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Introduction

These lectures are based on results obtained through joint
research with William Brock and Athanasios Yannacopoulos, on
spatiotemporal dynamics of economic/ ecological systems.

A. Xepapadeas (AUEB) Spatio-temporal dynamics IHP,Paris, 22 January 2013 2 / 119



Spatio-
temporal
dynamics

A.
Xepapadeas

Introduction

Local E¤ects

Nonlocal
E¤ects

Turing
Instability

Optimal
Instability

Robust
Control in
Space

Misspeci�cation
Constraints

Hot spots

A Spatially
Distributed
Fishery

The general
LQ problem

Robust control
of in-situ
consumption

Introduction Why spatiotemporal dynamics?

Economic and ecological systems evolve in time and space.
Interactions take place among units occupying distinct spatial
points. Thus geographical patterns of production activities,
urban concentrations, or species concentrations occur. My
purpose is:

to discuss approaches for modeling, in a meaningful way,
economic and ecological processes evolving in space time.

to examine mechanisms under which a spatially
homogenous state �a �at landscape �acquires a spatial
pattern.

to examine how this pattern evolves in space-time.
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Introduction Why spatiotemporal dynamics?

The spatial dimension has been brought into the picture
through:

New economic geography/growth models (e.g., Krugman;
Boucekkine; Brito; Camacho and Zou; Desmet and
Rossi-Hansberg; Brock, Xepapadeas and Yannacopoulos)

Models of resource management (e.g., Sanchirico; Wilen;
Smith; Brock and Xepapadeas)

In �elds like biology or automatic control systems, spatially
distributed parameter aspects in the dynamics have been
used to study pattern formation

on biological agents (e.g., Murray; Levin)
of in�nite platoons of vehicles over time (e.g., Bamieh,
Paganini, and Dahleh; Curtain)
in groundwater management (e.g., Leizarowitz).
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Introduction Why spatiotemporal dynamics?

How the leopard got its spots . . .
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Introduction Why spatiotemporal dynamics?

http://gecon.yale.edu/large-pixeled-contour-globe
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Introduction Why spatiotemporal dynamics?

School of �sh
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Introduction Why spatiotemporal dynamics?

Arid and Semi arid areas
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Introduction Why spatiotemporal dynamics?

Agricultural landscape
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Introduction Topics to be covered

Modelling short-range (local) and long-range (nonlocal)
spatial movements

Modelling coupled economic - environmental models using
systems of reaction-di¤usion equations or
integrodi¤erential equations

Emergence of pattern formation and agglomerations
through the classic Turing mechanism
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Introduction Topics to be covered

Optimal control of spatiotemporal economic/ecological
models modelled as distributed parameter systems

Emergence of pattern formation in the optimal control of
these systems through optimal di¤usion induced or
spillover induced instabilities

Global analysis and persistence of optimal spatial patterns
and agglomerations in long run

Robust control of spatiotemporal models
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Local E¤ects Some De�nitions

Let x (t, z) be a scalar quantity that denotes the
concentration of a biological or economic variable which
evolves in time and depends on the particular point z of
the spatial domain O. Thus x (t, z) is described as a
function of time t and space z , i.e. x : I �O ! R where
I = (0,T ) is the time interval over which the temporal
evolution of the phenomenon takes place. For an in�nite
horizon model, i.e. I = R+.
The spatial behavior of x is modelled by assuming that the
functions x(t, �) belong for all t to an appropriately chosen
function space H that describes the spatial properties of
the function x . Di¤erent choices for H are possible. A
convenient choice is to let H be a Hilbert space, e.g.,
H = L2(O), the space of square integrable functions on
O, or an appropriately chosen subspace, e.g. L2per (O), the
space of square integrable functions on O = [�L, L]
satisfying periodic boundary conditions (this would model
a circular economy).
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Local E¤ects Some De�nitions

Thus spatial concentration or size is de�ned such that
(x(t))(z) := x(t, z). Therefore by x(t) we denote an
element of H, which is in fact a function x(t) : O ! R

which describes the spatial structure of x at time t
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Local E¤ects Di¤usion

Let φ (t, z)denote the �ow of �material�such as animals,
commodities, or capital, past z at time t. The �ux is
proportional to the gradient of the concentration

φ (t, z) = �D ∂

∂z
x (t, z) (1)

D is the di¤usion coe¢ cient and the minus sign indicates
that material moves from high levels of concentration to
low levels of concentration. In a small interval ∆z :

d
dt

Z z+∆z

z
x (t, s) ds = φ (t, z)� φ (t, z + ∆z) (2)

+
Z z+∆z

z
Fx ((t, s)) ds (3)

where F (t, s) is a source or growth function.
A. Xepapadeas (AUEB) Spatio-temporal dynamics IHP,Paris, 22 January 2013 14 / 119
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Local E¤ects Di¤usion

Dividing by ∆z and taking limits as ∆z ! 0 we obtain

∂x (t, z)
∂t

= �∂φ (t, z)
∂z

+ F (t, z) (4)

∂x (t, z)
∂t

= F (x (t, z)) +D
∂x2 (t, z)

∂z2
(5)

For F (x (t, z)) a logistic population growth

∂x (t, z)
∂t

= sx (t, z)
�
1� rx (t, z)

s

�
+D

∂x2 (t, z)
∂z2

(6)

r/s carrying capacity (7)
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Local E¤ects Reaction - Di¤usion Systems

Two interacting species x (t, z) , y (t, z), no cross di¤usion

∂x
∂t

= F1 (x , y) +Dxr2x (8)

∂y
∂t

= F2 (x , y) +Dyr2y (9)

r2 =
∂2

∂z2
(10)
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Nonlocal E¤ects

Long range e¤ects can be modelled by integral equations. The
evolution of x (t, z) can be represented by:

∂x (t, z)
∂t

= F (x (t, z)) +
Z L

�L
w
�
z , z 0

�
x
�
t, z 0

�
dz 0 (11)

where w : O �O ! R is an integrable kernel function
modelling the e¤ect that position s has on position z . This
introduces nonlocal (spatial) e¤ects, and may be understood as
de�ning a mapping which takes an element x(t, �) 2 H and
maps it to a new element X (t, �) 2 H such that (48) holds for
every z 2 O. This mapping is understood as an operator
T : H ! H
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Nonlocal E¤ects Exponential symmetric kernels

Kernel w1 (ζ) = b1 exp
h
� (ζ/d1)

2
i
, b1, d1 > 0, ζ = z � z 0

Kernel w2 (ζ) = b1 exp
h
� (ζ/d1)

2
i
� b2 exp

h
� (ζ/d2)

2
i

b1 > b2, d1 < d2
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Nonlocal E¤ects Discrete spatial domain

Consider a discrete �nite lattice L, e.g. L = (ZN )
d . The

quantity that denotes the concentration of a biological or
economic variable which evolves in time and depends on
the particular point n of the spatial domain L is described
by a function x̌ : I ! RN such that x̌(t) = fxn(t)g,
n 2 L, where xn(t) is the state of the system at site n at
time t.

We therefore consider the state variable x as taking values
on a (�nite dimensional) sequence space sequence space
`2 := `2(ZN ) = ffxng, ∑n2ZN

x2n < ∞g. This space is a
Hilbert space with a norm derivable from the inner product
hx , yi = ∑n2ZN

xnyn and is in fact equivalent to RN .
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Nonlocal E¤ects Kernels

Spatial e¤ects such that the state of the system at point
m has an e¤ect on the state of the system at point n are
quanti�ed through an discretized version of an in�uence
kernel which can be represented in terms of a matrix
A = (anm). The entry anm provides a measure of the
in�uence of the state of the system at point m to the state
of the system at point n. Network e¤ects knowledge
spillovers can be modelled for example through a proper
choice of A.

Ax =∑
m
anmxm (12)

A : RN ! RN is a linear operator, representable by a
�nite matrix with elements anm
With no spatial interactions at all then A = anm = δn,m
where δn,m is the Kronecker delta. If only next
neighborhood e¤ects are possible then anm is non-zero
only if m is a neighbor of n. Such an example is the
discrete Laplacian

A. Xepapadeas (AUEB) Spatio-temporal dynamics IHP,Paris, 22 January 2013 19 / 119
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Nonlocal E¤ects The discrete Laplacian

D
∂2x (t, z)

∂z2
� D [xn+1 (t)� 2xn (t) + xn�1 (t)] (13)

Matrix A in this case has a general form

A = D

0BBBB@
1 �2 1 0 0 0 .
0 1 �2 1 0 0 .
0 0 1 �2 1 0 .
0 0 0 1 �2 1 .
. . . . . . .

