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Dispersal and Disease Dynamics



Some important Contributors

The role of dispersal in the evolution of communities has been
a central topic in population biology.

Pioneer mathematical work includes:

• Fisher and Kolmogoroff (1937) Genetics, Travelling Waves
• Skellam (1951) Muskrats Dispersal
• Kendall (1965) Epidemic Models
• Mollison (1977) Epidemic Spread



• Okubo (1980) Biological Work
• Weinberger, Li et al. (1978, 1982, 2008) Mathematical

Contributions
• Levin (1986) Significant Impact in Ecology and

Evolutionary Biology
• Kot (1992, 1996) Major contributions to Ecology
• Hastings (2005), Invasion
• and others (Lewis, Wang, ...).



Reaction-Diffusion Equations

• Coupling of reaction kinetics gives rise to reaction diffusion
equations

∂u
∂t

= f (u) + D
∂2u
∂x2 .

• u is concentration of a chemical (or population density),
f (u) kinetics (local population growth) and D diffusion
coefficient ( in this example a case constant).

• Growth and spread of the populations occur
simultaneously.



Traveling Waves

• A traveling wave is a bounded solution that travels without
changing it shape at a fixed speed.

• If u(x , t) represents a traveling wave solution then its
shape will be the same for all time, with speed of
propagation constant (c). Hence,

u(x , t) = u(x − ct) = U(z), z = x − ct

is a traveling wave that moves in the positive x-direction, if
c > 0 and negative direction, if c < 0, here assume c > 0.



Fisher-Kolmogorov (FK) Equation

• Most famous nonlinear reaction diffusion equations is the
FK equation given by

∂u
∂t

= ku(1− u) + D
∂2u
∂x2 .

k growth rate of the local population and D diffusion
coefficient, both positive parameters.

• Rescaling by t∗ = kt and x∗ = x( k
D )

1
2 gives

∂u
∂t

= u(1− u) +
∂2u
∂x2 .



• Spatially homogeneous situation, the steady states are
u = 0 and u = 1, which are unstable and stable,
respectively.

• Substitution of the traveling waveform
u(x , t) = u(x − ct) = U(z), implies that

U ′′ + cU ′ + U(1− U) = 0

where
(′ = d

dz

)
.

• Solution of the wavefront U will exist and typically satisfy:
lim

z→∞
U(z) = 0, lim

z→−∞
U(z) = 1.

• Studying U in the (U,U ′ = V ) phase plane means studying

U ′ = V , V ′ = −cV − U(1− U).



The phase plane trajectories are solutions of

dV
dU

=
−cV − U(1− U)

V
.

• Two singular points in (U,V ) plane are (0,0) and (1,0),
steady states.

• Linear stability analysis shows that the eigenvalues λ for
the steady states are (λ± = τ ± (τ2 − 4∆)1/2):

(0,0) : λ± =
1
2

[
−c ± (c2 − 4)

1
2

]
=⇒

{
st. node if c2 > 4
st. spiral if c2 < 4

(1,0) : λ± =
1
2

[
−c ± (c2 + 4)

1
2

]
=⇒ saddle point.



• If c ≥ cmin = 2 then the origin is a stable node. In terms of
the original

c ≥ cmin = 2
√

kD.

• For the original equation ∂u
∂t = u(1− u) + ∂2u

∂x2 Kolmogoroff
et al. (1937) proved that if u(x ,0) (initial conditions) has
compact support, that is,

u(x ,0) = u0(x) ≥ 0, u0 =

{
1 if x ≤ x1,

0 if x ≥ x2

where x1 < x2 and u0(x) is continuous in x1 < x < x2, then
the solution u(x , t) evolves into a travelling wavefront
solution.



• Therefore, a travelling wavefront solution U(z) with
z = x − 2t , will exist for speeds greater than or equal to a
minimum speed cmin = 2.



Turing’s method - Diffusive Instability-Edgard Diaz,Thesis, 2010

Recipe

1. Two or more densities.
2. Different rates of diffusion

for the participants.
3. Interactions between the

two densities

∂C1

∂t
= R1(C1,C2) + D1

∂2C1

∂x2

∂C2

∂t
= R2(C1,C2) + D2

∂2C1

∂x2

∂c1

∂t
= a11c1 + a12c2 + D1

∂2c1

∂x2

∂c2

∂t
= a21c1 + a22c2 + D2

∂2c2

∂x2

ai,j =
∂Ri

∂Cj
|ci ,cj .

