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Abstract

We characterize the optimal harvest of a renewable resource in a generalized stochastic spatially explicit model. Despite

the complexity of the model, we are able to obtain sharp analytical results. We find that the optimal harvest rule in general

depends upon dispersal patterns of the resource across space, and only in special circumstances do we find a modified

golden rule of growth that is independent of dispersal patterns. We also find that the optimal harvest rule may include

closure of some areas to harvest, either on a temporary or permanent basis (biological reserves). Reserves alone cannot

correct open access, but may, under sufficient spatial heterogeneity and connectivity, increase profits if appropriate harvest

controls are in place outside of reserves.

r 2008 Elsevier Inc. All rights reserved.
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0. Introduction

Analysis of the spatial distribution of economic activity has increased significantly in recent years.
Prominent applications include the spatial dimensions of international trade and regional development [14],
locational equilibrium in urban growth [12], environmental policy [16], and natural resource extraction
[28,39,15]. These applications have emerged from the realization that resources and economic opportunities
are distributed heterogeneously across space, giving rise to issues of transportation, locational choice, and
trade. In addition to exhibiting spatial heterogeneity, many biological resources move across space, thus
connecting actions in one place to future economic opportunities in other places. Optimal harvesting rules are
therefore connected across space and time, leading to potentially complex optimization problems. In addition,
renewable resources are often subject to considerable uncertainty and variability driven by environmental
stochasticity [37,43].

In this paper, we characterize optimal harvesting of a renewable resource in a stochastic spatial model,
capturing both spatial heterogeneity and connectivity. Spatial heterogeneity can arise from economic factors
(e.g. differences in harvest costs or transportation costs) or from biological factors (e.g. differential
e front matter r 2008 Elsevier Inc. All rights reserved.
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productivity from underlying environmental differences). While spatial heterogeneity and connectivity are
ubiquitous in the real world, and spatial ecology has become a fairly well-developed field [48], spatial issues
have only recently garnered much attention in resource economics. Spatial models of resource harvest include
seminal contributions by Clark [5], Brown and Roughgarden [2], and Sanchirico and Wilen [39]; we review this
literature in Section 1.

Our model is a general renewable resource model with stochastic biological growth and an arbitrary number
of heterogeneous resource production sites (called ‘‘patches’’). We allow for stochastic growth of the resource
within each patch and stochastic dispersal of the resource between patches. Economic variables can also be
spatially heterogeneous. Solving this model involves stochastic spatial dynamic optimization with arbitrary
spatial heterogeneity and arbitrary spatial externalities. Despite model complexity we obtain sharp analytical
results and show how existing economic theories fall out as special cases.

Within this framework we characterize the optimal spatially explicit harvesting strategy that maximizes the
expected present value of profit from harvest. We divide our analysis into cases with interior solutions, in
which it is optimal to harvest a positive amount of stock from each patch in each period, and cases with corner
solutions, where it is optimal to close at least some patches in some periods. With fully interior solutions, we
show that the optimal strategy will in general vary across space but be time and state independent. In special
circumstances where harvest costs and survival are linear and identical across patches, the optimal harvest rule
satisfies a ‘‘golden rule of growth’’ in each patch and is independent of dispersal.

By analyzing corner solutions, our approach allows us to examine an important policy question regarding
spatial resource use, namely whether it is economically optimal to close some areas to harvest (i.e., establish
biological reserves). That establishing biological reserves can increase the overall profitability of harvest does
not immediately accord with economic intuition. However, we find that spatial connections through dispersal
along with spatial heterogeneity can generate cases where it is optimal to establish biological reserves. We
demonstrate that having reserves also affects the optimal harvesting strategy in non-closed areas. We show
that it is optimal to decrease harvest in non-closed areas that connect to reserves (via dispersal) when it is in
fact optimal to establish a reserve. On the other hand, if some areas are arbitrarily closed, then the optimal
policy in non-closed areas is to increase harvest.

We also analyze the consequences of changes in stochasticity on the optimality of closing patches to harvest,
the optimal harvest levels outside of closed patches, and the expected value of harvest. Increasing variability in
biological parameters tends to make temporary closures optimal but makes optimal permanent closures
unlikely. The effect of an increase in variability of biological parameters on expected returns from harvest
depends to a great extent on whether increases in variability primarily affect stocks in closed patches or open
patches.

Our focal resource is the fishery which is well characterized by spatial connectivity (larval dispersal across
space) and heterogeneity (sites of differing harvest costs or biological productivity). Fisheries are also subject
to significant interannual variability—both in life history stages and in the dispersal process itself. In addition
to fisheries problems, the theory developed here is applicable to other renewable resources (e.g. forest
products) as well as important policy issues that share many formal similarities with renewable resources (e.g.
antibiotic or pesticide resistance).

1. Background

Fifty years ago, scientists were beginning to recognize that many renewable resources, once plentiful and
seemingly limitless, were in decline; stocks were diminishing and increasing amounts of effort were required to
maintain harvest levels. At the time, biologists played the leading role in policy design and analysis; primarily
focused on fisheries. Only later would economists engage in this discussion and convincingly articulate the role
economic behavior played in the problem, and the potential role economic institutions could play in the
solution [17,42]. As Gordon explained

Owing to the lack of theoretical economic research, biologists have been forced to extend the scope of their
own thought into the economic sphere and in some cases have penetrated quite deeply, despite the lack of
the analytical tools of economic theory [17].
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The seminal works of Gordon [17] and Scott [42] spawned an immense economics literature more or less
devoted to examining the institutional failures inherent in competitive resource extraction. Gordon [17]
illuminated the externality of one harvester on others, while Scott [42] was the first to note the dynamic nature
of the problem through the effect of harvest on future stocks. When combined with a reasonable depiction of
economic harvesting behavior, these observations pointed out the ‘‘tragedy of open access’’. In the absence of
certain kinds of institutions, rents would be completely dissipated and the value of the fishery driven to zero.
Subsequent works by Crutchfield and Zellner [10], Smith [44,45], Clark and Munro [6], and others examined
this dynamic interplay in detail, and outlined a number of possible institutional corrections, which, it was
thought, could help secure rents in perpetuity. The subsequent literature on bioeconomics examined a number
of extensions to the basic model including rational expectations [1], environmental variability [36],
overcapitalization [19], political economy [27], and others.1

Five decades hence, despite countless subsequent contributions by economists, many renewable resources
are—by any performance measure—patently worse-off than they were in the 1950s [52,33,25]. And just as
Gordon observed in 1954, biologists are playing policy analysts, and are, in fact, leading inquiry about the
linkages between scientific insights and the design of institutions for managing these systems. As before, most
of the analysis by biologists on this issue takes little account of economic behavior, incentives, and objectives.