1CCCCA
dxn = (∑

m
anmxm +∑

m
bnmum)dt +∑

m
cnmdwm , n 2 ZN

dx = (Ax + Bu) dt + Cdw

where A,B,C : RN ! RN are linear operators, representable by
�nite matrices with elements anm ,bnm , cnm , respectively. The
state equation is an Ornstein-Uhlenbeck equation on the �nite
dimensional Hilbert space `2(ZN ) = RN .
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Turing Instability

A semi-arid system can be described in terms of
spatiotemporal dynamics of three state variables: surface
water, soil water, and plant biomass. Space is a circle and
surface water is �xed by rainfall and uniformly distributed
along the circle.

Plant biomass is consumed in the process of producing
cattle products. Cattle products are produced by a
conventional production function with two inputs, plant
biomass and grazing e¤ort.
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Turing Instability Semi Arid Systems (Brock and Xepapadeas JEEM 2010)

Pt (t, z) = G (W (t, z) ,P (t, z))� b (P (t, z))� (14)

TH (t, z) +DPPzz (t, z) (15)

Wt (t, z) = F (P (t, z) ,R)� V (W (t, z) ,P (t, z))�
rWW (t, z) +DWWzz (t, z) (16)

P (0, z) , W (0, z) given

P (t, 0) = P (t, L) = P̄ (t) ,

W (t, 0) = W (t, L) = W̄ (t) 8t, (17)

P (t, z): plant density (biomass); W (t, z) : soil water at time
t 2 [0,∞) and site z 2 [0, L]; R : �xed rainfall; TH (t, z) :
harvesting of the plant biomass through grazing;G (W ,P) :
plant growth, increasing in soil water and plant density; b (P):
plant senescence, F (P,R): water in�ltration ; V (W ,P):
water uptake by plants ; rW : speci�c rate of water loss due to
evaporation and percolation; DP and DW : di¤usion coe¢ cients
for plant biomass (plant dispersal) and soil water.
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Turing Instability A general reaction-di¤usion system

∂x1 (t, z)
∂t

= f1 (x1 (t, z) , x2 (t, z) ,u (t, z)) +Dx1
∂2x1 (t, z)

∂z2

∂x2 (t, z)
∂t

= f2 (x1 (t, z) , x2 (t, z) ,u (t, z)) +Dx2
∂2x2 (t, z)

∂z2
x (0, z) given, x (t, 0) = x (t, L) = x̄ (t) , 8t.

Economic agents maximize utility or pro�ts myopically in each z

u0j (t, z) = argmax
uj
U (x (t, z) ,u (t, z)) , j = 1, ...,m

u0j (z , t) = h0j (x (t, z)) , j = 1, ...,m

Open access

û (t, z) : U (x (t, z) , û (t, z)) = 0 (18)

ûj (t, z) = ĥj (x (t, z)) , j = 1, ...,m (19)
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Turing Instability A general reaction-di¤usion system

Reaction-di¤usion system with optimizing agents

∂x1 (t, z)
∂t

= f1
�
x1 (t, z) , x2 (t, z) ,h0 (x (t, z))

�
+

Dx1
∂2x1 (t, z)

∂z2
∂x2 (t, z)

∂t
= f2

�
x1 (t, z) , x2 (t, z) ,h0 (x (t, z))

�
+

Dx2
∂2x2 (t, z)

∂z2
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Turing Instability Local spatial stability

De�ne a spatially homogeneous or ��at steady state� for
Dx1 = Dx2 = 0, as:

x0 : f1
�
x01 , x

0
2 ,h

0 �x0�� = 0, f2 �x01 , x02 ,h0 �x0�� = 0.
Let x̄ (t) =

�
x1 (t)� x01 , x2 (t)� x02

�0
= (x̄1 (t) , x̄2 (t))

0
denote

deviations around x0 and de�ne the linearization

x̄t (t) = JP x̄ (t) , x̄t (t) =

 
d x̄1(t)
dt

d x̄2(t)
dt

!
, JP =

�
b11 b12
b21 b22

�
(20)

Assume that trJP = b11 + b22 < 0 and
det JP = b11b22 � b12b21 > 0 which means that both
eigenvalues of JP have negative real parts. This implies that
the FSS x0 is locally stable to spatially homogeneous
perturbations.
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Turing Instability Emergence of spatial patterns

Theorem
Private optimizing behavior, as implied by choosing controls
according to myopic optimization in the management of a
reaction-di¤usion system, generates spatial patterns around a
�at steady state if

b22Dx1 + b11Dx2
2Dx1Dx2

> 0 (21)

� (b22Dx1 + b11Dx2)
2

4Dx1Dx2
+ det JP < 0. (22)
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Turing Instability Sketch of Proof

Note that the elements of the Jacobian matrix, evaluated at x0,
are de�ned as:

b11 =
∂f1
∂x1

+
m

∑
j=1

∂f1
∂uj

∂uj
∂x1

, b12 =
∂f1
∂x2

+
m

∑
j=1

∂f1
∂uj

∂uj
∂x2

(23)

b21 =
∂f2
∂x1

+
m

∑
j=1

∂f2
∂uj

∂uj
∂x1

, b22 =
∂f2
∂x2

+
m

∑
j=1

∂f2
∂uj

∂uj
∂x2

.(24)

Following Murray (2003), the linearization of the full reaction
di¤usion system is:

x̄t (t, z) = JP x̄ (t, z) +Dx̄zz (t, z) , x̄zz (t, z) =

 
∂2 x̄1(t ,z )

∂z 2
∂2 x̄2(t ,z )

∂z 2

!

D =

�
Dx1 0
0 Dx2

�
.
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Turing Instability Sketch of Proof

Spatial patterns emerge if the FSS is unstable to spatially
heterogeneous perturbations which take the form of spatially
varying solutions de�ned as:

x̄i (t, z) = ∑
k

cike
σt cos (kz) , i = 1, 2 , k =

2nπ

L
, n = �1,�2, ...

(25)
where k is called the wavenumber and 1/k, which is a measure
of the wave-like pattern, is proportional to the wavelength
ω : ω = 2π/k = L/n at mode n. σ is the eigenvalue which
determines temporal growth and cik , i = 1, 2 are constants
determined by initial conditions and the eigenspace of σ.
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Turing Instability Sketch of Proof

Substituting (25) and noting that they satisfy circle boundary
conditions at z = 0 and z = L, we obtain our result because
the linearization becomes

x̄t (t, z) = JL x̄ (t, z) , JL =
�
b11 �Dx1k2 b12

b21 b22 �Dx2k2
�
(26)

Since trJL = b11 + b22 �Dx1k2 �Dx2k2 < 0, destabilization of
the FSS under spatially heterogenous perturbations requires
that

det JL = φ
�
k2
�
= Dx1Dx2k

4� (b11Dx2 + b22Dx1) k2+det JP < 0
(27)

where det JP > 0 by the stability assumption about the FSS.
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Turing Instability Sketch of Proof

Relationship (27) is a dispersion relationship. The instability
condition will be satis�ed if there exist wavenumbers k1 and k2
such that φ

�
k2
�
< 0 for k2 2

�
k21 , k

2
2

�
, which implies that

matrix (26) has a positive eigenvalue σ
�
k2
�
for k2 2

�
k21 , k

2
2

�
.

This in turn requires that: (i) k2min which corresponds to the
wavenumber which minimizes φ

�
k2
�
be positive and, (ii)

φ
�
k2min

�
< 0 or

b22Dx1 + b11Dx2
2Dx1Dx2

> 0

� (b22Dx1 + b11Dx2)
2

4Dx1Dx2
+ det JP < 0.
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Turing Instability Sketch of Proof

The dispersion relationship
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Turing Instability Long-run spatial patterns

Linear instability is local

It is hypothesized that the nonlinear kinetics of the system
bound the solution x (t, z) which eventually settles to a
spatial pattern.

A spatially heterogeneous steady state is obtained by:

0 = fi
�
x (z) ,h0 (x (z))

�
+Dxi

∂2xi (z)
∂z2

, i = 1, 2 (28)

If persistence patterns emerge in this set-up, their creation
is a result of the Turing mechanism
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Turing Instability Long-run spatial patterns

Local instability Long run behavior
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Optimal Instability Di¤erences from model in biology

There is a large literature in mathematical biology (e.g.,
Murray, 2003) that studies spatial agglomeration problems.

To my knowledge, none of this literature deals with
optimization problems as we do here. There are many
di¤erences between the �backward-looking�dynamics in
mathematical biology problems and other natural science
problems, and the �forward-looking�dynamics of
economic problems.