Instructions

• Positive spatial steady
state

Ri(C̄1, C̄2) = 0

• Linearization



Turing’s method cont’

Superposition and Instability

• ci(x , t) = αi cos(qx)eσt

• values of q s.t. Re(σ) > 0

α1(σ − a11 + D1q2)− α2a12 = 0
−α1a21 + α2(σ − a22 + D2q2) = 0

∂c1

∂t
= a11c1 + a12c2 + D1

∂2c1

∂x2

∂c2

∂t
= a21c1 + a22c2 + D2

∂2c2

∂x2

.....Necessary and Sufficient
Conditions

1. a11 + a22 < 0
2. a11a22 − a12a21 > 0
3. a11D2 + a22D1 >

2
√

D1D2(a11a22 − a12a21)



Stage model with diffusion

Model

Two kind of
infected:
• I2 symptoms.
• I1 no

symptoms.

∂S
∂t

= − β

1 + I2
SI1 + αI2 + DS

∂2S
∂x2

∂I1
∂t

=
β

1 + I2
SI1 − δI1 + DI1

∂2I1
∂x2

∂I2
∂t

= δI1 − αI2 + DI2
∂2I2
∂2x

S = 1− I1 − I2
Steady state:

Ī1 =
α(β − δ)

βα + βδ + δ2 and Ī2 =
δ(β − δ)

βα + βδ + δ2



RESULT

∂S
∂t

= − β

1 + I2
SI1 + αI2 + DS

∂2S
∂x2 (0.1)

∂I1
∂t

=
β

1 + I2
SI1 − δI1 + DI1

∂2I1
∂x2

∂I2
∂t

= δI1 − αI2 + DI2
∂2I2
∂2x

Theorem (Diffusive Instability in Epidemics)
The linearization of the system (0.1) satisfies the necessary
and sufficient conditions for instability if and only if βδ > 1 and
β
α > 1



From linearization
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Using nonlinear model
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Integrodifference Equations

Main motivation is the work of Weinberger (1978,1984) and Kot
(1992,1996).

Nt+1(x) =

∫ ∞
−∞

g(Nt (y))k(x − y)dy

where Nt+1 = g(Nt ) models the local population dynamics and
k(x − y)∆x denotes the probability that an individual will
disperse from location y to the interval (x − 1

2dx , x + 1
2dx).



Traveling Waves

Weinberger (1978) showed that travelling wave solutions exist
(Nt+1(x) = Nt (x − c)) for all speeds c greater than a minimum
wave speed c∗ if

(i) g(N) is continuously differentiable on the interval [0,N∗];
(ii) g(0) = 0 and g(N∗) = N∗;
(iii) g′(N) ≥ 0, N < g(N) ≤ g′(0)N in (0,N∗);
(iv) k(x) is exponentially bounded.



He further showed, for such exponentially bounded kernels,
initial conditions with compact support, that is,

N0(x) > 0, x ∈ [−δ, δ] and N0(x) = 0, x /∈ [−δ, δ],

converge to travelling waves with minimum speed of
propagation given by

c∗ = min
ρ>0

{
1
ρ

ln
[
g′(0)M(ρ)

]}
where M(ρ) =

∫∞
−∞ eρxk(x)dx , the moment generating function

of k(x).



Simulation with Logistic Map
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Simulation with Logistic Map
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Motivation II:
SIS Epidemic Model with Overlapping Generations (General

Model)

Discrete SIS model with overlapping generations:

St+1 = ϕ(St , It ) = Q(zt )f (Pt ) + γQ(zt )St + γ(1− σ)It ,
It+1 = ψ(St , It ) = (1−Q(zt ))f (Pt ) + γ(1−Q(zt ))St + γσIt ,

where Pt+1 = St+1 + It+1 and Q(zt ) = e−αzt is the probability of
not becoming infected in t to t + 1 when the disease prevalence
is zt = It

f (Pt )+Pt
.



• σ gives the fraction of infected individuals that remain
infected from one time step to the next.

• The function Q(zt ) denotes the proportion of susceptible
individuals that do not become infected at time t given
disease prevalence zt .

• In general, Q : [0,∞)→ [0,1) is a monotone concave
function with Q(0) = 1; Q′(u) < 0 and Q′′(u) ≥ 0 for all
u ∈ [0,∞).

• As is common, we model the “probability" of not becoming
infected as

Q(zt ) = e−αzt .

That is encounters that lead to infection are modeled via a
Poisson process.



