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Market rules for solar plants in the French NIZ

• We operate a solar plant over one day
with discrete time steps t ∈ {0, 1, . . . ,T}

0 T

• For every operating day

• In the day-ahead stage, producers must supply
a power production profile p ∈ RT

• In the intraday stage, producers manage the power plant
and deliver a power profile d ∈ RT
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Cost structure for the intra-day problem

During the intraday stage, the delivered power d
is compared with the engaged power p
to compute the stage cost

Ct(dt , pt) = −ct∆tdt︸ ︷︷ ︸
reward

+Cp
t (dt , pt)︸ ︷︷ ︸
penalty

where

Cp
t (dt , pt) =


ct∆t

[(
dt−d(pt)

)2
p − 0.2

(
dt − d(pt)

)]
, if dt < d(pt)

0 , if d(pt) ≤ dt ≤ d(pt)

ct∆tpt , if d(pt) < dt

5



Engaged power vs delivered power
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Schematic organization of the solar plant
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• s ∈ [0, s]T+1 state of charge (state)

• g ∈ [0, p]T generated power (uncertainty)

• v c ∈ [0, g ]T curtailed power (control)

• vb ∈ [v , v ]T battery power (control)

• d = g − vb − vc delivered power
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Stochastic optimal control framework

• We introduce the the state, control and noise variables

x =

(
s

g

)
, u =

(
vb

v c

)
, w = ε

• The state process X is ruled by the dynamics

Xt+1 = ft(Xt ,Ut ,Wt+1) =

(
St + ρcVb

t
+ − 1

ρd
Vb

t
−

αtGt + βt + εt+1

)

• The stage costs formulate as

Lt(Xt ,Ut ,Wt+1, pt) = Ct(Gt+1 − Vb
t − Vc

t+1, pt)
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Intraday NIZ problem

Minimizing the intraday operating cost
formulates as a multistage stochastic optimization problem

parametrized by p

min
U0,...,UT−1

E
[ T−1∑

t=0

Lt(Xt ,Ut ,Wt+1, pt) + K (XT , pT )
]

X0 = x0

Xt+1 = ft(Xt ,Ut ,Wt+1) , ∀t ∈ {0, . . . ,T − 1}
Ut ∈ Ut(Xt , pt) , ∀t ∈ {0, . . . ,T − 1}
σ(Ut) ⊆ σ(W1, . . . ,Wt) , ∀t ∈ {0, . . . ,T − 1}
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Coupled day-ahead and intraday problem

The optimal management of the solar plant
over one operating day formulates as

day-ahead︷︸︸︷
min
p∈P

intra-day value Φ(p)︷ ︸︸ ︷
min

U0,...,UT−1
E
[ T−1∑

t=0

Lt(Xt ,Ut ,Wt+1, pt) + K (XT , pT )
]

X0 = x0

Xt+1 = ft(Xt ,Ut ,Wt+1) , ∀t ∈ {0, . . . ,T − 1}
Ut ∈ Ut(Xt , pt) , ∀t ∈ {0, . . . ,T − 1}
σ(Ut) ⊆ σ(W1, . . . ,Wt) , ∀t ∈ {0, . . . ,T − 1}
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Computing the value Φ(p) of the intraday problem

For p ∈ P we may compute by dynamic programming

Φ(p) = V0(x0, p)

where for t ∈ {0, . . . ,T} and x ∈ Xt

we define the parametric value functions

VT (x , p) = K (x , p)

Vt(x , p) = min
u∈Ut(x,pt)

E
[
Lt(x , u,Wt+1, pt) + Vt+1

(
ft(x , u,Wt+1), p

)]
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Descent method for the day-ahead problem

• We consider applications where the value function Φ

and the constraint set P are convex

• We want to apply a first order descent algorithm

Projected (sub)gradient algorithm

input: p0 ∈ P, {αk}k=1...K ∈ RK
+

for k = 1 . . .K do
compute yk as a (sub)gradient of Φ at pk

update pk+1 = ΠP(pk − αkyk)

end
output: pK

how do we compute a (sub)gradient of Φ at pk ??
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Smoothing the cost function with the Moreau envelope
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Gradient of a convex differentiable value function

When the value functions are convex and differentiable
with respect to p we compute the gradient ∇pΦ(pk)

where for t ∈ {0, . . . ,T} and x ∈ Xt

u∗ ∈ arg min
u∈Ut(x)

E
[
Lµt (x , u,Wt+1, p

k
t ) + Vt+1

(
ft(x , u,Wt+1), pk

)]
∇pVt(x , p

k) = E
[
∇pL

µ
t (x , u∗,Wt+1, p

k
t ) +∇pVt+1

(
ft(x , u

∗,Wt+1), pk
)]
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Polyhedral approximation with SDDP

When the value functions are convex and non-differentiable
with respect to p we apply the SDDP algorithm to obtain polyhedral
lower apporximations

• After each forward-bakward iteration n ∈ {1, . . . ,N}
we add a new cut 〈· , αn

t 〉+ βn
t

• Under convexity assumptions we have convergence guarantees
of the polyhedral approximate

V N
t (x , pk) = max

1≤n≤N

( 〈
(x , pk) , αn

t

〉
+ βn

t

)
≤ Vt(x , p

k)
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Subgradient of a convex non-differentiable value functions

We can evaluate an approximate subgardient of ∂Φ(pk)

by taking yk ∈ ∂V N
0 (x , pk) as a dual variable

of the constrained problem

min
x,p

V N
0 (x , pk)

s.t. p = pk [yk ]

Since V N
0 (x , pk) is polyhedral the above problem is a LP
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Numerical results of the day-ahead optimization minp∈P Φ(p)
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Computing time performance

Steps
Avg. time /
(sub)gradient
call (seconds)

Avg. time /
iteration
(seconds)

Avg. number
of cuts /
iteration

µSDP+GD 35 2.55 2.71 -
µSDP+QN 12 2.55 10.17 -
SDDP+SubGD 100 2.55 2.68 17
SDDPt×2+SubGD 100 5.10 5.23 37
SDDPt×3+SubGD 100 7.65 8.02 55
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Intraday simulation: experimental context

• We use PV forecast and observed data
from Schneider Electric’s EMSx dataset

• We use 1 year of data for calibration

• We another 1 year of data for simulation

• We simulate the management of 365 consecutive days

• We apply the French ZNI market rules
but we do not consider intraday profile re-submission
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Intraday simulation: methods

We consider two methods

• Stochastic method based on µSDP+QN
• day-ahead : we use our gradient method

with a smoothing of the cost to compute daily profiles
• intraday : we perform intraday simulation

with Stochastic Dynamic Programming

• Deterministic method based on MPC
• day-ahead : we use forecasts and a deterministic MIQP solver

to compute daily profiles
• intraday : we perform intraday simulation

with Model Predictive Control

27



Intraday simulation: numerical results

Method Total yearly gain (e)
Deterministic (MPC) 560 410
Stochastic (µSDP+QN) 611 681

Our stochastic method gives 8% of gain
versus a deterministic one
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Conclusion

• Our approach gives promising results: 8% of gain
on the (simplified) NIZ use case

• Question 1 : how does it perform on
the complete NIZ use case ?

• Question 2 : extension of the method
to other energy markets ?
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