

Algorithm

Offline: We produce value functions with Bellman equation using this
probability measure:

Ve(x) = min Ep, <Lt(X, u, Weg1) + Ve (fi(x, u, Wr+1))>
Online: We plug the computed value functions as future costs at time t:

uy € arg min Eﬁj

" (Lt(Xt, u, Wept) + Vega(fe(xe, u, Wt+1)))
ucU; t

4
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We produce history-dependent controls

With B, the probability updating W, ; marginal law taking into account
all the past informations: Vi <t, W; = w;.

If the (W;)te1. 741 are independent the controls are optimal and P, = P,

Stochastic Dynamic Programming suffers the well known "curse of
dimensionality".
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Model Predictive Control
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Rollout algorithms

To avoid value functions computation we can plug a lookahead future cost
for a given policy:

u; € arg %\In Et(Lt(Xt, u, Wt+1) + Jz.il(ft(Xt, u, Wt+]_)))
uelUs

It gives the cost of controlling the system in the future according to the
given policy:

T-1

¥x € Xep1, JTip(x) :Et< 3 Lo(Xe,mo(Xe), Wyn) + K(xT))
t'=t+1

st Xtr1 = x, and the dynamics
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Model Predictive Control

Choosing 7t in the class of open loop policies minimizing the expected
future cost:

Vi>t+1, Ju; € R", Vx, 7f(x) = uy;
T-1
uy € arg min min IEt(Lt(xt, u, Wepp) + Z Lo ( Xy, uyr, Wt/+1))

velU;  (Uey1,..uT_1) 1
With E; replacing noises by forecasts, we obtain a deterministic problem.
Algorithm

Online: At every MPC step t, compute a forecast (Wyy1, ..., Wry1) using
the observations Vi < t, W; = w;. Then compute control u;:

T-1
uy € arg min min Lt(Xt, u, V_|/t+]_) + E Lt’(Xt’7 ugr, Wt’+l)
veU; (Uern,...,ur—1) Wi
v
4
. . . . . efficacit
MPC is often defined with a rolling horizon.
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© Numerical results
@ Random variables modeling
@ Resolution methods
@ Results and conclusion
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Random variables modeling
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Some random variables are taken deterministic

Outdoor particles concentration : CS“t,
; ; . [Available
Regenerative braking : E7/7/7¢,

Station consumption : EZemand
Cost of electricity : Cost
Particles generation : Qp,

Resuspension rate : pF,

Deposition rate : p°,
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Stochastic models

We consider multiple equiprobable scenarios

Braking energy and outside PM10 concentration every 5s
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We deduce discrete marginal laws from these scenarios
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Details on the resolution methods

Stochastic Dynamic Programming
We compute value functions every 5s.
We compute a control every 5s.
The algorithm is coded in Julia.

julia

Model Predictive Control

The deterministic problem is linearized, leading to a MILP.
It is solved every 15 min with a 2 hours horizon.

We use two forecast strategies:

o MPC1: Expectation of each noise ignoring the noises dependence

@ MPC2: Scenarios where the next outside PM10 concentration is not
too far from the previous one
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Results
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Air quality comparaison
Reference case:

Ventilation airflow reference scenario Particles concentration reference scenario
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Optimized with SDP:

Ventilation airflow optimized

Particles concentration optimized
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Battery control over a scenario

Result produced using SDP with a regular day

75 Battery Control optimized
T T

Battery state of charge (%)

Time (h)
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We achieve energy costs savings of 30%

Assessor: 50 scenarios of 24h with time step = 5 sec

Reference: Energy consumption cost over a day,
without battery and ventilation control

MPC1 MPC2 SDP

Offline computation time 0 0 12h
Online computation time  [10s,200s] [10s,200s] [Os,1s]
Average economic savings -26.2% -27.4% -30.7%
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Conclusion and ongoing work

Our study leads to the following conclusions:

o A battery and a proper ventilation control provide
significant economic savings

@ SDP provides slightly better results than MPC

@ SDP requires more offline computation time, but is quite fast online
We are now focusing on:

@ Using other methods to handle more state/control variables (SDDP)

e Taking into account more uncertainty sources

o Calibrating air quality models
for a more realistic concentration dynamics behavior

Ultimate goal: apply our methods
to laboratory and real size demonstrators
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