These suggest the possibility of a potential agglomeration
at the social optimum or at a rational expectations
equilibrium related to the incomplete internalization of the
spatial externality by optimizing agents
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Optimal Instability The planner�s problem

max
fu(t ,z )g

Z ∞

0

Z L

0
e�ρt [U (x (t, z) ,u (t, z))] dzdt (29)

subject to

∂x1 (t, z)
∂t

= f1 (x1 (t, z) , x2 (t, z) ,u (t, z)) +Dx1
∂2x1 (t, z)

∂z2

∂x2 (t, z)
∂t

= f2 (x1 (t, z) , x2 (t, z) ,u (t, z)) +Dx2
∂2x2 (t, z)

∂z2
x (0, z) given, x (t, 0) = x (t, L) = x̄ (t) , 8t.
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Optimal Instability Optimality Conditions

u�j (t, z) = argmax
uj
H (x (t, z) ,u (t, z) ,p (t, z)) or(30)

u�j (t, z) = g �j (x (t, z) ,p (t, z)) , j = 1, ...m.

where H is the current value Hamiltonian function

H = U (x (t, z) ,u (t, z)) +

∑
i=1,2

pi (t, z)
�
fi (x (t, z) ,u (t, z)) +Dxi

∂2xi
∂z2

�
(31)

which is a generalization of the ��at�Hamiltonian function

H = U (x,u) + ∑
i=1,2

pi fi (x,u) . (32)
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Optimal Instability Optimality Conditions

The vector of the costate variables is
p (t, z) = (p1 (t, z) , p2 (t, z)) and satis�es for i = 1, 2:

∂pi (t, z)
∂t

= ρpi �Hxi (x (t, z) ,p (t, z) , g� (x,p))�(33)

Dxi
∂2pi (t, z)

∂z2
(34)

where g� (x (t, z) ,p (t, z)) is the vector of the optimal control
functions de�ned by (30).1

Temporal and spatial transversality conditions:

lim
T!∞

e�ρT
Z L

0
pi (T , z) xi (T , z) dz = 0 , i = 1, 2 (35)

pi (t, 0) = pi (t, L) , i = 1, 2. (36)

1To ease notation we sometimes use subscripts to denote partial
derivatives. Thus Hv denotes a vector of partial derivatives, while Hvv
denotes a matrix of second order partial derivatives with respect to
variables v.
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Optimal Instability Optimality Conditions

The reaction di¤usion system of (x1 (t, z) , x2 (t, z)), with u
replaced by the optimal controls g� (x (t, z) ,p (t, z)) , and the
system of (33) constitute the Hamiltonian system of four
partial di¤erential equations:

∂xi (t, z)
∂t

= Hpi (x (t, z) ,p (t, z) , g
� (x,p)) +Dxi

∂2xi
∂z2

∂pi (t, z)
∂t

= ρpi �Hxi (x (t, z) ,p (t, z) , g� (x,p))�Dxi
∂2pi
∂z2

i = 1, 2
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Optimal Instability Di¤usion induced instability

Theorem

Assume that for problem (29) with Dx1 = Dx2 = 0, the FOSS
(x�1 , x

�
2 , p

�
1 , p

�
2 ) has the local saddle point property with either

two positive and two negative real roots, or with complex roots
with two of them having negative real parts. Then there is a
(Dx1 ,Dx2) > 0 and wave numbers k 2 (k1, k2) > 0 such that
if: (a) �

∑i=1,2 Dxi (2Hxipi � ρ)
�

2
�
D2x1 +D

2
x2

� > 0 (37)�
∑i=1,2 Dxi (2Hxipi � ρ)

�2
4
�
D2x1 +D

2
x2

� +K 0 > 0 (38)

0 < det JS
�
k2
�
� (K/2)2

then all the eigenvalues of the Jacobian matrix JS
�
k2
�
are real

and positive;

A. Xepapadeas (AUEB) Spatio-temporal dynamics IHP,Paris, 22 January 2013 40 / 119



Spatio-
temporal
dynamics

A.
Xepapadeas

Introduction

Local E¤ects

Nonlocal
E¤ects

Turing
Instability

Optimal
Instability

Robust
Control in
Space

Misspeci�cation
Constraints

Hot spots

A Spatially
Distributed
Fishery

The general
LQ problem

Robust control
of in-situ
consumption

Optimal Instability Di¤usion induced instability

Theorem (Continued)

(b)
det JS

�
k2
�
< 0 (39)

then JS
�
k2
�
has one negative real eigenvalue, while all the

other eigenvalues have positive real parts; (c)

K 2 � 4 det JS
�
k2
�
< 0 (40)

det JS
�
k2
�
< (K/2)2 + ρ2 (K/2) ,

then all the eigenvalues of JS
�
k2
�
are complex with positive

real parts. In all cases above the optimal dynamics associated
with the reaction-di¤usion system are unstable in the
neighborhood of the FOSS in the time-space domain and
optimal di¤usion induced instability emerges.
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Optimal Instability Sketch of Proof

Let x̄ (t, z) , p̄ (t, z) denote deviations from the FOSS, and
de�ne the linearization of the Hamiltonian system at the FOSS
as: �

x̄t (t, z)
p̄t (t, z)

�
= J0

�
x̄ (t, z)
p̄ (t, z)

�
+D

�
x̄zz (t, z)
p̄zz (t, z)

�
(41)

J0 =
�

Hpx Hpp
�Hxx ρI2 �Hxp

�
, D =

�
DxI2 0
0 �DxI2

�
,

Dx =
�
Dx1
Dx2

�
where Hpp,Hxx,Hpx = Hxp are (2� 2) matrices of second
derivatives of the Hamiltonian with u� = g� (x,p), I2 is the
(2� 2) identity matrix, 0 is a (2� 2) zero matrix, and J0 is
the Jacobian of the �at Hamiltonian system (Dx1 = Dx2 = 0).
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Optimal Instability Sketch of Proof

Consider spatially heterogeneous perturbations of the FOSS of
the form

x̄i (t, z) = ∑
k

cxike
σt cos (kz) , p̄i (t, z) = ∑

k

cpike
σt cos (kz)

k =
2nπ

L
, n = �1,�2, ...

and de�ne the following:

Ki =

���� Hpi xi �Dxi k2 Hpipi
�Hxi xi ρ�Hxipi +Dxi k2

���� , i = 1, 2
K3 =

���� Hp1x2 Hp1p2
�Hx1x2 �Hx1p2

���� , (42)

K
�
k2
�
= K1 +K2 + 2K3 (43)
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Optimal Instability Sketch of Proof

Substituting the spatially heterogenous perturbations into the
linearized Hamiltonian system we obtain:�

x̄t (t, z)
p̄t (t, z)

�
= JS

�
x̄ (t, z)
p̄ (t, z)

�
,

JS =

�
Hpx �Dxk2I2 Hpp

�Hxx ρI2 �Hxp +Dxk2I2

�
.

De�ne the matrix

Z
�ρ

2

�
=

�
Hpx �Dxk2I2 � ρ

2 I2 Hpp
�Hxx �Hxp +Dxk2I2 + ρ

2 I2

�
.
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Optimal Instability Sketch of Proof

Following Kurz (1968, Theorem 2) we obtain that if σ1, σ2 are
eigenvalues of JS , then they satisfy σ1,2 =

ρ
2 � ψ, where ψ is a

pair of eigenvalues for Z . The eigenvalues of matrix Z are
determined by the solution of the characteristic equation:

ψ4 �M3ψ
3 +M2ψ

2 �M1ψ+ detZ = 0 (44)

where M3 = tr(Z ) = 0. By rather tedious calculation we can

obtain M2 =
�
K � ρ2

2

�
, with K de�ned in (42 ), and with M2

being the sum of six principal minors of Z of second order;
M3 = 0, with M3 being the sum of four principal minors of Z
of third order; and detZ =

� ρ
2

�4 � � ρ
2

�2
K + det JS .
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Optimal Instability Sketch of Proof

Substituting in (44) and using the Kurz Theorem we obtain the
eigenvalues of JS as:

3
1σ
4
2 =

ρ

2
�

vuut�ρ

2

�2
� K
2
�

s�
K
2

�2
� det JS (45)

which is an extension of Dockner�s (1985) formula for the
eigenvalues of the Hamiltonian system for optimal control
problems with two state variables, for the case where the state
variables di¤use in space.
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Optimal Instability Sketch of Proof

The FOSS will have the saddle point property (two positive
and two negative eigenvalues) under spatially heterogenous
perturbations if (i) K < 0 and (ii) 0 < det JS <

�K
2

�2
.

If K > 0 while (ii) is still satis�ed, the two negative
eigenvalues will become positive.

K
�
k2
�
= �

�
D2x1 +D

2
x2

�
k4 + (46)"

∑
i=1,2

Dxi (2Hxipi � ρ)

#
k2 +K 0 ,K 0 < 0 (47)

where K 0 < 0 because of the saddle point assumption for
the FOSS. For instability we want K

�
k2
�
> 0 for some

wavenumber k, thus (46) is a dispersion relationship.
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Optimal Instability Sketch of Proof

Let
�
σ3
�
k2
�
, σ4

�
k2
��
> 0, k2 2

�
k21 , k

2
2

�
the eigenvalues that

turn positive under spatial perturbation, then the patterned
state and costate paths in the neighborhood of the FOSS can
be approximated as:�

x̄ (t, z)
p̄ (t, z)

�
�

n2

∑
n1

c3n exp
�
σ3
�
k2
�
t
�
cos (kz) +

n2

∑
n1

c4n exp
�
σ4
�
k2
�
t
�
cos (kz) , k =

2nπ

L
, n = 1, 2, ..
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Optimal Instability Sketch of Proof

Note that the two constants which correspond to
eigenvalues σ1, σ2 with positive real parts should still be
set equal to zero, so that the use of the temporal
transversality condition at in�nity will allow us to choose
initial costates p for any initial state x, which will set the
system on the spatially heterogeneous - spatiotemporally
unstable �optimal�manifold.

