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Usually houses import electricity from the grid
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But more and more houses are equipped with solar panel
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Is it worth to add a local grid to exchange electricity?
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Is it worth to connect different houses together inside a district?

Challenges:

• Handle electrical exchanges between houses

We turn to mathematical optimization to answer the question
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Two commandments to rule them all

HOUSE 
Thou shall:

• Satisfy thermal comfort

• Optimize operational costs
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For each house, we consider the electrical system...
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... and the thermal enveloppe
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We introduce states, controls and noises
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• Stock variables Xt =
(
Bt ,Ht , θ

i
t , θ

w
t

)
• Bt , battery level (kWh)

• Ht , hot water storage (kWh)

• θi
t , inner temperature (◦C)

• θw
t , wall’s temperature (◦C)

• Control variables Ut =
(
F+

B,t ,F
−
B,t ,FT ,t ,FH,t

)
• F+

B,t , energy stored in the battery

• F−
B,t , energy taken from the battery

• FT ,t , energy used to heat the hot water tank

• FH,t , thermal heating

• Uncertainties Wt =
(
DE

t ,D
DHW
t ,Pext

t , θe
t

)
• DE

t , electrical demand (kW)

• DDHW
t , domestic hot water demand (kW)

• Pext
t , external radiations (kW)

• θe
t , external temperature (◦C)
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Discrete time state equations

So we have the four state equations (all linear):

Bt+1 =αB Bt + ∆T
(
ρc F +

B,t −
1

ρd
F−

B,t

)
Ht+1 =αH Ht + ∆T

[
FT ,t − DDHW

t

]
θw

t+1 =θw
t +

∆T

cm

[
θi

t − θw
t

Ri + Rs
+
θe

t − θw
t

Rm + Re
+ γFH,t +

Ri

Ri + Rs
P int

t +
Re

Re + Rm
Pext

t

]

θi
t+1 =θi

t +
∆T

ci

[
θw

t − θi
t

Ri + Rs
+
θe

t − θi
t

Rv
+
θe

t − θi
t

Rf
+ (1 − γ)FH,t +

Rs

Ri + Rs
P int

t

]

which will be denoted:

Xt+1 = ft(Xt ,Ut ,Wt+1)
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Prices and temperature setpoints vary along time
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• Tf = 24h, ∆T = 15mn

• Electricity peak and off-peak

hours

• πE
t = 0.09 or 0.15 euros/kWh

• Temperature set-point

θ̄i
t = 16◦C or 20◦C
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The costs we have to pay

• Cost to import electricity from the network

− bE
t max{0,−FNE ,t+1}︸ ︷︷ ︸

selling

+πE
t max{0,FNE ,t+1}︸ ︷︷ ︸

buying

where we define the recourse variable (electricity balance):

FNE ,t+1︸ ︷︷ ︸
Network

= DE
t+1︸︷︷︸

Demand

+F+
B,t − F−

B,t︸ ︷︷ ︸
Battery

+ FH,t︸︷︷︸
Heating

+ FT ,t︸︷︷︸
Tank

− Fpv,t︸︷︷︸
Solar panel

• Virtual Cost of thermal discomfort: κth( θi
t − θ̄i

t︸ ︷︷ ︸
deviation from setpoint

)
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Piecewise linear cost

Penalize temperature if

below given setpoint
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Instantaneous and final costs for a single house

• The instantaneous convex costs are

Lt(Xt ,Ut ,Wt+1) = −bE
t max{0,−FNE ,t+1}︸ ︷︷ ︸

buying

+πE
t max{0,FNE ,t+1}︸ ︷︷ ︸

selling

+ κth(θi
t − θ̄i

t)︸ ︷︷ ︸
discomfort

• We add a final linear cost

K (XTf
) = −πHHTf

− πBBTf

to avoid empty stocks at the final horizon Tf
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That gives the following stochastic optimization problem

min
X ,U

J(X ,U) = E

Tf −1∑
t=0

Lt(Xt ,Ut ,Wt+1)︸ ︷︷ ︸
instantaneous cost

+K(XTf )︸ ︷︷ ︸
final cost


s.t Xt+1 = ft(Xt ,Ut ,Wt+1) Dynamic

X [ ≤ Xt ≤ X ]

U[ ≤ Ut ≤ U]

X0 = Xini

σ(Ut) ⊂ σ(W1, . . . ,Wt) Non-anticipativity
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We have three different houses
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Our (small) district:

• House 1: solar panel + battery

• House 2: solar panel

• House 3: nothing

For the three houses:

• 10 stocks (= 4 + 3 + 3)

• 8 controls (= 4 + 2 + 2)

• 8 uncertainties

(2 uncertainties in common)

The total demand to the network

is bounded:

3∑
k=1

F k
NE ,t+1 ≤ F ]NE
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We want to compare two configurations

NETWORK

HOUSE HOUSE 

HOUSE 

BATTERYSOLAR 
PANEL

SOLAR 
PANEL

No exchange between houses

NETWORK

HOUSE HOUSE 

HOUSE 

BATTERYSOLAR 
PANEL

SOLAR 
PANEL

Exchange in a local grid

How much costs decrease

while allowing houses to exchange energy

through a local grid?

