Dual Approximate Dynamic Programming for Large Scale Hydro Valleys

Pierre Carpentier and Jean-Philippe Chancelier¹

ENSTA ParisTech and ENPC ParisTech

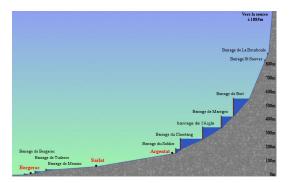
CMM Workshop, January 2016

École des Ponts ParisTech

¹Joint work with J.-C. ALAIS, supported by the FMJH Program Gaspard Monge for Optimization.

Motivation

Electricity production management for hydro valleys



- 1 year time horizon: compute each month the Bellman functions ("water values")
- *stochastic framework*: rain, market prices
- *large-scale valley*: 5 dams and more

We wish to remain within the scope of Dynamic Programming.

How to push the curse of dimensionality limits?

Aggregation methods

- fast to run method
- require some homogeneity between units

Stochastic Dual Dynamic Programming (SDDP)

- efficient method for this kind of problems
- strong assumptions (convexity, linearity)

Dual Approximate Dynamic Programming (DADP)

- spatial decomposition method
- complexity almost linear in the number of dams
- approximation methods in the stochastic framework

This talk: present numerical results for large-scale hydro valleys using DADP, and comparison with DP and SDDP.

Lecture outline

Dams management problem Hydro valley modeling Optimization problem

- Optimization problem
- 2 DADP in a nutshell
 - Spatial decomposition
 - Constraint relaxation
- 3 Numerical experiments
 - Academic examples
 - More realistic examples

Hydro valley modeling Optimization problem

Dams management problemHydro valley modeling

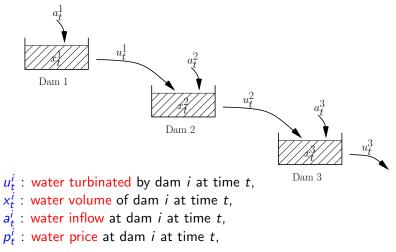
Optimization problem

2 DADP in a nutshell

- Spatial decomposition
- Constraint relaxation
- 3 Numerical experiments
 - Academic examples
 - More realistic examples

Hydro valley modeling Optimization problem

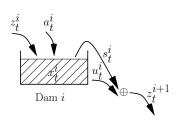
Operating scheme



Randomness: $w_t^i = (a_t^i, p_t^i)$, $w_t = (w_t^1, ..., w_t^N)$.

Hydro valley modeling

Dynamics and cost functions



Dam dynamics:

 $x_{t+1}^{i} = f_{t}^{i}(x_{t}^{i}, u_{t}^{i}, w_{t}^{i}, z_{t}^{i})$ $= x_{t}^{i} - u_{t}^{i} + a_{t}^{i} + z_{t}^{i} - s_{t}^{i}$ z_t^{i+1} being the outflow of dam *i*: $z_t^{i+1} = g_t^i(x_t^i, u_t^i, w_t^i, z_t^i)$ $= u_t^i + \underbrace{\max\left\{0, x_t^i - u_t^i + a_t^i + z_t^i - \overline{x}^i\right\}}_{\checkmark}.$ We assume the Hazard-Decision information structure (u_t^i is chosen once w_t^i is observed), so that $\underline{u}^i \leq u_t^i \leq \min \{\overline{u}^i, x_t^i + a_t^i + z_t^i - \underline{x}^i\}$.

 $L_{t}^{i}(x_{t}^{i}, u_{t}^{i}, w_{t}^{i}, z_{t}^{i}) = p_{t}^{i}u_{t}^{i} - \epsilon(u_{t}^{i})^{2}.$ Gain at time t < T:

Final gain at time T: $K^i(x_T^i) = -a^i \min\{0, x_T^i - \widehat{x}^i\}^2$.

