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Usually houses import electricity from the grid
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But more and more houses are equipped with solar panel
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Is it worth to add a local grid to exchange electricity?
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Is it worth to connect different houses together inside a district?

Challenges:

e Handle electrical exchanges between houses

We turn to mathematical optimization to answer the question
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Two commandments to rule them all

HOUSE

Thou shall:
e Satisfy thermal comfort

e Optimize operational costs
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For each house, we consider the electrical system...

?i????
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... and the thermal enveloppe
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A brief recall of the single house problem
Physical modelling

Optimization problem
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We introduce states, controls and noises

e Stock variables X; = (B;, H;, 0}, 0})
Bz, battery level (kWh)

H;, hot water storage (kWh)

0, inner temperature (°C)

@v e 0y, wall's temperature (°C)

(] —=—[3] e Control variables U; = (Fg ., Fg ., F1.t, Fr.t)

" ’328 e Fjg ., energy stored in the battery
M i - ° F,;t, energy taken from the battery

e Fr ¢, energy used to heat the hot water tank
e Fp ¢, thermal heating
e Uncertainties W, = (D, DPHW pet 02)
DE, electrical demand (kW)
o DPMY  domestic hot water demand (kW)

ext

¢, external radiations (kW)

0, external temperature (°C)
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Discrete time state equations

So we have the four state equations (all linear):

1 __
Biy1 =apB: + AT<pCF;—7t - ;FB,t)
d

Hey1 =ayHe + AT [Fr, — DPHY]

AT | 0L -0y 08 —0v R R
79\4/ 4+ — t t Jt Ut + F, + ! Pmt + e Pext
£ m |R+R  RotR | ™TRIR ¢ "R +Rn
AT [0Y —0i 9 —0i 0¢— 0! R.
— _91 + t t + t t + t t + 1— F + Plnt
e+ ¢ |Ri+Rs Ry Re (2= 7Fhe Ri+Rs *

which will be denoted:

Xer1 = £(Xe, Up, Wera) |
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Prices and temperature setpoints vary along time

016

giii o T/ =24h, AT = 15mn
) S

§ o0

e 75 =0.09 or 0.15 euros/kWh

L & e Temperature set-point
e e — i = 16°C or 20°C
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The costs we have to pay

e Cost to import electricity from the network

E E
— by max{0, —Fne t+1} + 7 max{0, Fye r+1}

selling buying

where we define the recourse variable (electricity balance):

E —
Fne 1 = Dipa +F1;,t—FBJ+ Fre +Fr:— Foue
~—— ~ ——— =~ =~ ~—~—
Network Demand Battery Heating Tank Solar panel

e Virtual Cost of thermal discomfort: r( 0, — 0! )

N——

deviation from setpoint

Kth
Piecewise linear cost
Penalize temperature if
below given setpoint
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Instantaneous and final costs for a single house

e The instantaneous convex costs are

Lt(Xt‘ Uf. Wt 1) = —th maX{O, —FNE’t_A'_l}—'—TrtE maX{O, FNE,t-‘rl}

buying selling
l- -
+ Ken(0; — 01)
—_————
discomfort

e We add a final linear cost
K(Xt,) = —n""Hz, — 8B,

to avoid empty stocks at the final horizon T¢
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That gives the following stochastic optimization problem

Tr—1
min  JX,U)=E ; Le(Xe, Ur, Wesr) + K(X7,)

instantaneous cost final cost

s.t Xt+1 = ft(Xt, Ut7 Wt+1) Dynamic
X" < Xe < X
U < U < UF
Xo = Xini
O‘(Ut) C U(Wl, ey Wt) Non-anticipativity
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Optimization problem for a district
District topology
Assessment of strategies

Resolution Methods
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We have three di

m

Our (small) district:
e House 1: solar panel + battery
e House 2: solar panel

e House 3: nothing

For the three houses:
e 10 stocks (=4 + 3 + 3)
e 8 controls (= 4 + 2 + 2)
e 8 uncertainties

(2 uncertainties in common)

The total demand to the network
is bounded:

3

k j
ZFNE,t+1 < Fre
k=1
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We want to compare two configurations

X
P — (Y

/\ ~
& &

B8 BE

No exchange between houses Exchange in a local grid

How much costs decrease
while allowing houses to exchange energy
through a local grid?
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We want to compare two configurations

X
P — (Y

/\ — ~
;
T T

No exchange between houses Exchange in a local grid

How much costs decrease
while allowing houses to exchange energy
through a local grid?

We show that local grid + optimization

decreases costs by 23 % during summer!
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The grid adds three controls to the problem
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How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:

96 timesteps (= 4 x 24)
10 stocks

11 controls

8 uncertainties
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How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:

96 timesteps (= 4 x 24)
10 stocks

11 controls

8 uncertainties

The state dimension is high (=10), the problem is not tractable
by a straightforward use of dynamic programming because of
the curse of dimensionality! :-(
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How to solve this stochastic optimal control problem?

