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Abstract

We characterize the optimal harvest of a renewable resource in a generalized stochastic spatially explicit model. Despite
the complexity of the model, we are able to obtain sharp analytical results. We find that the optimal harvest rule in general
depends upon dispersal patterns of the resource across space, and only in special circumstances do we find a modified
golden rule of growth that is independent of dispersal patterns. We also find that the optimal harvest rule may include
closure of some areas to harvest, either on a temporary or permanent basis (biological reserves). Reserves alone cannot
correct open access, but may, under sufficient spatial heterogeneity and connectivity, increase profits if appropriate harvest
controls are in place outside of reserves.
© 2008 Elsevier Inc. All rights reserved.
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0. Introduction

Analysis of the spatial distribution of economic activity has increased significantly in recent years.
Prominent applications include the spatial dimensions of international trade and regional development [14],
locational equilibrium in urban growth [12], environmental policy [16], and natural resource extraction
[28,39,15]. These applications have emerged from the realization that resources and economic opportunities
are distributed heterogeneously across space, giving rise to issues of transportation, locational choice, and
trade. In addition to exhibiting spatial heterogeneity, many biological resources move across space, thus
connecting actions in one place to future economic opportunities in other places. Optimal harvesting rules are
therefore connected across space and time, leading to potentially complex optimization problems. In addition,
renewable resources are often subject to considerable uncertainty and variability driven by environmental
stochasticity [37,43].

In this paper, we characterize optimal harvesting of a renewable resource in a stochastic spatial model,
capturing both spatial heterogeneity and connectivity. Spatial heterogeneity can arise from economic factors
(e.g. differences in harvest costs or transportation costs) or from biological factors (e.g. differential
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productivity from underlying environmental differences). While spatial heterogeneity and connectivity are
ubiquitous in the real world, and spatial ecology has become a fairly well-developed field [48], spatial issues
have only recently garnered much attention in resource economics. Spatial models of resource harvest include
seminal contributions by Clark [5], Brown and Roughgarden [2], and Sanchirico and Wilen [39]; we review this
literature in Section 1.

Our model is a general renewable resource model with stochastic biological growth and an arbitrary number
of heterogeneous resource production sites (called “patches’). We allow for stochastic growth of the resource
within each patch and stochastic dispersal of the resource between patches. Economic variables can also be
spatially heterogeneous. Solving this model involves stochastic spatial dynamic optimization with arbitrary
spatial heterogeneity and arbitrary spatial externalities. Despite model complexity we obtain sharp analytical
results and show how existing economic theories fall out as special cases.

Within this framework we characterize the optimal spatially explicit harvesting strategy that maximizes the
expected present value of profit from harvest. We divide our analysis into cases with interior solutions, in
which it is optimal to harvest a positive amount of stock from each patch in each period, and cases with corner
solutions, where it is optimal to close at least some patches in some periods. With fully interior solutions, we
show that the optimal strategy will in general vary across space but be time and state independent. In special
circumstances where harvest costs and survival are linear and identical across patches, the optimal harvest rule
satisfies a ““golden rule of growth” in each patch and is independent of dispersal.

By analyzing corner solutions, our approach allows us to examine an important policy question regarding
spatial resource use, namely whether it is economically optimal to close some areas to harvest (i.c., establish
biological reserves). That establishing biological reserves can increase the overall profitability of harvest does
not immediately accord with economic intuition. However, we find that spatial connections through dispersal
along with spatial heterogeneity can generate cases where it is optimal to establish biological reserves. We
demonstrate that having reserves also affects the optimal harvesting strategy in non-closed areas. We show
that it is optimal to decrease harvest in non-closed areas that connect to reserves (via dispersal) when it is in
fact optimal to establish a reserve. On the other hand, if some areas are arbitrarily closed, then the optimal
policy in non-closed areas is to increase harvest.

We also analyze the consequences of changes in stochasticity on the optimality of closing patches to harvest,
the optimal harvest levels outside of closed patches, and the expected value of harvest. Increasing variability in
biological parameters tends to make temporary closures optimal but makes optimal permanent closures
unlikely. The effect of an increase in variability of biological parameters on expected returns from harvest
depends to a great extent on whether increases in variability primarily affect stocks in closed patches or open
patches.