The length L of space should be adequate to allow the
existence of these unstable modes.
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Optimal Instability Identifying the spatial instability

Fourier methods are used to reduce the original problem to
a countable number of �ordinary��nite dimensional
optimal control problems in which the dynamics are
described by ordinary di¤erential equations (Brock and
Xepapadeas 2008). These mode-n control problems
correspond to each mode k = 2nπ/L, n = 0, 1, 2, ....
Then the unstable nodes are identi�ed through the
dispersion relationship

Optimal pre-patterns occur along the spatially
heterogeneous - spatiotemporally unstable �optimal�
manifold
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Optimal Instability Socially optimal steady state

This steady state will satisfy the system of second-order
di¤erential equations in the space variable z , de�ned by:

0 = Hpi (x (t, z) ,p (t, z) , g
� (x,p)) +Dxi

∂2xi
∂z2

0 = ρpi �Hxi (x (t, z) ,p (t, z) , g� (x,p))�Dxi
∂2pi
∂z2

However no convergence results.
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Optimal Instability Global Analysis Objective

Use global analysis based on monotone operator theory,
combined with local analysis based on spectral theory, to
obtain insights regarding the endogenous emergence (or
not) of optimal agglomerations at a rational expectations
equilibrium and the social optimum of dynamic economic
systems.

The possibility of a potential agglomeration at a rational
expectations equilibrium is related to the incomplete
internalization of the spatial externality by optimizing
agents.

A �no agglomerations� theorem at the social optimum
stems from the full internalization of the spatial externality
by a social planner and the strict concavity of the
production function.
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Optimal Instability A Ramsey type growth model

Production at time t and site z is given by the strictly
concave production function f : R�R ! R in terms of
f (x(t, z),X (t, z)).

X (t, z) =
Z
O
w(z , s)x(t, s)ds (48)

x (t, z) : denotes the capital stock at point z 2 O at time
t 2 [0,+∞)
w : O �O ! R is an integrable kernel function modeling
the e¤ect that position s has on position z . There is a
mapping which takes an element x(t, �) 2 H and maps it
to a new element X (t, �) 2 H such that (48) holds for
every z 2 O.
H = L2(O), the space of square integrable functions on O
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Optimal Instability Budget constraints

c (t, z) +
∂x (t, z)

∂t
= f

�
x (t, z) , X̌ (t, z)

�
�

ηx (t, z)� α

2

�
∂x (t, z)

∂t

�2
,

∂x (t, z)
∂t

= u (t, z)

0 = C(z) :=
Z ∞

0
e�rt

�
x0 + f

�
x(t, z), X̌ (t, z)

�
(49)

� λx(t, z)� c(t, z)� α

2
u2(t, z)]dt

0 = C� :=
Z
O

Z ∞

0
e�rt

�
x0 + f

�
x(t, z), X̌ (t, z)

�
(50)

� λx(t, z)� c(t, z)� α

2
u2(t, z)]dtdz
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Optimal Instability Rational expectations equilibrium (REE)

max
c
(JRE (c))(z) :=

Z ∞

0
e�ρtU(c(t, z))dt,

0 = C(z) :=
Z ∞

0
e�rt

�
x0 + f

�
x(t, z), X̌ (t, z)

�
�λx(t, z)� c(t, z)� α

2
u2(t, z)]dt

X̌ (t, z) = X e exogenous
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Optimal Instability Social Optimum (SO)

JSO (c) : =
Z
O

ψ(z)(Jsc)(z)dz =Z
O

Z ∞

0
e�ρtψ(z)U(c(t, z))dtdz .

0 = C� :=
Z
O

Z ∞

0
e�rt

�
x0 + f

�
x(t, z), X̌ (t, z)

�
�λx(t, z)� c(t, z)� α

2
u2(t, z)]dtdz

X̌ (t, z) = X (t, z) =
Z
O
w(z , s)x(t, s)ds
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Optimal Instability Main Assumptions

The in�uence kernel function w : O �O ! R is
continuous and symmetric, i.e.
w(z , s) = w(s, z) = w(z � s). Then following integral
operator is de�ned

X (t, z) = (Kx)(t, z) :=
Z
O
w(z � s)x(t, s)ds. (51)

The production function f : R�R ! R is a strictly
increasing, strictly concave function of the (real) variables
(x ,X ).

The second order derivatives fxX , fXX are uniformly
bounded below in O,

�µ := inf
(x ,X )2R2

fXX , ξ := inf
(x ,X )2R2

fxX , µ, ξ 2 R+.

A. Xepapadeas (AUEB) Spatio-temporal dynamics IHP,Paris, 22 January 2013 57 / 119



Spatio-
temporal
dynamics

A.
Xepapadeas

Introduction

Local E¤ects

Nonlocal
E¤ects

Turing
Instability

Optimal
Instability

Robust
Control in
Space

Misspeci�cation
Constraints

Hot spots

A Spatially
Distributed
Fishery

The general
LQ problem

Robust control
of in-situ
consumption

Optimal Instability Main Assumptions

The utility function U : R+ ! R is an increasing and
strictly concave C 2 function in consumption c and satis�es
the Inada conditions

lim
c!0

∂cU (c) = +∞, lim
c!+∞

∂cU (c) = 0.

The operator K : H ! H is strictly positive

It holds that µ/ξ < µ1 where µ1 is the largest (positive)
eigenvalue of operator K.
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Optimal Instability Fisher Separation: Optimal Investment

x(t, z) = x0(z) +
R t
0 u(s, z)ds, u = k

0

Rational expectations equilibrium

max
x 0

∞Z
0

e�r t
�
f (x(t, z), (Kx)(t, z))� λx(t, z)� α

2
(x

0
(t, z))2

�
dt

(52)
Social Optimum

max
x 0

∞Z
0

Z
O

e�r t [f (x(t, z), (Kx)(t, z))� (53)

λx(t, z)� α

2
(x

0
(t, z))2

i
dz dt.
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Optimal Instability Optimality conditions

De�ne the nonlinear operators Aν : H ! H, ν = RE ,SO, by

ARE x := �α�1(fx (x , X̌ )� λ), X̌ = Kx ,

ASOx := �α�1(fx (x , X̌ ) +KfX (x , X̌ )� λ), X̌ = Kx .

Theorem

The �rst order necessary condition for problems (52) and (53)
is of the form

x
00 � rx 0 � Aνx = 0, ν = RE ,SO (54)

where Aν are the nonlinear operators above. The �rst order
necessary conditions have to be complemented with the
transversality condition

lim
t!∞

e�rtxx 0 = lim
t!∞

1
2
e�rt (x2)0 = 0. (55)
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Optimal Instability REE and SO

De�nition
A solution x : I ! H, if it exists, of the nonlinear
integro-di¤erential equation

x 00 � rx 0 � Aνx = 0 (56)

is called an RE equilibrium if ν = RE and an SO equilibrium if
ν = SO.
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Optimal Instability Sketch of proof

Consider

J =

∞Z
0

Z
O

e�r t [f (x(t, z), (Kx)(t, z))� (57)

λx(t, z)� α

2
(x

0
(t, z))2

i
dz dt. (58)

as a functional of u = x 0 and x = x0 +
R t
0 u(s)ds. The FONC

will be of the form (rJ, φ) = 0 where r denotes the Gâteaux
derivative and φ is a test function in H

The Gâteaux derivative: we �x any direction v 2 H, de�ne
uε = u + εv , V =

R t
0 v(s)ds and calculate

d
dε
J(uε)

����
ε=0

=
Z ∞

0

Z
O
e�rt [∂x f (x ,Kx) +K�∂X f (x ,Kx)V�

λV � αuv ] dz dt (59)
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Optimal Instability Sketch of proof

Since v = V 0, by integration by parts over t and using the
transversality condition, the �rst order condition becomesZ ∞

0

Z
O
e�rt [∂x f (x ,Kx) +K�∂X f (x ,Kx)�

λ+ αu0 � rαu
�
Vdz dt = 0.

This must be true for all v therefore for all V which implies
that the �rst order condition becomes

∂x f (x ,Kx) +K�∂X f (x ,Kx)� λ+ αu0 � rαu = 0,

(a.e.) and keeping in mind that u = x 0, we obtain:

x 00 � rx 0 � ASOx = 0 (60)
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Optimal Instability Optimal Agglomerations in the Long Run

The following theorem provides important information on the
long-run dynamics

Theorem (Convergence)

(a) The operator equations Aνx = 0, ν = RE ,SO, have unique
solutions. (b) All bounded solutions of x 00 � rx 0 � Aνx = 0
have as weak limit the solution of Aνx = 0, ν = RE ,SO.