Spatial connectivity of the bioeconomic environment—driven by the interplay between environmental,
biological, and economic conditions—imposes an important spatial externality that remains largely ignored in
economic analysis but is perhaps as significant a cause of mis-allocation of resources as the dynamic
externality identified five decades ago. Spatial externalities arise whenever economic activity in one location
influences returns in another location. If fish larvae drift, animals migrate, seeds disperse, water tables recede,
or pests intermingle, then optimal spatial activity may differ from that which arises from the decentralized
private property solution. In fisheries, inefficiency from migration of fish stocks across management
boundaries has been investigated by Clarke and Munro [7], Ferrara and Missios [13], Munro [31,32], Missios
and Plourde [30], Naito and Polasky [34], and others.

Would accounting for these complex dynamical and often stochastic spatial linkages appreciably change, in
a qualitative way, the conclusions about optimal economic exploitation of natural resources? That is the focus
of this paper.

To our knowledge the first substantive attempt to link spatial relationships in a true bioeconomic model is
given by Clark [5], which explores both open access and optimal harvest in a model where spatial connections
are driven by diffusion. Brown and Roughgarden [2] were the first to examine a metapopulation model in an
economic optimization framework. They assume uniform connectivity across space instead of diffusion.
Assuming diffusion along a line or uniform connectivity reduces the consequences of spatial linkages and thus
limits the scope of economic questions that can be addressed. Sanchirico and Wilen [39] analyze a
metapopulation model similar to Brown and Roughgarden [2] but do so in a discrete patchy environment.
This framework allows them to develop a more general model of spatial connectivity.

Holland and Brazee [24] appears to be the first systematic exploration of the economics of marine reserves,
and has paved the way for models with more economic generality. Using the model of the discrete patchy
environment, Sanchirico and Wilen [40] examine the consequences of establishing a reserve in the absence of
any regulation in the harvest region. Open access outside the reserve drives rents to zero, so the authors
examine the consequences of reserve creation on total harvest.

But given our interest in optimal spatial exploitation, the literature that focuses on open access conditions
outside reserves provides little guidance. Some progress has been made on the question of optimal harvesting
with reserves using a mix of 2-patch examples, specific functional forms, and simulation. Economists have
partially analyzed the economic consequences of marine reserves on fisheries profits. Conrad [8] and
Hannesson [20] reach pessimistic conclusions about the ability of reserves to increase profitability while
Sanchirico et al. [38] find that reserves can increase profits. Grafton et al. [18] show that reserves can make a
system more resilient following a discrete negative shock to the ecosystem. Smith and Wilen [46] examine the
economic implications of closing a patch to fishing, paying particular attention to fishermens’ decisions about
1Wilen [50] provides an informative and thorough chronology of the contributions of economists to institutional policy design for

natural resources.
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whether and where to fish. They find that taking these spatial decisions into account can significantly diminish
the attractiveness of area closures. Neubert [35] develops a similar model in continuous space and builds an
argument for an infinite number of infinitesimally small reserves.

We are aware of only one paper that examines optimal spatial exploitation in a generalized connected and
patchy environment. Sanchirico and Wilen [41] analyze the question by examining the case of ‘‘regulated open
access’’ in which the fishery manager can choose spatially heterogeneous landings and effort taxes in a
deterministic environment. In that model the objective is linear in these control variables and so a bang-bang
solution is obtained. Focus is devoted to the singular control that obtains in the equilibrium. The scope of that
paper is limited to interior solutions which leaves unanswered the question of whether harvest closures can
ever be a part of a spatial optimized harvest regime.

Our paper generalizes and contributes to the existing literature along three important dimensions. First, we
analyze optimal spatial harvest in a general model that accounts for the possibility of patch closures. Second,
we solve for the optimal harvest dynamics that account for spatial externalities. Finally, we generalize our
results to a stochastic setting.
2. A simple example

Much of the intuition for our main results can be gleaned from a simple two-patch example. Suppose a
single fisherman, whose goal is to maximize the present value of profit from fishing, has control over a closed
system consisting of two patches, A and B. For this example, assume harvest cost is linear in harvest and price
is constant so that profit is linear in harvest. With these assumptions, the optimal harvest plan, which
maximizes the present value of profit, is one that maximizes the present value of harvest volume. Harvesting
takes place in discrete periods and let d be the discount factor between periods: d ¼ 1=ð1þ rÞ, where r is the
discount rate. Define xit as the fish stock in patch i at the beginning of period t, and hit as the harvest in patch i,
in period t, i ¼ A;B, t ¼ 0; 1; 2 . . . : The fish stock in patch i at the end of period t after harvest (called
‘‘escapement’’) is eit. The escapement can be linked to beginning-of-period stock and harvest through the
identity: eit � xit � hit. Thus either harvest or escapement can be selected as the choice variable. In what
follows, we will choose optimal escapement. Between periods, the fish stock grows. The growth function in
each patch, f ðeitÞ is continuous, increasing, and concave.2 Because of ocean currents, fish migrate from patch
A to patch B. Assume that all fish in patch B at the end of period t start period tþ 1 in patch B, and that some
fraction y of fish in patch A at the end of period t migrate to patch B at the start of period tþ 1. The equations
of motion for stocks in the two patches are thus

xAtþ1 ¼ ð1� yÞf ðeAtÞ, (1)

xBtþ1 ¼ yf ðeAtÞ þ f ðeBtÞ. (2)

As a benchmark, consider the case in which these patches are completely independent (i.e., y ¼ 0). In this
case, we can apply standard economic intuition to derive optimal escapement in each patch independently: In
each patch the optimal escapement, e�, is characterized by the stock level at which the rate of growth of the
fish stock (the biological rate of return) equals the financial rate of return:

f 0ðe�Þ ¼ 1=d. (3)

This result is the standard ‘‘golden rule’’ of growth as applied to resource economics. This result holds
whenever there is positive harvest. If the fishery begins a period with depleted stock such that xitoe�, then it is
optimal to close the fishery that period because the biological return from leaving fish in the ocean is greater
than the financial rate of return. Such closures, however, would only be temporary, allowing depleted stocks to
replenish. In steady state, optimal harvest would be positive in each patch. Establishing a biological reserve
that would result in permanent closure of a patch would only reduce profits.
2We assume that f 0ð0Þ41=d. If not, it would be optimal to fish to extinction and simply invest returns in a financial asset [4].
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Fig. 1. Biological production in patch A is given by f ðeÞ. Because fish migrate from patch A to patch B, only ð1� yÞf ðeÞ fish remain in

patch A. With no harvest, the steady state stock of fish in patch A is determined by the intersection of ð1� yÞf ðeÞ with the 45� line. For

high values of y, the no harvest steady state stock will lie to the left of e�, as shown with high migration value y1. Because x1
koe�, the

biological return in patch A ðf 0ðx1
kÞÞ exceeds the financial return ð1=dÞ and it is optimal to close patch A to harvest.
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When spatial connections exist ðy40Þ establishing a permanent biological reserve may indeed be
economically optimal, even in this simple example. The optimal strategy in each patch is still to harvest to the
point where the growth rate of the resource equals the financial rate of return (as described in Eq. (3)).
However, because fish migrate from patch A to patch B, the fish stock in patch A may be small, even when
there is no harvest in patch A. Let the steady state stock in patch A in the absence of harvest be given by xk,
which is implicitly defined by: xk ¼ ð1� yÞf ðxkÞ. As y increases, xk decreases. For sufficiently large y, xkoe�,
and it will be optimal to permanently close patch A to harvesting. This is illustrated in Fig. 1 for the case of
high spillover, y1, which implies a low steady state stock: x1