Our focal resource is the fishery which is well characterized by spatial connectivity (larval dispersal across
space) and heterogeneity (sites of differing harvest costs or biological productivity). Fisheries are also subject
to significant interannual variability—both in life history stages and in the dispersal process itself. In addition
to fisheries problems, the theory developed here is applicable to other renewable resources (e.g. forest
products) as well as important policy issues that share many formal similarities with renewable resources (e.g.
antibiotic or pesticide resistance).

1. Background

Fifty years ago, scientists were beginning to recognize that many renewable resources, once plentiful and
seemingly limitless, were in decline; stocks were diminishing and increasing amounts of effort were required to
maintain harvest levels. At the time, biologists played the leading role in policy design and analysis; primarily
focused on fisheries. Only later would economists engage in this discussion and convincingly articulate the role
economic behavior played in the problem, and the potential role economic institutions could play in the
solution [17,42]. As Gordon explained

Owing to the lack of theoretical economic research, biologists have been forced to extend the scope of their
own thought into the economic sphere and in some cases have penetrated quite deeply, despite the lack of
the analytical tools of economic theory [17].
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The seminal works of Gordon [17] and Scott [42] spawned an immense economics literature more or less
devoted to examining the institutional failures inherent in competitive resource extraction. Gordon [17]
illuminated the externality of one harvester on others, while Scott [42] was the first to note the dynamic nature
of the problem through the effect of harvest on future stocks. When combined with a reasonable depiction of
economic harvesting behavior, these observations pointed out the “tragedy of open access”. In the absence of
certain kinds of institutions, rents would be completely dissipated and the value of the fishery driven to zero.
Subsequent works by Crutchfield and Zellner [10], Smith [44,45], Clark and Munro [6], and others examined
this dynamic interplay in detail, and outlined a number of possible institutional corrections, which, it was
thought, could help secure rents in perpetuity. The subsequent literature on bioeconomics examined a number
of extensions to the basic model including rational expectations [1], environmental variability [36],
overcapitalization [19], political economy [27], and others."

Five decades hence, despite countless subsequent contributions by economists, many renewable resources
are—by any performance measure—patently worse-off than they were in the 1950s [52,33,25]. And just as
Gordon observed in 1954, biologists are playing policy analysts, and are, in fact, leading inquiry about the
linkages between scientific insights and the design of institutions for managing these systems. As before, most
of the analysis by biologists on this issue takes little account of economic behavior, incentives, and objectives.

Spatial connectivity of the bioeconomic environment—driven by the interplay between environmental,
biological, and economic conditions—imposes an important spatial externality that remains largely ignored in
economic analysis but is perhaps as significant a cause of mis-allocation of resources as the dynamic
externality identified five decades ago. Spatial externalities arise whenever economic activity in one location
influences returns in another location. If fish larvae drift, animals migrate, seeds disperse, water tables recede,
or pests intermingle, then optimal spatial activity may differ from that which arises from the decentralized
private property solution. In fisheries, inefficiency from migration of fish stocks across management
boundaries has been investigated by Clarke and Munro [7], Ferrara and Missios [13], Munro [31,32], Missios
and Plourde [30], Naito and Polasky [34], and others.

Would accounting for these complex dynamical and often stochastic spatial linkages appreciably change, in
a qualitative way, the conclusions about optimal economic exploitation of natural resources? That is the focus
of this paper.

To our knowledge the first substantive attempt to link spatial relationships in a true bioeconomic model is
given by Clark [5], which explores both open access and optimal harvest in a model where spatial connections
are driven by diffusion. Brown and Roughgarden [2] were the first to examine a metapopulation model in an
economic optimization framework. They assume uniform connectivity across space instead of diffusion.
Assuming diffusion along a line or uniform connectivity reduces the consequences of spatial linkages and thus
limits the scope of economic questions that can be addressed. Sanchirico and Wilen [39] analyze a
metapopulation model similar to Brown and Roughgarden [2] but do so in a discrete patchy environment.
This framework allows them to develop a more general model of spatial connectivity.

Holland and Brazee [24] appears to be the first systematic exploration of the economics of marine reserves,
and has paved the way for models with more economic generality. Using the model of the discrete patchy
environment, Sanchirico and Wilen [40] examine the consequences of establishing a reserve in the absence of
any regulation in the harvest region. Open access outside the reserve drives rents to zero, so the authors
examine the consequences of reserve creation on total harvest.