Assumption P
The operator K : H ! H is strictly positive.2

It holds that µ/ξ < µ1 where µ1 is the largest (positive)
eigenvalue of operator K.
�µ := inf(x ,X )2R2 fXX , ξ := inf(x ,X )2R2 fxX , µ, ξ 2 R+

2K is a positive operator if (Kh, h) � 0 for all h 2 H, and strictly
positive if furthermore (Kh, h) = 0 implies h = 0.
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Optimal Instability Sketch of proof

The operators Aν : H ! H, ν = RE ,SO are maximal
monotone.3

We now use Theorem 3.3. of Rouhani and Khatibzadeh
(2009) to obtain convergence results. According to a
special case of this theorem a bounded solution of

x
00 � rx 0 = Aνx

for any initial condition x0, converges weakly as t ! ∞ to
an element of A�1ν (0), if Aν is a maximally monotone.

3A possibly nonlinear operator A : H ! H is called monotone if
(Ax � Ay , x � y ) � 0 for all x , y 2 H and maximal monotone if its graph
is not properly contained in the graph of any other monotone operator.
Observe that monotonicity is related to positivity if the operator is linear.
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Optimal Instability Implications of theorem

The results of the Theorem about convergence hold for
SO without Assumption P. Assumption P is a su¢ cient
condition for the theorem to hold in the RE case.

Therefore, convergence to the RE steady state depends on
the strength of diminishing returns with respect to spatial
spillovers (fXX ), the strength of the complementarity
between the capital stock and spatial spillovers in the
production function (fxX ), and the structure of the spatial
domain as re�ected in the largest eigenvalue of K.

Furthermore, relaxing the monotonicity assumption on
operator K, there may exist multiple solutions for the RE
steady-state equation for appropriate values of λ.
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Optimal Instability Implications of theorem

For strictly concave production functions f , if the steady
state equation ASOx = 0 admits a �at solution then all
bounded solutions of the time dependent system will
�nally tend weakly to that �at solution as t ! ∞. Thus
agglomeration is not a socially optimal outcome in this
case.

The uniqueness of the solution of ASOx = 0 precludes the
existence of any steady state other than the �at steady
state as long as total spillover e¤ects are the same across
all sites of the spatial domain. Then the socially optimal
spatial distribution of economic activity is the uniform
distribution in space. This is always true in the case of
periodic boundary conditions, when α is independent of z .
This result is a generalization of classical turnpike theory
to in�nite dimensional spatial models
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Optimal Instability Implications of theorem

Convergence to the RE steady state is not guaranteed by
the strict concavity of the production function, as in the
SO case, but depends, according to part (a) of this
theorem, on the relation between diminishing returns,
complementarities, and the spatial geometry;

If a unique globally stable RE steady state exists it will be
�at. Hence for both the RE and SO the unique steady
state is the �at steady state.4

If the conditions of this theorem leading to (a) are not
satis�ed, a more complex behavior is expected in the RE
equilibrium. In this case, multiple RE steady states cannot
be eliminated, and a potential agglomeration at the RE
equilibrium takes the form of instability of the �at steady
state.

4The RE and SO steady states will in general be di¤erent from each
other, which calls for spatially dependent economic policy if the SO steady
state is to be attained.
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Optimal Instability Agglomeration Emergence and Local Spillover Induced Instability

For a �at steady state x̄ , let

s11 : = α�1∂2xx f (x̄ ,Kx̄), s22 := α�1∂2XX f (x̄ ,Kx̄),

s12 : = α�1∂2xX f (x̄ ,Kx̄) > 0, (61)

and de�ne the linear bounded operators Lν : H ! H by

LRE x̂ := s11x̂ + s12Kx̂

LSO x̂ := s11x̂ + 2s12Kx̂ + s22K2x̂ .

These operators govern the behavior of spatiotemporal
perturbations, x̂ , from the �at steady state x̄ : Inserting
the ansatz x = x̄ + εx̂ into the equilibrium condition

x 00 � rx 0 � Aνx = 0 (62)

and expanding in ε, we obtain the linearized equation for
the evolution of the perturbation x̂(t, z) as follows:

x̂ 00 � r x̂ 0 + Lνx̂ = 0, ν = RE , SO. (63)
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Optimal Instability Agglomeration Emergence and Local Spillover Induced Instability

Let fµjg be the eigenvalues of operator K and fφjg the
corresponding eigenfunctions. Then,

Proposition

An arbitrary initial perturbation of the �at steady state of the
form

x̂(0, z) = ∑
j
ajφj (z), x̂

0(0, z) = ∑
j
bjφj (z),

evolves under the linearized system (63) to

x̂ν(t, z) = ∑
j
cν,j (t)φj (z)

where fcν,j (t)g is the solution of the countably in�nite system
of ordinary di¤erential equations

c 00ν,j � rc 0ν,j +Λν,jcν,j = 0, ν = RE ,SO, j 2 N (64)

cν,j (0) = aj , c 0ν,j (0) = bj

where

ΛRE ,j = s11 + s12µj
ΛSO ,j = s11 + 2s12µj + s22µ

2
j .

A. Xepapadeas (AUEB) Spatio-temporal dynamics IHP,Paris, 22 January 2013 70 / 119



Spatio-
temporal
dynamics

A.
Xepapadeas

Introduction

Local E¤ects

Nonlocal
E¤ects

Turing
Instability

Optimal
Instability

Robust
Control in
Space

Misspeci�cation
Constraints

Hot spots

A Spatially
Distributed
Fishery

The general
LQ problem

Robust control
of in-situ
consumption

Optimal Instability Agglomeration Emergence and Local Spillover Induced Instability

Proposition

1 If Λν,j < 0, then cν,j (t) = Āj eσ1t + B̄j eσ2t where
σ1 < 0 < r

2 < σ2 (saddle path behaviour).

2 If 0 < Λν,j <
� r
2

�2
, then cν,j (t) = Āj eσ1t + B̄j eσ2t where

0 < σ1 <
r
2 < σ2 (unstable solutions).

3 If
� r
2

�2
< Λν,j , then

cj (t) = e
r
2 t
�
Āj cos(σt) + B̄j sin(σt)

�
, σ 2 R

and Āj , B̄j are constants related to the initial conditions.
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Optimal Instability Agglomeration Emergence and Local Spillover Induced Instability

The perturbations from the �at steady state which contain
modes φj such that Λν,j < 0 will die out and the system
will converge to the �at steady state �no possible
agglomeration is expected.

The perturbations from the �at steady state which contain
modes φj such that Λν,j > 0 will turn unstable and lead
to possible potential agglomeration spatial patterns, either
monotone in time or oscillatory in time.
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Optimal Instability Comparison with Turing Instability

This instability can be contrasted with the celebrated Turing
instability mechanism (Turing, 1952), which leads to pattern
formation in biological and chemical systems. The important
di¤erences here are that:
(a) in our model the instability is driven not by the action of
the di¤usion operator (which is a di¤erential operator) but
rather by a compact integral operator that models geographical
spillovers, and
(b) contrary to the spirit of the Turing model, here the
instability is driven by optimizing behavior, so it is the outcome
of forward-looking optimizing behavior by economic agents and
not the result of reaction di¤usion in chemical or biological
agents. It is the optimizing nature of our model which dictates
precisely the type of unstable modes which are �accepted�by
the system, in the sense that they are compatible with the
long-term behavior imposed on the system by the policy maker.
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Optimal Instability Periodic Boundary Conditions

Assume periodic boundary conditions, i.e., H = Lper (O),
O = [�L, L]. Then,
(a) The eigenfunctions of operator K are the Fourier modes
φn(z) = cos(nπz/L), n 2 N with corresponding eigenvalues

Wn =
R L
�L w(z) φn(z)dz .

(b) The action of operator K on a �at state returns a �at state,
Kx̄ = x̄

R L
�L w(z)dz
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Optimal Instability A Cobb-Douglas Example

Cobb-Douglas and composite exponential kernels

f (x ,X ) = C0xaX b , a+ b < 1,

w(z) =
N

∑
i=1
Ci exp(�γi jz j), γi � 0, Ci 2 R.

x̄RE =

�
λ̄

a

� 1
a+b�1

W� b
a+b�1

x̄SO =

�
λ̄

a+ b

� 1
a+b�1

W� b
a+b�1
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Optimal Instability A Cobb-Douglas Example

The shape of the composite kernel for γ1 = 0.3, C1 = 2,
γ2 = 0.1, C2 = �0.75 (left panel). The number of unstable
modes for this choice of kernel function, as a function of the
parameter 1�ab and L (right panel).
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Optimal Instability A Cobb-Douglas Example

Emerging patterns from the instability for di¤erent domain
sizes.
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Robust Control in Space Motivation

The need for robustness emerges when a decision-making
agent has concerns about possible deviations of the actual
model underlying the decision-making process from the
model speci�ed

or when the decision maker has concerns about possible
misspeci�cations of the reference model and wants to
incorporate these concerns into the decision-making rules.