koe�. In this case, patch A is a biological source
that should be protected. It is optimal to close the fishery in patch A because the biological return from leaving
fish in patch A is greater than the financial rate of return. Some of the fish from patch A then migrate to patch
B where harvest occurs. For a low spillover rate, y0, x0

k4e�, and it is not optimal to establish a biological
reserve.3

3. The spatial harvest problem

Here we generalize the above spatial harvesting model. Harvest can take place in i ¼ 1; 2; . . . ; I discrete non-
overlapping patches over t ¼ 1; 2; . . . ;1 discrete time periods. Patches may be heterogeneous along economic
and/or biological dimensions. The model includes stochasticity in several key biological relationships, which is
an important feature of most renewable resources.
3Except in the trivial case in which harvesting a patch is simply unprofitable.
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3.1. Spatial biology

The stock in patch i at the start of period t, xit, is assumed to be known at the start of period t, for
i ¼ 1; 2; . . . ; I and t ¼ 1; 2; . . . : Initial stock in each patch, xi1, is given. Harvest in patch i in period t is hit and
escapement in patch i at the end of period t is eit, with eit � xit � hit. Biological production in each patch yields
the stock of young, Y it, which depends on a spatially distinct average growth function of escapement f iðeitÞ,
with f 0iðeitÞ40, f 00i ðeitÞo0, and f 0ið0Þ41=d. Growth may also be influenced by stochastic processes such as
nutrient availability, rainfall, upwelling, and temperature [3]. The number of young produced in patch i at time
t is

Y it ¼ Z
f
itf iðeitÞ, (4)

where Z
f
it is a random variable whose distribution is known and is time independent with expected value equal

to 1 and support bounded below by 0 and finite upper support. Eq. (4) is a stochastic growth function
considered by Reed [36], Costello et al. [9], and others.

The young that are produced in each patch i ¼ 1; . . . ; I then disperse across space. The pattern of dispersal
may be stochastic (dependent on ocean currents, wind, etc.). Denote by Dji a scaled multinomial random
variable indicating the percentage of young that originate in patch j that settle in patch i (so

P
i Dji ¼ 1). We

require some local retention: Dii40. Keeping track of all possible source locations, total settlement to patch i

is

Sit ¼
XI

j¼1

Y jtDji. (5)

Following settlement in a patch, we assume that individuals do not migrate out of that patch. Young are
assumed to reach adulthood in one time period, at which time they become harvestable and can reproduce.
The number of settlers in patch i that survive the time period to adulthood is ZS

itsiðSitÞ, where siðSitÞ is the
(possibly) density dependent average survival to adulthood in patch i, s0iðsÞ40, and ZS

it is a random variable.4

Adult survival from one period to the next is given by Z
m
itmiðeitÞ, where miðeitÞ is the (possibly) density

dependent average survival as a function of the number of adults after harvest and Z
m
it is a random variable.

We assume that the distribution of ZS
it and Z

m
it are known, time independent, each with expected value equal to

1 and support bounded below by 0.5 We also assume that the random variables (Z
f
it, ZS

it, Z
m
it;Dji) are

independent of each other.
Pulling together the various parts of the biological model, we can summarize the equation of motion

describing the stock of adults in patch i in time period tþ 1 as a random variable given by

xitþ1 ¼ Z
m
itmiðeitÞ þ ZS

itsiðSitÞ

¼ Z
m
itmiðeitÞ þ ZS

itsi

XI

j¼1

Z
f
jtf jðejtÞDji

 !
. (6)

The first term on the right-hand side of Eq. (6) is the stock of surviving adults from the previous period. The
second term on the right-hand side is the stock of new adults, which depends on reproduction and dispersal
from all patches. Therefore, the stock in patch i in time period tþ 1 may depend on escapement in all patches,
ejt, j ¼ 1; . . . ; I , and on the random variables in all patches, Z

f
jt and Dji, j ¼ 1; . . . ; I , as well as patch specific

random variables, Z
m
it, and ZS

it. The timing of growth and harvest are summarized in Fig. 2.
4We make the simplifying assumption that all adults in a patch have equal reproductive capacity. A more realistic (though less tractable)

treatment would allow for age structure in both survivorship and reproduction.
5A technical restriction is that the upper bound on the support of ZS

it cannot exceed S=sðSÞ and that the upper bound on the support of

Z
m
it cannot exceed e=sðeÞ. This ensures that the survivorship rate (of larvae and adults, respectively) cannot exceed 1.
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Fig. 2. Timing of growth, dispersal, and harvest in a stochastic spatially connected renewable resource model.
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3.2. Spatial economics

We assume an elastic demand at price p per unit harvest, and a marginal cost of harvest function, ciðsÞ,
which is a non-increasing function of the current stock, c0iðsÞp0. By indexing cið�Þ by i we allow for the
possibility that harvest costs may be location specific. For example marginal harvest costs in fishing may
increase with depth or distance to port. The patch-i period-t payoff from harvest hit starting with a population
of xit and ending with a population of eit is: phit �

R xit

eit
cðsÞds.6 Henceforth we use the identity hit � xit � eit to

rewrite the payoff function in terms of escapement: pðxit � eitÞ �
R xit

eit
cðsÞds. Focusing on optimal escapement

rather than optimal harvest significantly simplifies analysis of the model [36,9].
The economic objective is to maximize the expected net present value of harvest, expressed in terms of

escapement, from I-patches over an infinite horizon:

max
feitg

E
X1
t¼1

dt
XI

i¼1

pðxit � eitÞ �

Z xit

eit

cðsÞds

� �
, (7)

where the expectation operator, E, is over all future stocks. The maximization problem is subject to the
equation of motion for stock in each patch i ¼ 1; 2; . . . ; I (Eq. (6)), and given initial stocks xi1, for all i. The
objective is to identify a feedback control rule e�t ðxtÞ that is an I-vector function of state-dependent controls
that yields the optimal patch-specific escapement as a function of the vector of patch-specific stocks in any
period t.
4. Results

In this section we derive an analytic solution to the stochastic spatial optimal harvesting problem in Eq. (7).
We begin by deriving an interior solution and the conditions required for its existence. We then analyze the
bioeconomically relevant and interesting corner solution case where it is optimal to close at least one patch to
harvesting, either temporarily or permanently. A question central to this analysis is if, and under what
biological or economic conditions, such closures emerge as part of the optimal solution.
6This payoff function rules out a capacity constraint on the fishing fleet size that would restrict large harvests in highly productive years.
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We represent the spatial harvesting problem under uncertainty as a stochastic dynamic programming
equation with xt as the period-t state vector of stocks and et as the period-t control vector, as follows:

VtðxtÞ ¼ max
et

XI

i¼1

pðxit � eitÞ �

Z xit

eit

cðsÞds

� �
þ dEtfV tþ1ðxtþ1Þg. (8)

Eq. (8) is subject to state transitions given by Eq. (6) and initial stocks x1. From the perspective of period-t,
period tþ 1 stocks are random variables. Thus the period t problem requires taking expectations, Et, over the
random variable Vtþ1ðxtþ1Þ. Solving for the optimal solution requires setting the marginal value of harvest in
each patch equal to the discounted expected marginal value of additional escapement from the patch, where
the marginal value of additional escapement is determined by its contribution to future harvests in connected
patches.