Hydro valley modeling Optimization problem

- Optimization problem
- DADP in a nutshell
 Spatial decomposition
 - Constraint relaxation
- Numerical experiments
 Academic examples
 More realistic examples

Hydro valley modeling Optimization problem

Stochastic optimization problem

The global optimization problem reads:

$$\max_{(\boldsymbol{X},\boldsymbol{U},\boldsymbol{Z})} \mathbb{E}\bigg(\sum_{i=1}^{N} \bigg(\sum_{t=0}^{T-1} L_t^i \big(\boldsymbol{X}_t^i, \boldsymbol{U}_t^i, \boldsymbol{W}_t^i, \boldsymbol{Z}_t^i\big) + K^i \big(\boldsymbol{X}_T^i\big)\bigg)\bigg),$$

subject to:

$$\boldsymbol{X}_{t+1}^{i} = f_{t}^{i}(\boldsymbol{X}_{t}^{i}, \boldsymbol{U}_{t}^{i}, \boldsymbol{W}_{t}^{i}, \boldsymbol{Z}_{t}^{i}) , \ \forall i , \ \forall t ,$$

$$\sigma(\boldsymbol{U}_t^i) \subset \sigma(\boldsymbol{W}_0, \ldots, \boldsymbol{W}_t) , \quad \forall i , \forall t ,$$

$$\boldsymbol{Z}_t^{i+1} = \boldsymbol{g}_t^i(\boldsymbol{X}_t^i, \boldsymbol{U}_t^i, \boldsymbol{W}_t^i, \boldsymbol{Z}_t^i) , \quad \forall i , \quad \forall t .$$

Assumption. Noises W_0, \ldots, W_{T-1} are independent over time.

Dams management problem
 Hydro valley modeling

Optimization problem

DADP in a nutshellSpatial decomposition

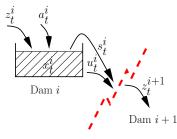
Constraint relaxation

Numerical experiments
 Academic examples
 More realistic examples

Spatial decomposition Constraint relaxation

Price decomposition

- Dualize the coupling constraints $Z_t^{i+1} = g_t^i(X_t^i, U_t^i, W_t^i, Z_t^i)$. Note that the associated multiplier Λ_t^{i+1} is a random variable.
- Minimize the dual problem (using a gradient-like algorithm).



• At iteration *k*, the duality term:

 $\boldsymbol{\Lambda}_t^{i+1,(k)} \cdot \left(\boldsymbol{Z}_t^{i+1} {-} \boldsymbol{g}_t^i(\boldsymbol{X}_t^i, \boldsymbol{U}_t^i, \boldsymbol{W}_t^i, \boldsymbol{Z}_t^i) \right) \,,$

is the difference of two terms:

- $\Lambda_t^{i+1,(k)} \cdot Z_t^{i+1} \longrightarrow \text{dam } i+1,$ • $\Lambda_t^{i+1,(k)} \cdot g_t^i (\cdots) \longrightarrow \text{dam } i.$
- Dam by dam decomposition for the maximization in (X, U, Z) at Λ^{i+1,(k)}_t fixed.

Dams management problem Hydro valley modeling

- Optimization problem
- DADP in a nutshell
 Spatial decomposition
 - Constraint relaxation
- Numerical experiments
 Academic examples
 More realistic examples

Spatial decomposition Constraint relaxation

DADP core idea

The *i*-th subproblem writes:

$$\max_{\boldsymbol{U}^{i},\boldsymbol{Z}^{i},\boldsymbol{X}^{i}} \mathbb{E} \left(\sum_{t=0}^{T-1} \left(L_{t}^{i} \left(\boldsymbol{X}_{t}^{i}, \boldsymbol{U}_{t}^{i}, \boldsymbol{W}_{t}^{i}, \boldsymbol{Z}_{t}^{i} \right) + \boldsymbol{\Lambda}_{t}^{i,(k)} \cdot \boldsymbol{Z}_{t}^{i} \right. \\ \left. - \boldsymbol{\Lambda}_{t}^{i+1,(k)} \cdot g_{t}^{i} \left(\boldsymbol{X}_{t}^{i}, \boldsymbol{U}_{t}^{i}, \boldsymbol{W}_{t}^{i}, \boldsymbol{Z}_{t}^{i} \right) \right) + \mathcal{K}^{i} \left(\boldsymbol{X}_{T}^{i} \right) \right),$$

but $\Lambda_t^{i,(k)}$ depends on the whole past of noises (W_0, \ldots, W_t) ...