A rule is robust if it continues to behave well even if the
actual model deviates from a speci�ed or a benchmark
model .
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Robust Control in Space Approaches to Robust Control

Robust control problems have been traditionally analyzed
in the context of:

risk sensitive linear quadratic Gaussian (LEQG) models and
the H∞ models. The H∞ criterion implies decision making
for protection against the �worst case�and is related to a
minimax approach.

More recently Hansen and Sargent interpreted concerns
about model misspeci�cation in economics as a situation
where a decision maker or a regulator distrusts her model
and wants good decisions over a cloud of models that
surrounds the regulator�s approximating or benchmark
model, which are di¢ cult to distinguish with �nite data
sets.
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Robust Control in Space Approaches to Robust Control

There is a �ctitious �adversarial agent�- Nature.

Nature promotes robust decision rules by forcing the
regulator, who seeks to maximize (minimize) an objective,
to explore the fragility of decision rules to departures from
the benchmark model.

A robust decision rule means that lower bounds to the
rule�s performance are determined by Nature � the
adversarial agent �which acts as a minimizing
(maximizing) agent when constructing these lower bounds.

Hansen and Sargent show that robust control theory can
be interpreted as a recursive version of max-min expected
utility theory.

Robust control methods have not been extended, as far as
we know, to models that evolve both in time and space.
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Robust Control in Space Approaches to Robust Control

Robust Control and Spatial Models

Concerns about model misspeci�cation refer now to the
benchmark or reference model that describes the
spatiotemporal dynamics of each speci�c site.

If potential deviations from the speci�ed model di¤er from
site to site, then concerns for one site might a¤ect the
robust rules for other sites.

Thus robust rules should account not only for the spatial
characteristics of the problem in a speci�c location, but
also for the degree to which the regulator distrusts her
model across locations.

If concerns about the benchmark model in a given site
di¤er from concerns in other sites, a spatially dependent
robust rule should capture these di¤erences.
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Robust Control in Space Approaches to Robust Control

Hot Spots (Hot Spots)

We formally identify, for the �rst time to our knowledge in
economics, spatial hot spots �which are sites where:

robust control breaks down
robust control is very costly as a function of the degree of
the regulator�s concerns about model misspeci�cation
across all sites
the need to apply robust control induces spatial
agglomerations and breaks down spatial symmetry

This is, as far as we know, a new source for generating
spatial patterns as compared to the classic Turing
di¤usion induced instability.

Thus hot spots are speci�c sites where uncertainties in
these sites are such that when concerns about local
misspeci�cations are incorporated into the decision rules
for the entire spatial domain, the global rule could break
down, could be very costly or could induce spatial
clustering.
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Robust Control in Space Spatial Interactions

Our economy is located on a discrete lattice L. The
�economy� is a collection of state variables x = fxng,
n 2 L.
We consider an optimal linear regulator problem:
optimization of a quadratic objective de�ned over the
whole lattice by exerting on each lattice site a control
un 2 R.
The economy evolves according to an in�nite dimensional
stochastic di¤erential equation

dxn = (∑
m
anmxm +∑

m
bnmum)dt +∑

m
cnmdwm , n 2 Z

where the last term, describes the �uctuations of the state
due to the stochasticity.
In compact form this can be expressed as

dx = (Ax + Bu) dt + Cdw

where A,B,C : `2 ! `2 are linear operators, related to the
doubly in�nite matrices with elements anm ,bnm , cnm ,
respectively.A. Xepapadeas (AUEB) Spatio-temporal dynamics IHP,Paris, 22 January 2013 83 / 119
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Robust Control in Space Spatial Interactions

The economy at point m has an e¤ect on the state of the
economy at point n. This e¤ect is quanti�ed through an
in�uence �kernel�which assumes the form of a double
sequence A = (anm). The entry anm provides a measure of
the in�uence of the state of the system at point m on the
state of the system at point n.

If the economies do not interact at all, then
A = anm = δn,m where δn,m is the Kronecker delta.
If only next neighbor e¤ects are possible, then anm is
non-zero only if m is a neighbor of n.

The controls at di¤erent point of the lattice um are
assumed to have an e¤ect on the state of the system at
site n, through the term ∑m bnmum .

Fishing e¤ort at a given site may a¤ect harvesting costs at
other sites knowledge or productivity spillovers.

The term ∑m cnmdwm tells us how the uncertainty at site
m is a¤ecting the uncertainty concerning the state of the
system at site n.
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Robust Control in Space Model uncertainty

Assume now that there is some uncertainty concerning the
�true� statistical distribution of the state of the system.
This corresponds to a family of probability measures Q
such that each Q 2 Q corresponds to an alternative
stochastic model (scenario) concerning the state of the
system.
By Girsanov�s theorem, w̄n(t) = wn(t)�

R t
0 vn(s)ds is a

Q-Brownian motion for all n 2 N, where the drift term vn
may be considered as a measure of the model
misspeci�cation at lattice site n.
The adoption of the family Q of alternative measures
concerning the state of the system leads to a family of
di¤erent equations for the state variable

dxn = (∑
m
anmxm +∑

m
bnmum +∑

m
cnmvm)dt +

∑
m
cnmdw̄m , n 2 Z.
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Robust Control in Space The Control Objective for the Linear Optimal Regulator

min
u

EQ

"Z ∞

0
e�rt ∑

n,m
(pnmxn(t)xm(t) + qnmun(t)um(t)) dt

#
or in compact form

min
u

EQ

�Z ∞

0
e�rt (hPx(t), x(t)i+ hQu(t), u(t)i)dt

�
where h�, �i is the inner product in the Hilbert space `2, and
P,Q : `2 ! `2 are symmetric positive operators with in�nite
matrix representation P = fpnmg, Q = fqnmg.
If pnm = p δnm , qnm = q δnm , then

min
u

EQ

�Z ∞

0
e�rt ∑

n
p(xn(t))2 + q(un(t))2)dt

�
First sum: Total deviation of the states of the system at each
site from the desired state 0. Second sum: The total control
cost to drive it to 0.
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Misspeci�cation Constraints

Being uncertain about the true model, the decision maker will
choose the strategy that will work even in the worst case
scenario.

min
u
max
v

EQ

�Z ∞

0
e�rt ∑

n
∑
m
(pnmxn(t)xm(t)

+qnmun(t)um(t)� θrnmvn(t)vm(t))dt]

or in compact form

min
u
max
v

EQ

�Z ∞

0
e�rt (h(Px)(t), x(t)i+ h(Qu)(t), u(t)i

�θh(Rv)(t), v(t)i)dt]

subject to the dynamic constraint. The third term corresponds
to a quadratic loss function related to the �cost�of model
misspeci�cation.
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Misspeci�cation Constraints Entropic constrained robust control

The optimization problem for the choice R = I , is related to a
robust control problem with an entropic constraint of the form

inf
u
sup
Q2Q

EQ

�Z ∞

0
e�rt (hPx(t), x(t)i+ hQu(t), u(t)i)dt

�
,

subject to H(P j Q) < H0

and the dynamic constraint, where by H(P j Q) we denote the
Kullback-Leibler entropy of the probability measures P and Q.

H(Q j P) := EQ

�
ln
�
dQ
dP

��
=
1
2

Z T

0
∑
n
v2n (t)dt
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Misspeci�cation Constraints Entropic constrained robust control

We now consider the robust optimization problem

inf
u
sup
Q2Q

J(x , u; v)

subject to H(Q j P) � H0

and the dynamic constraint where
J(x , u; v) := EQ

hR T
0 e

�rt (hPx(t), x(t)i+ hQu(t), u(t)i) dt
i
.

Using Lagrange multipliers we see that a solution of the relative
entropy constraint problem is equivalent to the solution of

inf
u
sup
Q2Q

J(x , u; v)� θ(H(Q jP)�H0),
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Misspeci�cation Constraints Localized Entropy Constraint

The optimization problem is related to a robust control
problem with an entropic constraint of the form

inf
u
sup
Q2Q

EQ

�Z ∞

0
e�rt (hPx(t), x(t)i+ hQu(t), u(t)i)dt

�
,

subject to H(Pn j Qn) < Hn, n 2 Z

and the dynamic constraint, where by H(Pn j Qn) is the
Kullback-Leibler entropy of the marginal probability measures
Pn and Qn.
The localized relative entropy constraint problem is equivalent
to the solution of

sup
Q2Q

J(x , u; v)�∑
n

θn (H(Q̄n j P̄n)�Hn)
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Misspeci�cation Constraints Localized Entropy Constraint

The introduction of the local entropic constraints means
that the policy maker�s concerns di¤er at various spatial
points.

The maximizing adversarial agent - Nature - chooses a
fvn (t)g where θn 2 (θn,+∞], θn > 0, is a penalty
parameter restraining the maximizing choice of Nature.