We show that local grid + optimization

decreases costs by 23 % during summer!
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The grid adds three controls to the problem
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How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:

• 96 timesteps (= 4 x 24)

• 10 stocks

• 11 controls

• 8 uncertainties

The state dimension is high (=10), the problem is not tractable

by a straightforward use of dynamic programming because of

the curse of dimensionality! :-(

We will compare two methods that overcome this curse:

1. Model Predictive Control (MPC)

2. Stochastic Dual Dynamic Programming (SDDP)

20/39



How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:

• 96 timesteps (= 4 x 24)

• 10 stocks

• 11 controls

• 8 uncertainties

The state dimension is high (=10), the problem is not tractable

by a straightforward use of dynamic programming because of

the curse of dimensionality! :-(

We will compare two methods that overcome this curse:

1. Model Predictive Control (MPC)

2. Stochastic Dual Dynamic Programming (SDDP)

20/39



How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:

• 96 timesteps (= 4 x 24)

• 10 stocks

• 11 controls

• 8 uncertainties

The state dimension is high (=10), the problem is not tractable

by a straightforward use of dynamic programming because of

the curse of dimensionality! :-(

We will compare two methods that overcome this curse:

1. Model Predictive Control (MPC)

2. Stochastic Dual Dynamic Programming (SDDP)

20/39



Out-of-sample comparison
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Out-of-sample comparison

Optimization
 scenarios
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Out-of-sample comparison

Optimization
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We compare SDDP and MPC with assessment scenarios
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MPC vs SDDP: uncertainties modelling

The two algorithms use optimization scenarios to model the uncertainties:

MPC

MPC considers the average. . .

SDDP
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. . . and SDDP discrete laws
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MPC vs SDDP: online resolution

At the beginning of time period [τ, τ + 1], do

MPC

• Consider a rolling horizon [τ, τ + H[

• Consider a deterministic scenario of

demands (forecast)(
W τ+1, . . . ,W τ+H

)
• Solve the deterministic optimization

problem

min
X,U

τ+H∑
t=τ

Lt (Xt , Ut ,W t+1) + K(Xτ+H )


s.t. X· = (Xτ , . . . , Xτ+H )

U· = (Uτ , . . . , Uτ+H−1)

Xt+1 = f (Xt , Ut ,W t+1)

X[ ≤ Xt ≤ X]

U[ ≤ Ut ≤ U]

• Get optimal solution (U#
τ , . . . ,U

#
τ+H )

over horizon H = 24h

• Send only first control U#
τ to

assessor, and iterate at time τ + 1

SDDP

• We consider the approximated value

functions
(
Ṽt
)Tf

0

Ṽt︸︷︷︸
Piecewise affine functions

≤ Vt

• Solve the stochastic optimization
problem:

min
uτ

EWτ+1

[
Lτ (Xτ , uτ ,Wτ+1)

+ Ṽτ+1

(
fτ (Xτ , uτ ,Wτ+1)

)]
⇒ this problem resumes to solve a LP at each timestep

• Get optimal solution U
#
τ

• Send U
#
τ to assessor
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A brief recall on Dynamic Programming

Dynamic Programming
µt is the probability law of Wt and is being used to estimate expectation
and compute offline value functions with the backward equation:

VT (x) = K(x)

Vt (xt ) = min
Ut

Eµt

[
Lt (xt ,Ut ,Wt+1)︸ ︷︷ ︸

current cost

+ Vt+1

(
f (xt ,Ut ,Wt+1)

)
︸ ︷︷ ︸

future costs

]

Stochastic Dual Dynamic Programming
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• Convex value functions Vt are approximated as

a supremum of a finite set of affine functions

• Affine functions (=cuts) are computed during

forward/backward passes, till convergence

• SDDP makes an extensive use of LP solver

Ṽt(x) = max
1≤k≤K

{
λk

t x + βk
t

}
≤ Vt(x)
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Our stack is deeply rooted in Julia language

• Modeling Language: JuMP

• Open-source SDDP Solver:

StochDynamicProgramming.jl

• LP Solver: CPLEX 12.5

https://github.com/JuliaOpt/StochDynamicProgramming.jl
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Comparison of MPC and SDDP

We compare MPC and SDDP during one day in summer

over 200 assessment scenarios:
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MPC 2.882

SDDP 2.713

SDDP is in average 6.9 %

better than MPC!
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Operational costs obtained in simulation

We compare different configurations, during summer and winter:

Summer

Local Grid Elec. bill Self cons.

euros/day %

No 3.53 48.1 %

Yes 2.71 55.2 %

Winter

Local Grid Elec. bill Self cons.

euros/day %

No 54.2 1.7 %

Yes id. id.
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We work with real data

We consider one day during summer 2015 (data from Meteo France):

16

18

20

22

24

26

28

30

32

T
em

pe
ra

tu
re

 [°
C

]

0 4 8 12 16 20 24
Time [h]

0

200

400

600

800

1000

1200

G
T

I [
W

h/
m

2]

31/39



We have 200 scenarios of demands during this day
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These scenarios are generated with StRoBE, a generator open-sourced by KU-Leuven 32/39



OUTPUT
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As we gain solar energy, surplus is traded in local grid
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The battery is used as a global storage inside the local grid...

No local grid
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... and we minimize our average importation from the network
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Conclusion

• We extend the results obtained with a single house to a small district

• This study can help to perform an economic analysis

• It pays to use stochastic optimization: SDDP is better than MPC

• We obtain promising results with SDDP, now we want to scale!
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Perspectives

Mix SDDP with spatial decomposition like

Dual Approximate Dynamic Programming (DADP) to control

bigger urban neighbourhood
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