The core idea of DADP is

to replace the constraint Zⁱ⁺¹_t - gⁱ_t(Xⁱ_U, Uⁱ_U, Wⁱ_U, Zⁱ_t) = 0 by its conditional expectation with respect to Yⁱ_t:

 $\mathbb{E}\left(\boldsymbol{Z}_{t}^{i+1}-\boldsymbol{g}_{t}^{i}(\boldsymbol{X}_{t}^{i},\boldsymbol{U}_{t}^{i},\boldsymbol{W}_{t}^{i},\boldsymbol{Z}_{t}^{i})\mid\boldsymbol{Y}_{t}^{i}\right)=0,$

• where $(\boldsymbol{Y}_0^i, \dots, \boldsymbol{Y}_{T-1}^i)$ is a "well-chosen" information process

Spatial decomposition Constraint relaxation

DADP core idea

The *i*-th subproblem writes:

$$\max_{\boldsymbol{U}^{i},\boldsymbol{Z}^{i},\boldsymbol{X}^{i}} \mathbb{E} \left(\sum_{t=0}^{T-1} \left(L_{t}^{i} (\boldsymbol{X}_{t}^{i}, \boldsymbol{U}_{t}^{i}, \boldsymbol{W}_{t}^{i}, \boldsymbol{Z}_{t}^{i}) + \boldsymbol{\Lambda}_{t}^{i,(k)} \cdot \boldsymbol{Z}_{t}^{i} - \boldsymbol{\Lambda}_{t}^{i+1,(k)} \cdot \boldsymbol{g}_{t}^{i} (\boldsymbol{X}_{t}^{i}, \boldsymbol{U}_{t}^{i}, \boldsymbol{W}_{t}^{i}, \boldsymbol{Z}_{t}^{i}) \right) + \boldsymbol{K}^{i} (\boldsymbol{X}_{T}^{i}) \right),$$

but $\Lambda_t^{i,(k)}$ depends on the whole past of noises (W_0, \ldots, W_t) ...

The core idea of DADP is

• to replace the constraint $Z_t^{i+1} - g_t^i(X_t^i, U_t^i, W_t^i, Z_t^i) = 0$ by its conditional expectation with respect to Y_t^i :

$$\mathbb{E}\left(\boldsymbol{Z}_t^{i+1} - g_t^i(\boldsymbol{X}_t^i, \boldsymbol{U}_t^i, \boldsymbol{W}_t^i, \boldsymbol{Z}_t^i) \mid \boldsymbol{Y}_t^i\right) = 0,$$

• where $(\mathbf{Y}_0^i, \dots, \mathbf{Y}_{T-1}^i)$ is a "well-chosen" information process.

Subproblems in DADP

DADP thus consists of a constraint relaxation.

This constraint relaxation is equivalent to replace the original multiplier $\Lambda_t^{i,(k)}$ by its conditional expectation $\mathbb{E}(\Lambda_t^{i,(k)} | \mathbf{Y}_t^{i-1})$.

The expression of the *i*-th subproblem becomes:

$$\begin{split} \max_{\boldsymbol{U}^{i},\boldsymbol{Z}^{i},\boldsymbol{X}^{i}} \mathbb{E} \left(\sum_{t=0}^{T-1} \left(L_{t}^{i}(\boldsymbol{X}_{t}^{i},\boldsymbol{U}_{t}^{i},\boldsymbol{W}_{t}^{i},\boldsymbol{Z}_{t}^{i}) + \mathbb{E} \left(\boldsymbol{\Lambda}_{t}^{i,(k)} \mid \boldsymbol{Y}_{t}^{i-1} \right) \cdot \boldsymbol{Z}_{t}^{i} \right. \\ \left. - \mathbb{E} \left(\boldsymbol{\Lambda}_{t}^{i+1,(k)} \mid \boldsymbol{Y}_{t}^{i} \right) \cdot \boldsymbol{g}_{t}^{i}(\boldsymbol{X}_{t}^{i},\boldsymbol{U}_{t}^{i},\boldsymbol{W}_{t}^{i},\boldsymbol{Z}_{t}^{i}) \right) \\ \left. + \mathcal{K}^{i}(\boldsymbol{X}_{T}^{i}) \right). \end{split}$$

If the process \mathbf{Y}^{i-1} follows a dynamical equation, DP applies.