θn is associated with the Lagrange multiplier of the
entropy constraint at each site. In the entropy constraint
Hn is the maximum misspeci�cation error that the decision
maker is willing to consider given the existing information
about the system at site n.
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Misspeci�cation Constraints Hot Spots and Spatial Connectivity

The lower bound θn is a so-called breakdown point beyond
which it is fruitless to seek more robustness because the
adversarial agent is su¢ ciently unconstrained so that
she/he can push the criterion function to +∞ despite the
best response of the minimizing agent.

Thus when θn < θn for a speci�c site, robust control rules
cannot be attained. In our terminology this site will be a
hot spot since misspeci�cation concerns for this site will
break down robust control for the whole spatial domain.

On the other hand when θm ! ∞ or equivalently Hm = 0,
there are no misspeci�cation concerns for this site and the
benchmark model can be used.

The e¤ects of spatial connectivity can be seen in this
extreme example. The spatial relation of site m to site n
breaks down regulation for both sites. If site m was
spatially isolated from n, there would be no problem with
regulation at m.
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Misspeci�cation Constraints Translation invariance

Assume that anm = an�m , i.e. the e¤ect that a site m has
on site n depends only on the distance between n and m
and not on the actual positions of the sites. Thus the
operators A, B and C are translation invariant.

Denote the discrete Fourier transform by F. The Fourier
transform has the property of turning a convolution
operator into a multiplication operator, i.e.
F(Au) = F(A)F(u).

We will use the convention ûk := F(u)(k) where now k
takes values on the dual lattice, k 2 L.
Applying the Fourier transform F and Plancherel theorem

dx̂k (t) = (âk x̂k (t) + b̂k ûk (t) + ĉk v̂k (t))dt + ĉk ŵk (t)

∑
n
u2n = ∑

k

[F(u)(k)]2 = ∑
k

û2k ,P = pI and Q = qI

A. Xepapadeas (AUEB) Spatio-temporal dynamics IHP,Paris, 22 January 2013 93 / 119



Spatio-
temporal
dynamics

A.
Xepapadeas

Introduction

Local E¤ects

Nonlocal
E¤ects

Turing
Instability

Optimal
Instability

Robust
Control in
Space

Misspeci�cation
Constraints

Hot spots

A Spatially
Distributed
Fishery

The general
LQ problem

Robust control
of in-situ
consumption

Misspeci�cation Constraints The Decoupled Problem

min
ûk
max
v̂k

EQ

"Z ∞

0
e�rtp(x̂k (t))

2 + q(ûk (t))
2 � θ ∑

k

(v̂k (t))
2)dt

#
, k 2 L

subject to the state constraint.

Solution
dx̂�k = Rk x̂

�
k dt + ĉkdŵk

Rk := âk �
b̂2kM2,k

2q
+
ĉ2k M2,k

2θ
.

and M2,k is the solution of 
ĉ2k
2θ
� b̂2k
2q

!
M2
2,k + (2 âk � r)M2,k + 2p = 0.

The optimal controls are given by the feedback laws

û�k = �
b̂kM2,k

2q
x̂�k , v̂ �k =

ĉk M2,k

2θ
x̂�k .
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Misspeci�cation Constraints The Decoupled Problem

Let Lk : C 2(R)! C (R) be the generator operator of the
di¤usion process fx̂k (t)g, t 2 R+ de�ned by

(LkΦ)(x̂k ) = (âk x̂k + b̂k ûk + ĉk v̂k )
∂Φ
∂x̂k

+
1
2
ĉ2k

∂2Φ
∂x̂2k

.

The Hamilton-Jacobi-Bellman-Isaacs (HJBI) equation becomes

rVk = H̄
�
x̂k ,

∂Vk
∂x̂k

,
∂2Vk
∂x̂2k

�

H̄
�
x̂k ,

∂Φ
∂x̂k

,
∂2Φ
∂x̂2k

�
:= inf

ûk
sup
v̂k

�
px̂2k + qû

2
k � θv̂2k + LkΦ

�
,

The solution to the primal problem (minûk maxv̂k ) is the same
as the solution to the dual (maxv̂k minûk ) . There is no duality
gap.
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Hot spots Hot spots of type I

We will call the qualitative changes in the behavior of the
system hot spots.
Hot Spots

B Hot spot of type I: This is a breakdown of the solution
procedure, i.e., a set of parameters where a solution to the
above problem does not exist.

Proposition

A hot spot of type I occurs for low enough values of θ. In
particular a mode k corresponds to a hot spot of type I if

θ < θcr :=
pĉ2k�

âk � r
2

�2
+ p

q b̂
2
k

In terms of regulatory objectives this means that concerns
about model misspeci�cation make regulation impossible.
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Hot spots Hot spots of type II

B Hot spot of type II: This corresponds to the case where
the solution exists but may lead to spatial pattern
formation, i.e., to spatial instability similar to the Turing
instability.

Proposition (Pattern formation for the primal problem)

There exist pattern formation behaviour for the primal problem
if there exist modes k such that Rk > 0, i.e., if

âk �
b̂2kM2,k

2q
+
ĉ2k M2,k

2θ
> 0.

θ may have a destabilizing e¤ect on a mode, since it
contributes a positive term to the expression for Rk . This e¤ect
is more pronounced the smaller θ is (but of course θ > θcr ).
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Hot spots Hot spots of type II

Optimal robustness-induced spatial instability

Assume that when jθj ! ∞, then Rk < 0 for all modes k.
This means that the control problem is stable when there
are no concerns about model misspeci�cation.

If there exists a θ̂, θcr <
��θ̂�� < ∞ such that Rk

�
θ̂
�
> 0 for

some mode k, then concerns about model misspeci�cation
induce the emergence of a type II hot spot.

That is, the regulator�s desire for robustness causes the
emergence of spatial patterns.

This results connects uncertainty aversion and the robust
control with the emergence of spatial clustering and
agglomerations.

We will call this result optimal robustness-induced spatial
instability.
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The shape of the composite kernel for γ1 = 0.3, C1 = 2,
γ2 = 0.1, C2 = �0.75 (left panel). The number of unstable
modes for this choice of kernel function, as a function of a
parameter and L (right panel).
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Emerging patterns from the instability for di¤erent domain
sizes.
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Hot spots Hot spot of type III: The cost of robustness

B Hot spot of type III: This corresponds to the case where
the cost of robustness becomes more than what it o¤ers,
i.e., where the relative cost of robustness may become very
large.

1
V

∂V
∂θ
=

1
M2,k

∂M2,k

∂θ

Whenever 1
M2,k

∂M2,k
∂θ ! ∞, then we say that the cost of

robustness becomes more expensive than what it o¤ers, and we
will call that a hot spot of type III.
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A Spatially Distributed Fishery

We consider a commercial �shery occupying an area that
consists of a ring of N cells or sites on a �nite lattice.

Let xn (t) denote biomass at time t � 0 and cell n 2 ZN .

Fish biomass moves from cell to cell. and the spatial
movement can be modelled using the discrete Laplacian by
a term D [xn+1 (t)� 2xn (t) + xn�1 (t)].
Let Vn (t) denote the number of identical vessels or �rms
operating at cell n of the ring, and hn (t) the harvest rate
at cell n per unit time. Thus total harvesting at cell n is
hn (t)Vn (t)
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A Spatially Distributed Fishery Biomass evolution

dxn (t) =
�
f (xn (t)) +∑

m
αnmxm (t)� hn (t)Vn (t)

�
dt +

∑
m
snmdwm , n,m 2 ZN , x (0, n) = x0 (n)

where f (x) , x � 0, is the recruitment rate or growth function
for the �shery,with f (x) = f (x̄) = 0, f 0

�
x0
�
= 0, f 00 (x) < 0,

0 � x < x0 < x̄ . When f (x) is quadratic, growth is logistic
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A Spatially Distributed Fishery Stock, Congestion and Productivity E¤ects

The cost per vessel operating at a cell n for harvesting rate h is
determined by a cost function

c (hn (t) , xn (t) ,Cn (t) ,Pn (t))

.

Cn (t) := ∑
m

βnmVm (t) = BV , Pn (t) := ∑
m

γnmhm (t) = ` h (t)

(65)
(i) ch > 0, chh � 0; (ii) cx < 0, which implies resource stock
externalities; (iii) cC > 0, which implies crowding externalities
due to congestion e¤ects; (iv) cP < 0, which implies knowledge
or productivity externalities because harvesting that takes place
near cell n helps the development of harvesting knowledge in n
and reduces operating costs.
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A Spatially Distributed Fishery Pro�ts and Vessel Movements

Harvested �sh is sold at an exogenous world price p, Pro�t per
vessel at n is de�ned as:

πn (t) = phn (t)� c (hn (t) , xn (t) ,BV , ` h) (66)

Vessel movements

d
dt
Vn (t) = φ

�
πn(t)�

1
N ∑

m
πm(t)

�
Vn (t) , φ > 0,(67)

V (0, n) = V0 (n) (68)
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A Spatially Distributed Fishery Regulation and Misspeci�cation Concerns

max
fhn(t)g

∑
n2Z

�Z ∞

0
e�ρtVn (t) [phn (t)� c (hn (t) , xn (t) ,BV , Γh)] dt

�
.