In general, stochastic dynamic programming equations such as Eq. (8) are difficult problems to solve
analytically. However, we can make progress in the analysis by taking advantage of the special structure of the
problem. Define xi as the stock level to which a myopic harvester would extract the resource: xi ¼ maxð0; x̂iÞ,
where x̂i is the level of stock at which marginal profit is zero, defined by p ¼ cðx̂iÞ. Starting with a stock of x,
the patch-i period-t profit from harvesting down to xi is given as follows:

QiðxÞ � pðx� xiÞ �

Z x

xi

ciðsÞds. (9)

Using this function, we can re-write the dynamic programming Eq. (8) as follows:

VtðxtÞ ¼ max
et

XI

i¼1

½QiðxitÞ �QiðeitÞ� þ dEtfVtþ1ðxtþ1Þg, (10)

which is subject to biological state transitions given in Eq. (6) and initial stocks x1. We represent optimal
solutions to this problem by e�t ðxtÞ. We assume concavity of returns in et so that there is a unique solution
e�t ðxtÞ. Under the assumptions of our model, we can guarantee concavity when f 00i ð�Þ is large in absolute value
(highly concave growth function) relative to c00i ð�Þ.
4.1. An interior solution to the stochastic spatial harvesting problem

Making use of the form of the stochastic dynamic program in Eq. (10), we can show that the optimal
escapement in this harvesting problem is independent of the state vector, a condition for which we adopt the
following definition:

Definition 1. A discrete-time stochastic dynamic optimization problem has ‘‘state independent control’’ if the
optimal control in any period t is independent of the state vector in that period.7

State independent control problems have a special structure that allows one to break stochastic dynamic
optimization problems, normally quite difficult to solve, into a series of one-period optimization problems,
which are relatively easy to solve. In state independent control problems, the optimum choice vector ðetÞ is
determined solely by factors independent of the state vector ðxtÞ. In our case, state independent control means
that the optimal choice of escapement can depend on the discount factor, price, marginal cost of harvesting at
the level of escapement, expected biological growth, dispersal, and survival of stock to the next period, but will
not depend on level of stock at the beginning of the period. When optimal escapement in period t is
independent of initial stock in period t, optimal escapement will be independent of all past choices of
escapement because these choices affect the period t choice only through the initial level of stock. Similarly,
optimal escapement in period t will not affect any future escapement decisions because those choices will also
be independent from all past choices. State independent control is a strong property and does not hold in
7The notion of state independent control is similar to ‘‘state separability,’’ a concept applied in non-cooperative differential games [11].

State separability requires state independent control and an additional condition relevant for continuous time models.
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general. In the following lemma, we show that our problem has state independent control under an interior
solution.

Lemma 1. Provided that an interior solution exists, the period t dynamic program given in Eq. (10) has state

independent control.

Proof. The dynamic programming equation is

VtðxtÞ ¼ max
et

XI

i¼1

½QiðxitÞ �QiðeitÞ�|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Current Payoff

þ dEtfV tþ1ðxtþ1Þg|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
Future Payoff

. (11)

The necessary condition for an interior solution is

�Q0iðeitÞ þ dEt

XI

j¼1

qV tþ1ðxtþ1Þ

qxjtþ1

qxjtþ1

qeit

( )
¼ 0 8i. (12)

The necessary condition is also sufficient given the assumption of concavity of returns in the vector of controls
(escapement). The first term, which reflects the marginal contribution of escapement to current period payoff,
is independent of xt by inspection. The derivative of the value function in period tþ 1 depends on the period
tþ 1 state, but is independent of the period t state. Noting that for an interior solution eitoxit and using Eq.
(6) observe that xitþ1 is a function of eit but not of xit. Therefore, the terms in the bracket are independent of
xt, and the period t problem has state independent control. &

An important economic insight that follows from the state independent control property is captured in the
following proposition:

Proposition 1. If an interior solution to the dynamic programming equation exists, the optimal feedback control

rule will be both time and state independent and will, in general, vary across space.

Proof. The necessary condition for an interior optimal solution to the dynamic programming equation (Eq.
(10)) for patch i at time t is given by Eq. (12). Note that e�it is independent of xit by Lemma 1. Therefore, a
change in stock in the next period affects the value function in tþ 1 only through terms Qjðxjtþ1Þ, for
j ¼ 1; . . . ; I . Using this fact along with the state transition equations (Eq. (6)), we can rewrite the necessary
condition for patch i at time t as follows:

�Q0iðe
�
itÞ þ dEt Q0iðxitþ1ÞZ

m
itm
0
iðe
�
itÞ þ

XI

j¼1

Q0jðxjtþ1ÞZ
S
jts
0
jð�ÞZ

f
itf
0
iðe
�
itÞDij

( )
¼ 0. (13)

Since the distribution of shocks is independent of time, as is biological growth, dispersal, survival and
economic returns, the optimal choice, e�it, is independent of time. However, since biological growth, dispersal,
and economic returns can vary across patches, the optimal choice will, in general, vary across space. &

The optimal solution to the dynamic spatial harvesting problem under uncertainty is a patch-specific
constant escapement level. This result is a generalization to the spatial context of a result derived by Reed [36].
For a given patch, the optimal escapement level remains fixed over time because expectations are constant
across periods. Escapement is an investment whose cost is the lost value of current harvest and whose return is
the expected discounted value of increased future harvest. Optimal escapement in patch i (e�it) is determined by
the level of ending stock at which the marginal profit of current harvest, �Q0iðe

�
itÞ ¼ p� ciðe

�
itÞ, is equal to the

discounted expected marginal profit of next period harvest, which is the term in the brackets in Eq. (13).
Allowing higher escapement contributes to next period profits because there will be a larger expected
harvestable stock in patch i, EtfZ

m
itm
0
iðe
�
itÞg, and a larger expected number of new recruits in many patches from

biological growth, dispersal and survival, Etf
PI

j¼1 ZS
jts
0
jð�ÞZ

f
itf
0
iðe
�
itÞDijg. The expected marginal value of harvest

from increased initial stock in patch j in the next period is given by Q0jðxitþ1Þ. Environmental fluctuations that
affect initial stock size in a patch will affect harvest. When conditions are good and initial stocks are high there
will be large harvests, and when conditions are poor and initial stocks are low there will be small harvests. In
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both good and poor conditions, however, escapement remains constant because the tradeoff between current
cost and expected future gain remains constant.