A crude relaxation: $\mathbf{Y}_t^i \equiv \text{cste}$

- The multipliers $\Lambda_t^{i,(k)}$ appear only in the subproblems by means of their expectations $\mathbb{E}(\Lambda_t^{i,(k)})$, so that each subproblem involves a 1-dimensional state variable.
- Ø For the gradient algorithm, the coordination task reduces to:

$$\begin{split} \mathbb{E} \big(\boldsymbol{\Lambda}_t^{i,(k+1)} \big) &= \mathbb{E} \big(\boldsymbol{\Lambda}_t^{i,(k)} \big) \\ &+ \rho_t \mathbb{E} \Big(\boldsymbol{Z}_t^{i+1,(k)} - \boldsymbol{g}_t^i \big(\boldsymbol{X}_t^{i,(k)}, \boldsymbol{U}_t^{i,(k)}, \boldsymbol{W}_t^i, \boldsymbol{Z}_t^{i,(k)} \big) \Big) \,. \end{split}$$

③ The constraints taken into account by DADP are in fact:

$$\mathbb{E}\left(\boldsymbol{Z}_{t}^{i+1}-\boldsymbol{g}_{t}^{i}\left(\boldsymbol{X}_{t}^{i},\boldsymbol{U}_{t}^{i},\boldsymbol{W}_{t}^{i},\boldsymbol{Z}_{t}^{i}\right)\right)=0.$$

The DADP solutions do not satisfy the initial constraints: need to use an heuristic method to regain admissibility.

How to regain admissible policies?

We have computed *N* local Bellman functions V_t^i at each time *t*, each depending on a single state variable x^i ...

whereas we need one global Bellman function V_t depending on the global state (x^1, \ldots, x^N) in order to design the decisions by using one-step Dynamic Programming.

Heuristic proposal:

$$V_t(\mathbf{x}^1,\ldots,\mathbf{x}^N) = \sum_{i=1}^N V_t^i(\mathbf{x}^i) \; ,$$

the one-step DP problem to solve at time t being

 $\max_{1,...,u^N)} \sum_{i=1}^N L^i_t(x^i, u^i, w^i_t, z^i) + V^i_{t+1}(x^i_{t+1})$

How to regain admissible policies?

We have computed N local Bellman functions V_t^i at each time t, each depending on a single state variable x^i ... whereas we need one global Bellman function V_t depending on the global state (x^1, \ldots, x^N) in order to design the decisions by using

one-step Dynamic Programming.

Heuristic proposal:

the one-step DP problem to solve at time t being:

 $\max_{i_{1},...,u^{N_{j}}} \sum_{i_{t+1}}^{n} L^{i}_{t}(x^{i},u^{i},w^{i}_{t},z^{i}) + V^{i}_{t+1}(x^{i}_{t+1}) \; ,$

How to regain admissible policies?

We have computed *N* local Bellman functions V_t^i at each time *t*, each depending on a single state variable x^i ... whereas we need one global Bellman function V_t depending on the

global state (x^1, \ldots, x^N) in order to design the decisions by using one-step Dynamic Programming.

Heuristic proposal:

$$V_t(x^1,\ldots,x^N) = \sum_{i=1}^N V_t^i(x^i) ,$$

the one-step DP problem to solve at time t being:

$$\max_{\substack{(u^1,\dots,u^N) \\ t+1}} \sum_{i=1}^N L_t^i(x^i, u^i, w_t^i, z^i) + V_{t+1}^i(x_{t+1}^i) ,$$
with $x_{t+1}^i = f_t^i(x^i, u^i, w_t^i, z^i)$ and $z^{i+1} = g_t^i(x^i, u^i, w_t^i, z^i) .$

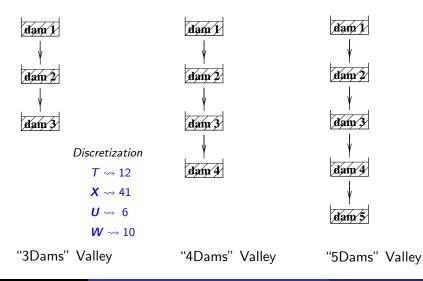
Academic examples More realistic examples

Dams management problem Hydro valley modeling

- Optimization problem
- DADP in a nutshellSpatial decomposition
 - Constraint relaxation
- Numerical experiments
 Academic examples
 More realistic examples

Academic examples More realistic examples

Three case studies



Academic examples More realistic examples

Results

Valley	3Dams	4Dams	5Dams
DP CPU time	5'	1630'	677000'
DP value	2482.0	3742.7	4685.1

Table: Results obtained by DP

Table: Results obtained by DADP "Expectation"

Results obtained using a 4 cores – 8 threads $Intel \\ \ensuremath{\mathbb{R}}$ Core i7 based computer.