But given our interest in optimal spatial exploitation, the literature that focuses on open access conditions
outside reserves provides little guidance. Some progress has been made on the question of optimal harvesting
with reserves using a mix of 2-patch examples, specific functional forms, and simulation. Economists have
partially analyzed the economic consequences of marine reserves on fisheries profits. Conrad [8] and
Hannesson [20] reach pessimistic conclusions about the ability of reserves to increase profitability while
Sanchirico et al. [38] find that reserves can increase profits. Grafton et al. [18] show that reserves can make a
system more resilient following a discrete negative shock to the ecosystem. Smith and Wilen [46] examine the
economic implications of closing a patch to fishing, paying particular attention to fishermens’ decisions about

"Wilen [50] provides an informative and thorough chronology of the contributions of economists to institutional policy design for
natural resources.
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whether and where to fish. They find that taking these spatial decisions into account can significantly diminish
the attractiveness of area closures. Neubert [35] develops a similar model in continuous space and builds an
argument for an infinite number of infinitesimally small reserves.

We are aware of only one paper that examines optimal spatial exploitation in a generalized connected and
patchy environment. Sanchirico and Wilen [41] analyze the question by examining the case of “regulated open
access” in which the fishery manager can choose spatially heterogeneous landings and effort taxes in a
deterministic environment. In that model the objective is linear in these control variables and so a bang-bang
solution is obtained. Focus is devoted to the singular control that obtains in the equilibrium. The scope of that
paper is limited to interior solutions which leaves unanswered the question of whether harvest closures can
ever be a part of a spatial optimized harvest regime.

Our paper generalizes and contributes to the existing literature along three important dimensions. First, we
analyze optimal spatial harvest in a general model that accounts for the possibility of patch closures. Second,
we solve for the optimal harvest dynamics that account for spatial externalities. Finally, we generalize our
results to a stochastic setting.

2. A simple example

Much of the intuition for our main results can be gleaned from a simple two-patch example. Suppose a
single fisherman, whose goal is to maximize the present value of profit from fishing, has control over a closed
system consisting of two patches, 4 and B. For this example, assume harvest cost is linear in harvest and price
is constant so that profit is linear in harvest. With these assumptions, the optimal harvest plan, which
maximizes the present value of profit, is one that maximizes the present value of harvest volume. Harvesting
takes place in discrete periods and let ¢ be the discount factor between periods: 6 = 1/(1 + ), where r is the
discount rate. Define x;; as the fish stock in patch i at the beginning of period ¢, and %, as the harvest in patch i,
in period ¢, i=A4,B, t=0,1,2... . The fish stock in patch i at the end of period ¢ after harvest (called
“escapement”) is e;;. The escapement can be linked to beginning-of-period stock and harvest through the
identity: e; = x;; — h;;. Thus either harvest or escapement can be selected as the choice variable. In what
follows, we will choose optimal escapement. Between periods, the fish stock grows. The growth function in
each patch, f(e;;) is continuous, increasing, and concave.? Because of ocean currents, fish migrate from patch
A to patch B. Assume that all fish in patch B at the end of period ¢ start period z 4+ 1 in patch B, and that some
fraction 0 of fish in patch A at the end of period ¢ migrate to patch B at the start of period 7 4+ 1. The equations
of motion for stocks in the two patches are thus

Xare1 = (1 = 0)f (eq), (1)

Xpir1 = O0f (ear) + f(ep). ()

As a benchmark, consider the case in which these patches are completely independent (i.e., 0 = 0). In this
case, we can apply standard economic intuition to derive optimal escapement in each patch independently: In
each patch the optimal escapement, e*, is characterized by the stock level at which the rate of growth of the
fish stock (the biological rate of return) equals the financial rate of return:

e =1/s. )

This result is the standard “‘golden rule” of growth as applied to resource economics. This result holds
whenever there is positive harvest. If the fishery begins a period with depleted stock such that x; <e*, then it is
optimal to close the fishery that period because the biological return from leaving fish in the ocean is greater
than the financial rate of return. Such closures, however, would only be temporary, allowing depleted stocks to
replenish. In steady state, optimal harvest would be positive in each patch. Establishing a biological reserve
that would result in permanent closure of a patch would only reduce profits.

>We assume that f/(0)> 1/0. If not, it would be optimal to fish to extinction and simply invest returns in a financial asset [4].
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Fig. 1. Biological production in patch 4 is given by f(e). Because fish migrate from patch A to patch B, only (1 — 0)f(e) fish remain in
patch 4. With no harvest, the steady state stock of fish in patch A is determined by the intersection of (1 — 0)f(e) with the 45° line. For
high values of 0, the no harvest steady state stock will lie to the left of e*, as shown with high migration value 0;. Because x| <e*, the
biological return in patch 4 (f/(x}{)) exceeds the financial return (1/6) and it is optimal to close patch A to harvest.