(69)
subject to biomass evolution and vessel evolution
The robust control problem to be solved by the regulator is of
the general form

J (h, v) = (70)

max
h
min
v

EQ

Z ∞

0
e�rt

�
∑
n
Vn (t)πZ (t) +∑

n
θn(vn(t))2

�
dt

sup
h
inf
Q2Q

EQ

�Z ∞

0
e�rt ∑

n
Vn (t)πZ (t) dt

�
(71)

subject to H(Pn j Qn) < Hn, n 2 Z (72)
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A Spatially Distributed Fishery LQ Approximations

Linearization around a deterministic optimal steady state We
linearize the state equations around the state
s(0) := fx (0),V (0), h(0), v (0) = 0g

fx ,V , h, vg = fx0,V 0, h0, 0g+ εfx1,V 1, h1, v1g

dx (1) = [A(1)x (1) + A(2)V (1) + B (1)h(1) + Sv (0)]dt + Sdw̄

dV (1) = [A(2) + A(2)V (1) + B (2)h(1)]dt
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A Spatially Distributed Fishery The Tracking Problem

min
u
max
v

E

�Z ∞

0
e�rt ∑

n

�
p(x (1)n (t))2 + p̄(V (1)n (t))2 + q(h(1)n (t))2 + r (v (1)n (t))2

�
dt
�
.

subject to biomass and vessel constraints.
This problem can be solved as a linear quadratic tracking
problem
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A Spatially Distributed Fishery Hot Spots

Hot spot of type I: This is a breakdown of the solution
procedure, Regulation is not possible with the existing
misspeci�cation concerns

Hot spot of type II: Optimal regulation may lead to
spatial pattern formation, i.e., to spatial instability similar
to the Turing instability. Di¤erent levels of biomass,
vessels and �shing quotas across locations

Hot spot of type III: This corresponds to the case where
the cost of robustness becomes more that what is o¤ering
us, i.e., where the relative cost of robustness may become
very large.
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The general LQ problem

We now relax the simplifying (and restrictive) assumptions
concerning the translation invariance property of the
operators A,B,C as well as the overly restrictive
assumption that P = pI and Q = qI .

The general form of the problem allows the study of a
wider range of economic applications

The relaxation of translation invariance leads to signi�cant
complications, and to the inability to derive solutions in
closed form. However, as our subsequent analysis shows
the qualitative properties of the solutions
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The general LQ problem Solution in terms of operator Riccati equation

Theorem
The general LQ robust control problem has a solution for which
the optimal controls are of the feedback control form

u = �Q�1B�Hsymx , v =
1
θ
R�1C�Hsymx ,

and the optimal state satis�es the Ornstein-Uhlenbeck equation

dx = (A� BQ�1B�Hsym + 1
θ
CR�1C�Hsym)x dt + CdW

where Hsym is the solution of the operator Riccati equation

HsymA+ A�Hsym �HsymEsymHsym � rHsym + P = 0

and Esym := 1
2 (E+ E

�) is the symmetric part of
E := BQ�1B� � 1

θCR
�1C�.
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The general LQ problem Solution in terms of operator Riccati equation

The operator Riccati equation is the generalization of the
quadratic algebraic equation in the case where the
operators A, B and C are not translation invariant, and
thus amenable to analysis using the Fourier transform.

When the state space is �nite dimensional (i.e., in the case
of �nite lattices) the operator Riccati equation assumes
the form of a matrix Riccati equation.
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The general LQ problem Hot spot formation in general linear quadratic systems

Proposition

Let m = jjAjj de�ned as m = suphAx , xi and assume that
m < r/2. Then, for small enough values of jjEjj and jjPjj the
operator Riccati equation admits a unique bounded solution.

For the existence of a strong solution we need
jjEjj+ jjPjj < d . This condition breaks down for small
enough values of θ, which in fact is the analogue of the
hot spot of Type I that was obtained before.
Hot spots of Type II will correspond to these
eigenfunctions of the operator
R := A� BQ�1B�Hsym + 1

θCR
�1C�Hsym that have

positive eigenvalues.
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The general LQ problem Hot spot formation in general linear quadratic systems

Assume for simplicity that C is diagonal and that the
spatial domain is �nite so that θ = (θ0, ..., θN�1) is the
vector of local misspeci�cation concerns.

The low θ�s will correspond to locations with the higher
concerns.

If one or more of these low θ�s are such that the
�smallness� condition on jjEjj and jjPjj is violated, then
local concerns will cause global regulation to break down.
Hot spot of Type I.
If the low θ�s are such that the operator R has positive
eigenvalues, then local concerns may induce global spatial
clustering. Hot spot of Type II.
Even in the simple (2� 2) case it is not possible to obtain
the solution of the Riccati equation in closed form, as we
did in the special case where the operators are translation
invariant.
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The general LQ problem Pattern formation through a �non-Turing�mechanism

The mean �eld for the optimal state is

dx =
�
A� BQ�1B�Hsym + 1

θ
CR�1C�Hsym

�
x = Rx

Assume that matrix A is invertible but matrix R which
embodies optimization and misspeci�cation concerns is not
invertible. In this case the steady state equation 0 = Rx will
have more than one solution. This means that there will be
vectors x 6= 0 that will satisfy 0 = Rx . These vectors will be
ker (R) . If ker (R) consists of vectors with spatially
non-uniformity, then pattern formation emerges.

This pattern formation mechanism is however a
non-Turing mechanism.
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Robust control of in-situ consumption

Distance-dependent utility. Models of travel behavior
where the impact of distance on trip preferences underlies
the choice of an individual to consume at locations which
are away from his/her current location.
The distance-dependent utility relates to the concept of
spatial discounting.
A representative consumer is located at n = 0, 1....N � 1.
Each location is characterized by a stock of natural capital
xn (t) which generates environmental services that can be
consumed only in situ.

Consumption at location n is the sum of consumption of all
individuals or un (t) = ∑N�1

m=0 unm (t), where unm (t) is the
consumption of services at location n of an individual located
at location m = 0, 1, ...N � 1.

dxn (t) =
N�1
∑
m=0

[αnmxm (t)� γnmun (t)] dt +
N�1
∑
m=0

cnm (t) dwm ,
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Robust control of in-situ consumption Consumers

max
funmg

�
"
n�1
∑
m=0

βnm (unm (t)� bnm (t))
2 + In (t)

�
N�1
∑
m=0

pm (t) unm (t)

#
for all n

βnm � βn�m = βm�n � βmn

Individual demand curves for consumption at each location

2βnmbnm (t)� 2βnmunm (t) = pm (t)

The aggregate demand at location m and time t,
un(t) := ∑N�1

n=0 unm(t)

um (t) =
N�1
∑
n=0

bnm (t)�
 
N�1
∑
n=0

1
2βnm

!
pm (t) =: B0m (t)�B1m (t) pm (t)
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Robust control of in-situ consumption The Regulator

Site-dependent misspeci�cation concerns

min
u
max

υ
EP

"Z ∞

0
e�rt

N�1
∑
n=0

[h(BU) (t) ,Ui � θn h(Rv) , (v)i] dt
#

subject to dx = (Ax + Zu + Cv) dt + Cdw .

Welfare:
N�1
∑
n=0

N�1
∑
m=0

βnm (unm (t)� bnm (t))
2

Optimal supply of services for an individual located at m and
consuming at n

u�nm (t) = �B�1` �Hsymxn (t)

Local equilibrium price at n will be

p�n (t) = B0n (t)�
1

B1n (t)

 
N�1
∑
m=0

u�nm (t)

!
.

A. Xepapadeas (AUEB) Spatio-temporal dynamics IHP,Paris, 22 January 2013 118 / 119



Spatio-
temporal
dynamics

A.
Xepapadeas

Introduction

Local E¤ects

Nonlocal
E¤ects

Turing
Instability

Optimal
Instability

Robust
Control in
Space

Misspeci�cation
Constraints

Hot spots

A Spatially
Distributed
Fishery

The general
LQ problem

Robust control
of in-situ
consumption

Robust control of in-situ consumption Hot spot interpretation

. Hot spot of type I: Regulation breaks down for small θ.
This means that because the regulator has very strong
concerns about possible model misspeci�cations at speci�c
site(s), the regulator can not set up markets for
consumption of in situ services.

. Hot spot of type II: The regulator, due to
misspeci�cation concerns, allows a non-homogeneous
spatial pattern of the stocks to emerge. There exists a
system of local prices that supports the pattern.

. Hot spot of type III: The cost of controlling the in situ
consumption at each location becomes very high in terms
of deviations from the desired bliss points due to
misspeci�cation concerns.
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