Academic examples More realistic examples

Results

Valley	3Dams	4Dams	5Dams
DP CPU time	5'	1630'	677000'
DP value	2482.0	3742.7	4685.1
$\mathrm{SDDP}_{\mathrm{d}}$ value	2474.2	3736.4	4672.2
$\mathrm{SDDP}_{\mathrm{d}}$ CPU time	0.3'	2'	16'

Table: Results obtained by DP and SDDP_d

Table: Results obtained by DADP "Expectation"

Results obtained using a 4 cores - 8 threads Intel®Core i7 based computer.

Academic examples More realistic examples

Results

Valley	3Dams	4Dams	5Dams
DP CPU time	5'	1630'	677000'
DP value	2482.0	3742.7	4685.1
$\mathrm{SDDP}_{\mathrm{d}}$ value	2474.2	3736.4	4672.2
$\mathrm{SDDP}_{\mathrm{d}}$ CPU time	0.3'	2'	16'

Table: Results obtained by DP and SDDP_d

Valley	3Dams	4Dams	5Dams
DADP CPU time	3'	6'	5'
DADP value	2401.3	3667.0	4633.7
Gap with DP	-3.2%	-2.0%	-1.1%
Dual value	2687.5	3995.8	4885.9

Table: Results obtained by DADP "Expectation"

Results obtained using a 4 cores – 8 threads Intel®Core i7 based computer.

Academic examples More realistic examples

Dams management problem

- Hydro valley modeling
- Optimization problem

2 DADP in a nutshell

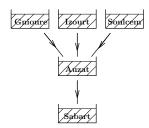
- Spatial decomposition
- Constraint relaxation

3 Numerical experiments

- Academic examples
- More realistic examples

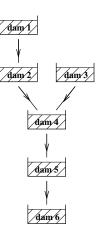
Academic examples More realistic examples

Three valleys



Discretization

 $T \rightsquigarrow 12, W \rightsquigarrow 10$ fine grids for **X** and **U**



Vicdessos Valley

Dordogne Valley

Stoopt Valley

Academic examples More realistic examples

Results

Valley	Vicdessos	Dordogne	Stoopt
$SDDP_d$ CPU time	<i>90'</i>	40000'	320'
$SDDP_d$ value	2232.1	22028.9	7014.8

Table: Results obtained by SDDP_d

Table: Results obtained by DADP "Expectation"

Academic examples More realistic examples

Results

Valley	Vicdessos	Dordogne	Stoopt
$SDDP_d$ CPU time	90'	40000'	320'
$SDDP_d$ value	2232.1	22028.9	7014.8

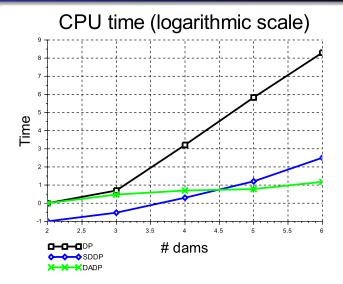
Table: Results obtained by SDDP_d

Valley	Vicdessos	Dordogne	Stoopt
DADP CPU time	10'	155'	13'
DADP value	2237.4	21499.8	6816.5
Gap with SDDP_d	+ 0 .2%	-2.4%	-2.8%
Dual value	2285.6	22991.1	7521.9

Table: Results obtained by DADP "Expectation"

Academic examples More realistic examples

CPU time comparison



Academic examples More realistic examples

Conclusions and perspectives

Conclusions for DADP

- Fast numerical convergence of the method.
- Near-optimal results even when using a "crude" relaxation.
- Method that can be used for very large valleys

General perspectives

- Apply to more complex topologies (smart grids).
- Connection with other decomposition methods.
- Theoretical study.

P. Carpentier et G. Cohen.

Décomposition-coordination en optimisation déterministe et stochastique. En préparation, Springer, 2016.

P. Girardeau.

Résolution de grands problèmes en optimisation stochastique dynamique. Thèse de doctorat, Université Paris-Est, 2010.

J.-C. Alais.

Risque et optimisation pour le management d'énergies. Thèse de doctorat, Université Paris-Est, 2013.

V. Leclère.

Contributions aux méthodes de décomposition en optimisation stochastique. Thèse de doctorat, Université Paris-Est, 2014.

Price decomposition in large-scale stochastic optimal control. arXiv, math.OC 1012.2092, 2010.