We recall the different parameters of our multistage stochastic problem:

96 timesteps (= 4 x 24)
10 stocks

11 controls

8 uncertainties

The state dimension is high (=10), the problem is not tractable
by a straightforward use of dynamic programming because of
the curse of dimensionality! :-(

We will compare two methods that overcome this curse:

1. Model Predictive Control (MPC)
2. Stochastic Dual Dynamic Programming (SDDP)
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Out-of-sample comparison

Load W]

2
Time (h)
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Out-of-sample comparison

Time (h)
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ut-of-sample comparison

“Time (h)
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We compare SDDP and MPC with assessment scenarios

Initialization:
Feed with marginal probability laws of {W;}7 "

Al
Sl _akndk

give current state X; and last uncertainty W

MPC ( SDDP
== . \_ ——

. [ ASSESSOR .
C

ost += C(X;, Uy, Wis1)

kgt

t t+1 Time
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MPC vs SDDP: uncertainties modelling

The two algorithms use optimization scenarios to model the uncertainties:

allk

f 1
vl
20 2

Time ()

MPC considers the average. .. ...and SDDP discrete laws
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MPC vs SDDP: online resolution

At the beginning of time period [7, T + 1], do

e Consider a rolling horizon [, 7 + H|

e Consider a deterministic scenario of
demands (forecast)
(WT+17 e 7W7—+H)

e Solve the deterministic optimization
problem

T+H
)TiTJ > Le(Xe, Ur, Wiiq) + KXy 1)
U=+

s.t. X =Xry .o Xei )
=Ury o Urpy—1)

Xey1 = f(Xe, Up, Wegq)
x> <X < xt

v << ut

e Get optimal solution (Uﬁﬁ7 ceey UiH)

over horizon H = 24h

e Send only first control Uf to
assessor, and iterate at time 7+ 1

SDDP

We consider the approximated value
functions (Vt)g—f

Vi < W
~—
Piecewise affine functions

Solve the stochastic optimization
problem:

min By [Lr (e, ur, Wo i)

+Vrg (fT (Xt ur, W7—+1))}

=> this problem resumes to solve a LP at each timestep

Get optimal solution Uf

Send U] to assessor
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A brief recall on Dynamic Programming

Dynamic Programming
¢ is the probability law of W; and is being used to estimate expectation
and compute offline value functions with the backward equation:

Vr(x) = K(x)

Vi(xe) = min By [ Le(xe, Ue, Wesa) + Ve (F(xe, U, Wes) ) |
t —_———

current cost

future costs
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A brief recall on Dynamic Programming

Dynamic Programming
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and compute offline value functions with the backward equation:

Vr(x) = K(x)

Vi(xe) = min By [ Le(xe, Ue, Wesa) + Ve (F(xe, U, Wes) ) |
t —_———

current cost

future costs

Stochastic Dual Dynamic Programming

Convex value functions V; are approximated as

a supremum of a finite set of affine functions

Affine functions (=cuts) are computed during
forward /backward passes, till convergence

SDDP makes an extensive use of LP solver
Vi(x) = lgnkang{Aﬁx + Bf} < Vi(x)
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Numerical resolution

Resolution and comparison

Optimal trajectories of storages
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Our stack is deeply rooted in Julia language

e Modeling Language: JuMP

()
e o0 e Open-source SDDP Solver:
Ia StochDynamicProgramming. j1

e LP Solver: CPLEX 12.5

https://github.com/Julialpt/StochDynamicProgramming. j1
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https://github.com/JuliaOpt/StochDynamicProgramming.jl

Comparison of MPC and SDDP

We compare MPC and SDDP during one day in summer
over 200 assessment scenarios:

-

euros/day

MPC 2.882
: SDDP 2.713

; m - SDDP is in average 6.9 %

20 better than MPC!

-
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Operational costs obtained in simulation

We compare different configurations, during summer and winter:

Summer

Local Grid Elec. bill  Self cons.

euros/day %
No 3.53 48.1 %
Yes 2.71 55.2 %
Winter

Local Grid Elec. bill  Self cons.

euros/day %
No 54.2 1.7 %
Yes id. id.

29/39



INPUT
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We work with real data

We consider one day during summer 2015 (data from Meteo France):

GTI [Whim2]
®
8

o
IS
-3

12 16 20 24
Time [h] 31/39



We have 200 scenarios of demands during this day

House 2 House 3

DHW demand [kW]
>

A
0 4 8 12 16 20 24

0 ik
0 4 8 12 16 20 0

These scenarios are generated with StRoBE, a generator open-sourced by KU-Leuven 32/39



OUTPUT
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As we gain solar energy, surplus is traded in local grid

3
2 00
& RS
AR |
g
§ ot
£ -1.0 \ b4
T w
§ § 14
= 212
== = 10

Time [h]
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The battery is used as a global storage inside the local grid...

No local grid Local grid

DAY
"l
\ \\\.'.0' ‘\
LA
s

b DGR
\\\\‘/ v\\\ \\
\ A
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... and we mini e network

.
.
'
.
.
'
.
.
.
'
.
'
'
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.
'
.
.

No local grid = 25.8 kWh Local grid = 19.4 kWh

4
i)

Importation kW]

16 20 2 o 4 8 12 16 20

2 P
Time hl Time r] 36/39



Conclusion
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Conclusion

We extend the results obtained with a single house to a small district

This study can help to perform an economic analysis

It pays to use stochastic optimization: SDDP is better than MPC

We obtain promising results with SDDP, now we want to scale!
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Mix SDDP with spatial decomposition like
Dual Approximate Dynamic Programming (DADP) to control
bigger urban neighbourhood

=

[ COORDINATOR ]
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