Though each patch retains constant escapement, optimal escapement levels can vary across space for three
reasons. First, spatial heterogeneity in the economic environment (captured here by different harvest costs)
can drive spatial differentiation of harvest. Second, spatial heterogeneity in the biological environment
(captured by differences in biological productivity across patches) will influence harvesting. Finally, and
perhaps most importantly, patterns of dispersal, which connect the biological functions of different patches,
can affect harvest. These spatial connections are what distinguish this problem from similar analyses in
aspatial environments and can play an important role in determining the optimal harvest strategy. However,
there is a set of special conditions under which spatial connectivity plays no role in the interior solution.

Condition 1. The marginal harvest cost function is constant and identical across patches (so ciðsÞ ¼ c).

Condition 2. The survival function sjðxÞ is linear and identical across patches (so sjðxÞ ¼ sx).

Proposition 2. Under Conditions 1 and 2, and provided that an interior solution to the dynamic programming

equation exists, the optimal feedback control rule satisfies the golden rule of growth in each patch in each time

period and is independent of dispersal.

Proof. Under Condition 1, QiðxÞ ¼ ðp� cÞðx� xiÞ. Under Condition 2, s0jð�Þ ¼ s. Using these facts, the
necessary condition for an interior solution to the optimal feedback rule for patch i at time t is

�ðp� cÞ þ dEt ðp� cÞZ
m
itm
0
iðe
�
itÞ þ

XI

j¼1

ðp� cÞZS
jtsZ

f
itf
0
iðe
�
itÞDij

( )
¼ 0. (14)

Simplifying this expression we obtain: 1 ¼ dfm0iðe
�
itÞ þ

PI
j¼1 sf 0iðe

�
itÞDijg. Using the fact that

PI
j¼1 Dij ¼ 1, this

expression can be further simplified to

1=d ¼ m0iðe
�
itÞ þ sf 0iðe

�
itÞ. (15)

Optimal escapement in a patch, as characterized by Eq. (15), is independent of dispersal. The left-hand side of
Eq. (15) is equal to the financial rate of return (1=d ¼ 1þ r, where r is the interest rate). The right-hand side of
Eq. (15) is the expected biological growth of the stock. Eq. (15) shows that the golden rule of growth holds in
each patch in each period: the expected biological growth of the stock equals the financial rate of return. &

In an interior solution with identical linear costs and constant survival rates across sites, a recruit will
contribute the same value to future production no matter where it ends up. Survival rates are constant, not
density dependent, and identical so that a recruit is just as likely to survive to be harvested in any patch.
Further, the marginal value of harvest in all patches in all periods is the same, p� c. Under Conditions 1 and
2, what matters is the marginal productivity of a site, m0iðe

�
itÞ þ sf 0iðe

�
itÞ, but not where the recruits from a site

disperse.
Spatial connections are irrelevant only in the special case where Conditions 1 and 2 apply. In general, with

non-linear density dependent survival, differences in survival rates across patches, non-linear harvest costs, or
differences in harvest costs across patches, dispersal will play a role in optimal escapements.

4.2. Corner solutions: a case for biological reserves?

Over the past several decades there has been a major expansion of protected areas (‘‘reserves’’) in which
extractive economic activities, such as timber harvesting, hunting, or fishing, are banned or restricted.
Currently about 10% of the earth’s land area (almost twice the size of Europe or Australia) and 5% of the
territorial oceans (about 20 times the area of the Great Lakes) are in reserves.8

One justification for expanding reserves is to achieve biological objectives; reserves are a means to conserve
biodiversity. However, a stronger claim is often made that reserves increase the value of extractive economic
8Authors’ calculations based on data in World Database on Protected Areas [51]. Total land area is 1.48E10ha and total terrestrial

reserves constitute 1.47E9ha. Total territorial and EEZ ocean area is 1.07E10 ha and total marine protected area is 4.8E8ha.
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activity. That this is so does not immediately accord with economic intuition [8]. Provided that the initial stock
size in every patch in every period is sufficiently large, an interior solution (in which there is positive harvest in
every patch in every period) is optimal. But with stochasticity and spatially connected patches there is no
guarantee that initial stock size in every patch in every period will be sufficiently large. In this section we focus
on corner solution cases where it is optimal to close a patch, either temporarily or permanently, to harvest. We
begin with the following result.

Proposition 3. Patch i should be closed to harvesting in period t if and only if xitoēit, where ēit satisfies the

following implicit equation:

�Q0iðēitÞ þ dEt

XI

j¼1

qV tþ1ðxtþ1Þ

qxjtþ1

qxjtþ1

qeit

( )
¼ 0. (16)

Proof. Because �Q00i ðeÞo0, and

q
qeit

Et

XI

j¼1

qV tþ1ðxtþ1Þ

qxjtþ1

qxjtþ1

qeit

 !( )
o0

we have

�Q0iðeitÞ þ dEt

XI

j¼1

qV tþ1ðxtþ1Þ

qxjtþ1

qxjtþ1

qeit

( )
40 (17)

for eitoēit. In this case, it is optimal to increase escapement. However, we know that eitpxit, so if xitoēit, the
maximum eit that can be attained is eit ¼ xit, which occurs with zero harvest. Therefore, for xitoēit it is

optimal to close patch i to harvesting in period t. For eit4ēit, �Q0iðeitÞ þ dEtf
PI

j¼1
qVtþ1ðxtþ1Þ

qxjtþ1

qxjtþ1

qeit
go0 and it is

optimal to lower escapement (increase harvest). When xitXēit, it is optimal to have positive harvest and have
escapement of eit ¼ ēit. &

Proposition 3 provides a necessary and sufficient condition for a harvest closure to be economically optimal.
If the initial stock in patch i in period t, xit, falls below the patch specific escapement target, ēit , then the patch
should be closed in that period because the expected biological returns from escapement exceed the returns
from current harvest. It follows that if xitoēit for all t then patch i should be permanently closed to harvest. In
that case, patch i would be a permanent biological reserve. The example in Section 2 with large value of y
illustrates this possibility. Conditions that lead to low initial stock levels in a patch include low dispersal of
recruits to the patch, low survival of recruits and low survival of adults. Having low survival of adults will also
tend to result in a low optimal escapement level (if adults are unlikely to survive it is better to harvest them
now), and may thus preclude establishing a permanent biological reserve. However, having permanently low
dispersal into a patch or low survival of recruits in a patch will tend to favor a permanent biological reserve.
There is value to maintaining the adult stock in a patch with low recruiting ability. The relatively rare adults in
such a patch are most profitably suited to production (and subsequent harvest of recruits in connected
patches) rather than harvest.

High harvest costs in a patch can also lead to reserves. When marginal harvest costs at all possible stock
levels exceed price it is never optimal to harvest from the patch. Of course, in this case official designation as a
biological reserve is relatively meaningless as no profit maximizing harvester would attempt to harvest from
the patch. Even when harvest costs do not exceed price, it may be optimal to close patches with high harvest
costs so that growth disperses and settles in patches with lower harvest costs.