When spatial connections exist (6>0) establishing a permanent biological reserve may indeed be
economically optimal, even in this simple example. The optimal strategy in each patch is still to harvest to the
point where the growth rate of the resource equals the financial rate of return (as described in Eq. (3)).
However, because fish migrate from patch A4 to patch B, the fish stock in patch 4 may be small, even when
there is no harvest in patch 4. Let the steady state stock in patch A4 in the absence of harvest be given by xi,
which is implicitly defined by: x; = (1 — 6)f(xx). As 0 increases, x; decreases. For sufficiently large 6, x; <e*,
and it will be optimal to permanently close patch 4 to harvesting. This is illustrated in Fig. 1 for the case of
high spillover, 6, which implies a low steady state stock: x} <e*. In this case, patch 4 is a biological source
that should be protected. It is optimal to close the fishery in patch 4 because the biological return from leaving
fish in patch A4 is greater than the financial rate of return. Some of the fish from patch 4 then migrate to patch
B wherei harvest occurs. For a low spillover rate, 6, x2>e*, and it is not optimal to establish a biological
reserve.”

3. The spatial harvest problem

Here we generalize the above spatial harvesting model. Harvest can take placeini = 1,2,..., I discrete non-
overlapping patches over t = 1,2, ..., 0o discrete time periods. Patches may be heterogeneous along economic
and/or biological dimensions. The model includes stochasticity in several key biological relationships, which is
an important feature of most renewable resources.

*Except in the trivial case in which harvesting a patch is simply unprofitable.
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3.1. Spatial biology

The stock in patch i at the start of period ¢, x;;, is assumed to be known at the start of period ¢, for
i=1,2,...,]Tand r = 1,2,... . Initial stock in each patch, x;;, is given. Harvest in patch i in period ¢ is /;; and
escapement in patch i at the end of period ¢ is e;;, with e;; = x;; — h;;. Biological production in each patch yields
the stock of young, Y, which depends on a spatially distinct average growth function of escapement f(e;),
with f(e;)>0, f7(ei)<0, and f7(0)>1/5. Growth may also be influenced by stochastic processes such as
nutrient availability, rainfall, upwelling, and temperature [3]. The number of young produced in patch i at time
tis

Yi = Zlf ei), )

where Z/;; is a random variable whose distribution is known and is time independent with expected value equal
to 1 and support bounded below by 0 and finite upper support. Eq. (4) is a stochastic growth function
considered by Reed [36], Costello et al. [9], and others.

The young that are produced in each patch i = 1,...,7 then disperse across space. The pattern of dispersal
may be stochastic (dependent on ocean currents, wind, etc.). Denote by Dj; a scaled multinomial random
variable indicating the percentage of young that originate in patch j that settle in patch i (so >, D; = 1). We
require some local retention: D; >0. Keeping track of all possible source locations, total settlement to patch i
is

1
Si=>_ YuDj. ®)
=1

Following settlement in a patch, we assume that individuals do not migrate out of that patch. Young are
assumed to reach adulthood in one time period, at which time they become harvestable and can reproduce.
The number of settlers in patch i that survive the time period to adulthood is Z;fo-i(Si,), where 0;(S}) is the
(possibly) density dependent average survival to adulthood in patch i, ¢/(s) >0, and Zi is a random variable.*
Adult survival from one period to the next is given by Zu(e;), where u;(e;) is the (possibly) density
dependent average survival as a function of the number of adults after harvest and Z% is a random variable.
We assume that the distribution of Z3 and Z* are known, time independent, each with expected value equal to
1 and support bounded below by 0.> We also assume that the random variables (Z’:-,, z5, Z4, D) are
independent of each other.

Pulling together the various parts of the biological model, we can summarize the equation of motion
describing the stock of adults in patch i in time period 7+ 1 as a random variable given by

Xir41 = Zﬁ‘;:ui(eit) + Zgai(Sit)

I ~
= Zlulen) + Zo; (Z Zf’;fj(ejt)Djz) : (6)
=

The first term on the right-hand side of Eq. (6) is the stock of surviving adults from the previous period. The
second term on the right-hand side is the stock of new adults, which depends on reproduction and dispersal
from all patches. Therefore, the stock in patch i in time period ¢ + 1 may depend on escapement in all patches,
ei, j=1,...,1, and on the random variables in all patches, th and Dy, j=1,...,1, as well as patch specific

random variables, Z%, and Zg. The timing of growth and harvest are summarized in Fig. 2.