With stochastic shocks to recruitment or the adult population, it is possible that xitoēit in some periods but
not permanently, in which case it is optimal to have a temporary harvest ban, i.e., a temporary reserve, in a
particular set of patches to allow stock recovery, but not institute a permanent biological reserve. We return to
this point in Section 4.3. A result that follows immediately from this discussion is that patches in which stocks
have been depleted by past harvesting (such that xitoēit) should be closed to harvesting, at least temporarily,
until stocks have recovered to a point where this inequality no longer holds.
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Even knowing which patches to close, the fishery owner is still faced with the task of determining optimal
harvest outside the closed area. This question is of central importance to policy surrounding protected areas
and their design, yet it has received only scant attention in the literature. When analyzing the consequences of
harvest closures two different approaches have been taken. Biologists typically assume maximal harvest
outside the reserve [22]. Of course in a world with stock-dependent harvest costs (such as assumed in this
model) it would never be economically rational to harvest to extirpation in a patch (provided cð0Þ4p).
Another approach is to assume some form of open access outside the reserve (e.g. Sanchirico and Wilen [40]).
In either case, reserves may be better than no reserves because their implementation partially addresses the
failures associated with over-harvesting.

Our interest here is to characterize how implementation of a reserve affects optimal harvest outside the
reserve. Explicitly characterizing the optimal pattern of harvests with N patches through time is complex
because there are many potential patterns for which patches are open and which are closed to harvest though
time, and as we show below, the optimal harvest in a patch can depend on which other patches are open and
closed. To keep things simple and obtain sharp results, we focus on a comparison where potentially one patch
will be closed for one period and all other patches are open for all periods. When all patches are at an interior
solution, optimal escapement for patch i at time t, e�it, is characterized by Eq. (13). Define x�jtþ1 to be the stock
in patch j in period tþ 1 when all patches i ¼ 1; 2; . . . ; I , in period t have escapement of e�it: x�jtþ1 ¼

Z
m
jtm
0
jðe
�
jtÞ þ ZS

jtsjð
P

Z
f
it f 0iðe

�
itÞDijÞ. For suitable combinations of the patch specific growth functions (f ið�Þ),

survival functions (mið�Þ and sið�Þ), and distributions of random variables (Zm
it;Z

S
it;Z

f
it;Dij), for all i; j; t, we can

have x�it Xe�it for all i and all t. For example in the two patch model shown in Fig. 1, assume that the value y0
occurs for all t. We denote this case as

Case 1: Interior solution. x�it Xe�it for all i and all t.
Now suppose that we take the exact same growth and survival functions and distributions of random

variables, but impose a deleterious shock to stock in patch k in period t. For example, suppose that Z
m
it and ZS

it
are close to zero so that xitoēit, where ēit is defined by Eq. (16). Alternatively in the two patch model shown in
Fig. 1 with value y0 for all tat� 1 and value y1 for t ¼ t� 1. When some patch may not be at an interior
solution, optimal escapement is characterized by Eq. (16). Define x̄jtþ1 to be the stock in patch j in period tþ 1
when all patches i ¼ 1; 2; . . . ; I in period t have escapement of ēit. This case is denoted as

Case 2: Patch k Corner solution. x̄it Xēit for all i and all t except that x̄ktoēkt with non-zero probability.
We have the following results:

Proposition 4. The optimal escapement in patch i at time t� 1 is higher in Case 2 than in Case 1.

Proof. In Case 1 when patch k is in an interior solution at time t, optimal escapement from patch i in period
t� 1; ef1git�1, satisfies
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In Case 2, when patch k is in a corner solution at time t, the optimal escapement from patch i in period t� 1
ef2git�1, satisfies
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When patch k is in a corner solution in period t,

Q0ðxktÞodEt
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S
jts
0
jð�ÞZ

f
ktf
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. (20)

Substituting the inequality in Eq. (20) into Eq. (19) we find
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Because the returns function is assumed to be concave in escapement (see text following Eq. (10)), so that
the marginal returns function is declining in escapement, it follows from Eqs. (21) and (18) that
ef2git�14ef1git�1. &

Proposition 5. When it is optimal to open all patches to harvest in all periods (Case 1) and assuming that

PrðDik ¼ 0Þo1, then optimal escapement in patch i at time t will be lower when patch k is (sub-optimally) closed

to harvest in period t than when patch k is open at time t.

Proof. When harvest is allowed in patch k at time t, optimal escapement from patch i in period t� 1 is defined
in Eq. (18). When harvest is closed in patch k in period t, optimal escapement from patch i in period t� 1 is
defined in Eq. (19). Because it is optimal for patch k to be open in period t but it is closed to harvest, we have
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Substituting the inequality in Eq. (22) into Eq. (19) we find
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Because the returns function is assumed to be concave in escapement, so that the marginal returns function is
declining in escapement, it follows from Eqs. (23) and (18) that ef2git�1oef1git�1. &

As a consequence of Proposition 3, it is optimal to close a patch to harvest when the marginal productivity
in the closed patch exceeds the financial rate of return. When other patches contribute (through dispersal) to
settlement in the closed patch, this contribution has high returns. Therefore, it is optimal to allow higher
escapement (lower harvest) outside the optimally designed reserve (Proposition 4). On the other hand, when a
patch is closed arbitrarily (i.e., it is closed when it is not optimal to do so), the patch will have low
productivity. Other patches that contribute to settlement in this patch through dispersal will have lower
returns. Therefore, it is optimal to allow lower escapement (higher harvest) outside the (suboptimally
designed) reserve (Proposition 5).

4.3. Effects of stochasticity

We have characterized optimal escapement for an interior solution (Section 4.1) and a corner solution
(Section 4.2). In this section we analyze the consequences of stochasticity on: (1) the optimality of biological
reserves, (2) the expected value of harvesting the resource, and (3) the optimal escapement levels outside
reserves. We analyze the effects of increased variability using a mean-preserving spread of a distribution of a
random variable (some collection of Z

f
i , Z

m
i , and ZS

i ).
9 We denote by x the distribution of one of these random

variables. In what follows, it will be helpful to define a special condition under which optimal escapement is
strictly positive.

Condition 3. It is unprofitable to harvest any patch to extinction: x̂i ¼ xi40.

Under Condition 3, the stock effect gets sufficiently large so that marginal cost of harvest rises above price at
low stock levels making local extinction unprofitable. This provides a sufficient condition for the following
proposition:

Proposition 6. Suppose an interior solution is optimal for all patches in all time periods and that Condition 3
holds. A sufficiently large mean preserving spread over the distributions governing some combination of Z

f
i , Z

m
i ,

and ZS
i will induce optimal temporary closures in patch i.