“*We make the simplifying assumption that all adults in a patch have equal reproductive capacity. A more realistic (though less tractable)
treatment would allow for age structure in both survivorship and reproduction.

SA technical restriction is that the upper bound on the support of Z;j cannot exceed S/a(S) and that the upper bound on the support of
Z!, cannot exceed e/a(e). This ensures that the survivorship rate (of larvae and adults, respectively) cannot exceed 1.
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Fig. 2. Timing of growth, dispersal, and harvest in a stochastic spatially connected renewable resource model.

3.2. Spatial economics

We assume an elastic demand at price p per unit harvest, and a marginal cost of harvest function, ¢;(s),
which is a non-increasing function of the current stock, cj(s)<0. By indexing ¢;(-) by i we allow for the
possibility that harvest costs may be location specific. For example marginal harvest costs in fishing may
increase with depth or distance to port. The patch-i period-z payoff from harvest /; starting with a population
of x; and ending with a population of e; is: ph;, — fe ,;” () ds.® Henceforth we use the identity h; = x;; — e; to
rewrite the payoff function in terms of escapement: p(x; — e;) — [, ff“ c(s)ds. Focusing on optimal escapement
rather than optimal harvest significantly simplifies analysis of the model [36.9].

The economic objective is to maximize the expected net present value of harvest, expressed in terms of
escapement, from I-patches over an infinite horizon:

o) I Xit
max £ 01} {p(x,-t — i) — / o(s) ds}, (7)
S ei

where the expectation operator, E, is over all future stocks. The maximization problem is subject to the
equation of motion for stock in each patch i =1,2,...,1 (Eq. (6)), and given initial stocks x;;, for all i. The
objective is to identify a feedback control rule e}(x,) that is an /-vector function of state-dependent controls
that yields the optimal patch-specific escapement as a function of the vector of patch-specific stocks in any
period ¢.

4. Results

In this section we derive an analytic solution to the stochastic spatial optimal harvesting problem in Eq. (7).
We begin by deriving an interior solution and the conditions required for its existence. We then analyze the
bioeconomically relevant and interesting corner solution case where it is optimal to close at least one patch to
harvesting, either temporarily or permanently. A question central to this analysis is if, and under what
biological or economic conditions, such closures emerge as part of the optimal solution.

“This payoff function rules out a capacity constraint on the fishing fleet size that would restrict large harvests in highly productive years.
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We represent the spatial harvesting problem under uncertainty as a stochastic dynamic programming
equation with x, as the period-f state vector of stocks and e, as the period-z control vector, as follows:

I Xit
Vix) = max Z |:p(xit —€jf) — / c(s) ds] +OEAV 11 (Xep1)}- (8)
L=l eir

Eq. (8) is subject to state transitions given by Eq. (6) and initial stocks x;. From the perspective of period-¢,
period ¢ + 1 stocks are random variables. Thus the period ¢ problem requires taking expectations, E;, over the
random variable ¥, (X;+1). Solving for the optimal solution requires setting the marginal value of harvest in
each patch equal to the discounted expected marginal value of additional escapement from the patch, where
the marginal value of additional escapement is determined by its contribution to future harvests in connected
patches.

In general, stochastic dynamic programming equations such as Eq. (8) are difficult problems to solve
analytically. However, we can make progress in the analysis by taking advantage of the special structure of the
problem. Define x; as the stock level to which a myopic harvester would extract the resource: x; = max(0, X;),
where X; is the level of stock at which marginal profit is zero, defined by p = ¢(X;). Starting with a stock of x,
the patch-i period-¢ profit from harvesting down to x; is given as follows:

X

0.(0) = plx — x;) - / Ces)ds, ©)

X

Using this function, we can re-write the dynamic programming Eq. (8) as follows:

1
Vi(x) = max Y [0:(xir) = Qi(ei)] + SE Vi1 (X)), (10)
"=l

which is subject to biological state transitions given in Eq. (6) and initial stocks x;. We represent optimal
solutions to this problem by e}(x,). We assume concavity of returns in e; so that there is a unique solution
e(x,). Under the assumptions of our model, we can guarantee concavity when f7/(-) is large in absolute value
(highly concave growth function) relative to ¢ (-).

4.1. An interior solution to the stochastic spatial harvesting problem

Making use of the form of the stochastic dynamic program in Eq. (10), we can show that the optimal
escapement in this harvesting problem is independent of the state vector, a condition for which we adopt the
following definition:

Definition 1. A discrete-time stochastic dynamic optimization problem has “state independent control” if the
optimal control in any period 7 is independent of the state vector in that period.”

State independent control problems have a special structure that allows one to break stochastic dynamic
optimization problems, normally quite difficult to solve, into a series of one-period optimization problems,
which are relatively easy to solve. In state independent control problems, the optimum choice vector (e;) is
determined solely by factors independent of the state vector (x;). In our case, state independent control means
that the optimal choice of escapement can depend on the discount factor, price, marginal cost of harvesting at
the level of escapement, expected biological growth, dispersal, and survival of stock to the next period, but will
not depend on level of stock at the beginning of the period. When optimal escapement in period ¢ is
independent of initial stock in period ¢, optimal escapement will be independent of all past choices of
escapement because these choices affect the period ¢ choice only through the initial level of stock. Similarly,
optimal escapement in period ¢ will not affect any future escapement decisions because those choices will also
be independent from all past choices. State independent control is a strong property and does not hold in

"The notion of state independent control is similar to “state separability,” a concept applied in non-cooperative differential games [11].
State separability requires state independent control and an additional condition relevant for continuous time models.
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general. In the following lemma, we show that our problem has state independent control under an interior
solution.

Lemma 1. Provided that an interior solution exists, the period t dynamic program given in Eq. (10) has state
independent control.

Proof. The dynamic programming equation is

1
Vi(xe) = max ) _[0(xi) — Qe+ OEAV i1 (Xes1)) (11)
roi=1 v

Future Payoff

Current Payoff

The necessary condition for an interior solution is

1

—Q;(é’n) T 5Et{ZaVr+1(Xt+l) axjﬂrl} -0 Vi (12)

= OXjr41 ey

The necessary condition is also sufficient given the assumption of concavity of returns in the vector of controls
(escapement). The first term, which reflects the marginal contribution of escapement to current period payoff,
is independent of x, by inspection. The derivative of the value function in period ¢ 4+ 1 depends on the period
t + 1 state, but is independent of the period ¢ state. Noting that for an interior solution ¢; < x; and using Eq.
(6) observe that x;.4; is a function of ¢; but not of x;.. Therefore, the terms in the bracket are independent of
X, and the period ¢ problem has state independent control. [I

An important economic insight that follows from the state independent control property is captured in the
following proposition:

Proposition 1. If an interior solution to the dynamic programming equation exists, the optimal feedback control
rule will be both time and state independent and will, in general, vary across space.

Proof. The necessary condition for an interior optimal solution to the dynamic programming equation (Eq.
(10)) for patch i at time ¢ is given by Eq. (12). Note that €], is independent of x; by Lemma 1. Therefore, a
change in stock in the next period affects the value function in 7+ 1 only through terms Q;(xji+1), for
j=1,...,1. Using this fact along with the state transition equations (Eq. (6)), we can rewrite the necessary
condition for patch i at time ¢ as follows:

1 .
—0le) + m{ Qs Ziii(e) + 3 Q}(ij)Zﬁq;(')Z{;f;(EZ)Dij} — 0. (13)
=1

Since the distribution of shocks is independent of time, as is biological growth, dispersal, survival and
economic returns, the optimal choice, ¢}, is independent of time. However, since biological growth, dispersal,
and economic returns can vary across patches, the optimal choice will, in general, vary across space. [
The optimal solution to the dynamic spatial harvesting problem under uncertainty is a patch-specific
constant escapement level. This result is a generalization to the spatial context of a result derived by Reed [36].
For a given patch, the optimal escapement level remains fixed over time because expectations are constant
across periods. Escapement is an investment whose cost is the lost value of current harvest and whose return is
the expected discounted value of increased future harvest. Optimal escapement in patch i (e},) is determined by
the level of ending stock at which the marginal profit of current harvest, —Qi(¢},) = p — ci(e}), is equal to the
discounted expected marginal profit of next period harvest, which is the term in the brackets in Eq. (13).
Allowing higher escapement contributes to next period profits because there will be a larger expected
harvestable stock in patch i, E{Zu/(e})}, and a larger expected number of new recruits in many patches from
biological growth, dispersal and survival, E t{Z;:] st,o}(~)Z{lf ‘(e¥)D;}. The expected marginal value of harvest
from increas