Proof. Under Condition 3, ēitðxÞXx̂i40 for all i and t for all possible distributions of the random variables.
By Proposition 3, it is optimal to close patch i to harvesting in period t if and only if xitoēitðxÞ. From Eq. (6)
increasing the spread of the distribution of any Z

f
i , Z

m
i , or ZS

i will make the minimum possible realization of xit

arbitrarily close to zero so that xitoēitðxÞ for some i, t, and x. &
9When referring to a distribution of a random variable, we omit the subscript t since the distributions themselves are independent of

time.



ARTICLE IN PRESS
C. Costello, S. Polasky / Journal of Environmental Economics and Management 56 (2008) 1–1814
Proposition 6 shows that a suitably large increase in variability makes it optimal to close a patch to harvest,
at least temporarily. Increased variability leads to a lower support on the distribution. With sufficiently large
spread, the lower support on the distribution will fall below the optimal escapement level so that a deleterious
shock will cause initial stock in a period to fall below the optimal escapement, leading to optimal closure of the
patch.10

The same mechanism underlies a corollary result: increased variability tends to reduce the likelihood of an
optimal permanent reserve. This occurs because a combination of good shocks to growth, dispersal and
survival will make it likely that xit4ēitðxÞ for some t, and it will be optimal to open the patch to harvesting, at
least on a temporary basis. In other words, without imposing an upper limit on the support of the random
variables in this model, we cannot guarantee that permanent reserves will be optimal. However, if the adult
and recruit survival functions are suitably small and the upper bound on the support of random variables is
finite, then xitoēitðxÞ for all t and permanent closure will be optimal.

In summary, increasing the spread of random variables makes permanent reserves and permanent open
patches less likely and increases the probability of temporary closures in an optimal solution. With high
variability it is likely that there will be realizations of the random variable that place initial stock in a period
either above or below the critical threshold level characterized by Eq. (16) so that decisions about whether to
allow harvesting can go either way.

Changes in environmental variability can also affect optimal escapement levels outside of reserves, which we
discuss in the next proposition.

Proposition 7. Adopting Conditions 1 and 2 and the patch-k corner solution case (Case 2), a mean preserving

spread on any random variable that directly affects xkt causes eit�1 to increase (decrease) if f 000k ðxkÞ is 40 ðo0Þ,
where i is a patch for which Dik40.

Proof. Define the expected present value of payoff from harvest starting from period t� 1 as
Et�1Uðe; xÞ ¼

P1
t¼t�1 d

t�ðt�1ÞPI
i¼1 ½QiðxitÞ �QiðeitÞ�. Let the distribution of xkt be a function of x, where an

increase in x denotes a mean preserving spread. Let e�it�1ðxÞ denote the optimal choice of eit�1 when the
distribution of xkt has spread x. We wish to evaluate the sign of ðde�it�1ðxÞÞ=dx. Laffont [29] proves the
following (Theorem 2):

de�it�1ðxÞ
dx

40 if Uexx40;

o0 if Uexxo0;

(
(24)

where Uexx is the third derivative of the utility function with respect to e and x (twice). The first derivative,
Ueit�1 is given by the left-hand side of Eq. (19). Conditions 1 and 2 simplify it to
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Laffont’s theorem requires us to take the second derivative of this expression with respect to xkt, which is
equal to

Uexx ¼ dEt�1 dEt

XI

j¼1

ZS
jtsf 000k ðxktÞDkjZ

S
kt�1f

0
iðeit�1ÞDik

" #" #
. (26)

The sign of this expression equals the sign of f 000k ðxktÞ. &

It is tempting to think that increased variability would make harvesters more cautious, i.e., escapement
levels should increase with greater environmental variability. But this is not necessarily the case. As
Proposition 7 shows, increased variability can result in either an increase or a decrease in optimal escapement
10Proposition 6 relies on a suitably large stock effect at low population levels (Condition 3), though this is not necessary. For arbitrary

cðxÞ, Reed [36] shows that provided xcðxÞ is concave, optimal escapement never decreases with stochasticity. Under that condition, more

spread can always induce temporary closures.
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levels; a result driven entirely by the shape of the biological growth function. Furthermore, when c0iðsÞo0,
there is a tendency for increased variability to increase optimal escapement levels, though not because of
some type of precautionary principle. With c0iðsÞo0, greater environmental variability increases the expected
value of escapement because the profit function is convex in stock, a point to which we return below (see
Proposition 9).

In certain special cases, optimal escapement will be unaffected by changes in variability of random
variables, formalized below:

Proposition 8. With an interior solution and assuming Conditions 1 and 2, optimal escapement levels are

independent of ‘‘small’’ mean preserving spreads.

Proof. By ‘‘small’’ we allow any mean preserving spread under which the assumption of interior solutions is
maintained. Under an interior solution and Conditions 1 and 2, Eq. (15) defines optimal escapement which is
independent of random variables. &

To this point, we have considered the effects of increased variability on both reserves and escapement levels
outside reserves. In the next two propositions we show the effect of increased variability on expected returns
from harvest.

Proposition 9. Suppose that an interior solution exists and that c0iðsÞo0. A mean preserving spread on Z
m
i or ZS

i

will increase annual expected returns for any i. Assuming Condition 2, a mean preserving spread on Z
f
i will

increase annual expected returns for any i.

Proof. The return from harvest in patch i in period t as a function of initial stock xit is:
PiðxitÞ ¼ pðxit � eiÞ �

R xit

ei
ciðsÞds. With c0iðsÞo0 and holding ei constant, we have P0i ¼ p� ciðxitÞ40 and

P00i ¼ �c0iðxitÞ40. From Eq. (6), xitþ1 is linear in both Z
m
it and ZS

it. Under Condition 2, xitþ1 is also linear in Z
f
it.

Because a convex function of a linear function is a convex function, a mean preserving spread on Z
m
i or ZS

i

(also Z
f
i assuming Condition 2) will result in an increase in the expected return, holding ei constant. If ei is also

allowed to adjust optimally to a change in the distribution, the returns can only increase further. &

The result shown in Proposition 9 that larger environmental variability leads to greater expected economic
returns from harvest may be counter-intuitive at first glance. The result is driven by the fact that marginal
harvest costs are declining in the level of stock ðc0iðsÞo0Þ. This fact, along with constant price, implies that
marginal returns are increasing in stock so that the profit function from harvest in a period is convex in initial
stock. The upside gain from a good year more than offsets the downside loss from a bad year leading to
increased expected returns with larger variance.

The finding that more variable conditions leads to greater expected economic returns from harvest when all
patches are open to harvest can be reversed in the case when a patch is closed to harvest. We given an example
of such a case in the next proposition.

Proposition 10. Suppose patch k is closed in periods t and tþ 1 (whether optimally or not), 0oDkko1, all

patches jak are at interior solutions for all t, Djk ¼ 0 for all jak and all t, and Conditions 1 and 2 hold. Then a

mean preserving spread in Z
f
k, Z

m
k, or ZS

k lowers expected returns.

Proof. With Djk ¼ 0 and interior solutions for all jak for all t, e�jt is independent of conditions in patch k, and
is thus unaffected by a mean preserving spread in Z

f
k, Z

m
k, or ZS

k . Because patch k is closed in period t, and
assuming Dkk40 and Condition 2, a mean preserving spread in Z

f
k, Z

m
k, or ZS

k results in a mean preserving
spread in xktþ1. Because patch k is closed in period tþ 1, xktþ1 ¼ ektþ1, so that a mean preserving spread in
Z

f
k, Z

m
k, or ZS

k results in a mean preserving spread in ektþ1. By concavity of the growth function, f kðeÞ, a mean
preserving spread in ektþ1 causes a decrease in EðY ktþ1Þ, leading to a decline in EðSjtþ1Þ for all jak for which
Dkj40. Given Condition 2, this will lead to a decline in Eðxjtþ2Þ for all jak for which Dkj40. Assuming
interior solutions for all patches jak, and given Condition 1, a decrease in expected stock leads to a decrease
in expected profit from harvest equal to ðp� cÞ times the expected reduction in stock. In addition, a decrease in
EðY ktþ1Þ also leads to a decline in EðSktþ1Þ, and given Condition 2, this will lead to a decline in Eðxktþ2Þ,
leading to decreased expected value of harvest in periods beyond tþ 2. &
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Whether an increase in variability of biological parameters leads to increased or decreased expected returns
depends to a great extent on whether shocks increase stock variance primarily in closed patches or open
patches. In open patches, variance in initial stock contributes to variance in harvest in that period, which leads
to an increase in expected returns when marginal costs decline with stock (convex profit function in stock
levels). In closed patches, variance in initial stock contributes directly to variance in escapement which feeds
into a concave biological growth function, tending to depress expected returns.

5. Discussion

Spatial connectivity, heterogeneity, and stochasticity are fundamental attributes of most renewable
resources, yet these conditions have been largely neglected in economic models of optimal resource use. In this
paper, we extended prior results on the economic theory of optimal renewable resource extraction using a
fairly general spatial model under uncertainty. Despite the complexity of the problem, which is spatial,
dynamic, and stochastic, we were able to obtain analytical results by exploiting the special structure of the
model (state independent control).

As part of this analysis, we characterized when it was economically optimal to close particular areas to
harvest (biological reserves). Biologists almost unanimously favor reserves as a natural resource management
tool. One argument for reserves is that they help conserve biodiversity, a motivation outside of our analysis in
this paper. Some biologists go further, however, and argue for biological reserves on the largely
unsubstantiated grounds that they can lead to economic gains. We found that biological reserves can, in
fact, boost expected profits and be a part of the first-best economic outcome. This result can occur under a
number of realistic bioeconomic conditions and is robust to (even strengthened by) stochasticity within the
system. Heterogeneous economic conditions (e.g. high marginal harvest cost in a region) can lead to optimal
spatial closures. This result is consistent with theory on optimal harvesting of non-renewable resources [15].
Perhaps more interestingly, even in a spatially homogeneous economic and biological environment, certain
patterns of spatial connectivity (e.g. low dispersal to a patch) can generate sufficiently large marginal
productivity to make the net marginal value of harvest in that patch negative. In such cases, the patch is
optimally closed to harvest. This result can also be obtained as a result of environmental variability or shocks
to the dispersal between patches. Patch closures can be either permanent (e.g. in the case of a biological
sources and sinks of larval dispersal) or temporary (e.g. in the case of bad draws from the random
environment). We found that increasing variability tends to favor temporary closures over establishment of
permanent reserves. We also found that increased variability can increase expected economic returns, if the
variability primarily affects patches open to harvest. When increased variability primarily affects a patch
closed to harvest, though, the concavity of the growth function leads to decreased export of larvae to other
patches and tends to decrease expected returns.

Maintaining our focus on harvest closures in particular patches, we also examined how closures affect
optimal harvest in open patches outside those closures. When harvest closures are optimal, optimal harvest
outside those patches is decreased to take advantage of the high marginal productivity of those patches. This is
in direct opposition to the existing models of marine reserve creation that assume complete harvest outside
reserves. On the other hand, if reserves are sub-optimally located (i.e., in places in which marginal productivity
is low), optimal harvest outside the reserves should actually increase relative to the case in which the patch was
not closed. These results underscore an important policy lesson: reserves themselves cannot correct fisheries
decline. Economic theory and empirical evidence show that fishermen will adjust effort spatially and rents will
dissipate in the absence of other controls [47,23]. The formal treatment of this problem outlined in this paper
also provides a platform for more meaningful general analysis of optimal spatial management in the presence
of spatial externalities.

We have presented a relatively general spatial, dynamic, and stochastic bioeconomic model and have
identified an analytical solution when an interior solution exists and some salient characteristics of the solution
when an interior solution does not exist. But this analytical tractability requires several limiting assumptions.
An important technical requirement to identify a solution analytically is that the resource owner can measure
the harvestable stock prior to harvest without error. The large informational requirements for such fine-tuned
management may be prohibitive. If the stock is unknown, the policy design question becomes even more
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difficult. However, this problem could, in principle, be overcome by exploiting the fact that stock dependent
harvest costs can reveal information about stock size. In such cases, a spatially heterogeneous tax could be
used to achieve the optimal escapement levels [49]. Another limiting assumption is that marginal returns from
harvest are independent of the amount harvested. This assumption is standard in the literature and ensures the
state independent control property, but may not be realistic in all natural resource contexts. For example,
there may be limited inputs (e.g., boats, trained crew members) that would tend to increase marginal costs as
harvests expand. Alternatively, downward sloping demand for harvest would also lead to lower decreasing
marginal returns as harvest expands. In those cases, shocks that affect stock will lead to harvest smoothing
over time, leading to state-dependent escapement levels. Incorporating these extensions is an important next
step in the assessment of optimal spatial harvest of renewable resources.

While our results shed new light on an old and increasingly important problem, they also raise new
questions about the institutions required to implement them. We have presented the analysis from the
perspective of a sole owner with perfect tenure over the entire spatial extent of the resource. Often, however,
tenure is divided among many owners. The conclusions drawn here could help guide coordination among
multiple resource owners, or allow a regulatory body to design harvesting rules, to achieve the first-best
outcome [26]. Coordination among many resource owners may require side-payments, as in the case where an
owner owns a single patch for which it is optimal to establish a reserve. Without such coordination, we cannot
expect the emergence of efficient spatial resource extraction [21,26].

While we have focused on space as the distinguishing feature across management units, analogies are
possible. For example, one could think of age classes as the management unit where transitions occur only to
class 1 (via reproduction) and to adjacent, increasing classes (via aging).11 Our focus on optimal harvesting
with spatial externalities facilitates analysis of current policy questions regarding reserves and their economic
implications. The rapid worldwide increase in reserve designation is driven in part by a largely unsubstantiated
assumption that creating reserves can increase profit from harvest. We have shown that reserves can indeed
increase profits when harvest is efficiently managed outside reserves. But our analysis also emphasizes that
careful design, by incorporating economic, rather than just biological reasoning, is essential to their success and
efficiency.
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