Adding Dispersal

Assuming that dispersal occurs after mortality, and that the
disease does not affect the dispersal process, we can add
dispersal to the SIS model to give

St+1(x) =

∫ ∞
−∞

ϕ(St (y), It (y)) k(x − y) dy ,

It+1(x) =

∫ ∞
−∞

ψ(St (y), It (y)) k(x − y) dy ,

a system of integrodifference equations.



Λ = 500, γ = 0.98, thus Λ∗ = Λ/(1− γ) = 25000
IDE iterated on the domain −15 ≤ x ≤ 15 with initial data
I0(x) = 750 on −1 ≤ x ≤ 1 and I0(x) = 0 elsewhere.
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Karen Rios-Soto PhD Thesis
Epidemic Spread With Non-monotone Epidemic Functions



• Simulations of the integrodifference equations in two
spatial dimension are carried out using the bivariate
normal kernel.

k(x1, x2) =
1

2πσ1σ2
√

1− ρ2
exp

[
1

2(1− ρ2)

(
x2

1
σ1

+
x2

2
σ2
− 2ρx1x2

σ1σ2

)]

with mean (0,0). Here, ρ is the correlation coefficient
between x1 and x2. That is, ρ = cor(x1, x2) = σ12

σ1σ2
with

covariance matrix

Σ =

[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

]
.



Simulations for SIS Epidemic Model with Constant Recruitment in
2D Spatial Dimensions
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Monotone assumptions on f

• (H1). f (0) = 0 and f (1) = 1. f is nondecreasing on (0,1)
and f (x) > x for x ∈ (0,1).

• (H2). f ′(0) > 1 and D > 0, for 0 ≤ u ≤ 1,

f ′(0)(x − Dx2) ≤ f (x) ≤ f ′(0)x .



nonmonotone growth functions

• overcompensation may occur by cannibalism (eating
oneself) or predation from other species. High density of a
population may also induce overcompensation as it may
happen that no one sequesters enough resources to
reproduce



nonmonotone growth functions

• The Ricker growth function

f (u) = uer−u, r > 0. (0.6)

• x
0 1 2 3

0

1

2

3



Systems of discrete-time integro-difference models

•

Xn+1(x) = Xn(x)er1−Xn(x)−σ1Yn(x)

Yn+1(x) = Yn(x)er2−Yn(x)−σ2Xn(x)
(0.7)

where r1, r2, σ1, σ2 are all positive constants.
• Hassell and Comins, 1976



Systems of discrete-time integro-difference models

•

Xn+1(x) =

∫
R

k1(x − y)Xn(y)er1−Xn(y)−σ1Yn(y)dy

Yn+1(x) =

∫
R

k2(x − y)Yn(y)er2−Yn(y)−σ2Xn(y)dy
(0.8)



Example

• Hassell and Comins’ model has four equilibria
(0,0), (0, r2), (r1,0) and ( r1−σ1r2

1−σ1σ2
, r2−σ2r1

1−σ1σ2
).



Example

• The change of variables p = X ,q = r2 − Y allows to
convert system (0.8) into the following coupled system of
integrodifference equations

•

pn+1(x) =

∫
R

k1(x − y)f (pn(y),qn(y))dy

qn+1(x) =

∫
R

k2(x − y)g(pn(y),qn(y))dy .
(0.12)

where

f (p,q) = h(p)er1−σ1r2+σ1q

g(p,q) = r2 −
(
r2 − q

)
eq−σ2p

h(p) = pe−p



Results on the Example

• The biological interpretation of these conditions is
straightforward. For an invasion to be successful, the
overall dispersal of the invader (X) is relatively larger than
the overall dispersal of the out-competed resident (Y).
Further competition favors the invader whenever σ1 is
sufficiently small (invader less affected by competition) and
σ2 is sufficiently large (a relatively fragile resident, that is,
more susceptible to interference competition).



Results on the Example

• ∫
R

k1(s)eµsds ≥
∫
R

k2(s)eµsds

for µ > 0
• the overall dispersal of the invader (X) is relatively larger

than the overall dispersal of the out-competed resident (Y).



Results on the Example

• There are traveling wave solutions of (0.12) “loosely"
connecting its two equilibria (0,0) and (r1, r2). Equivalently,
there are traveling wave solutions of (0.8) “loosely"
connecting its two boundary states (0, r2) and (r1,0). Here
the term “loosely" means the traveling waves may oscillate
around the equilibria since they are not necessarily
monotone.
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1. Transportation/internal travel alone cannot entirely 
explain the three different waves of the AH1N1 
epidemic that have been observed in Mexico. 
 
2. Social distancing measures (school closures and 
more), vacations and travel within the network help 
account for the characteristics and spatial tendencies 
observed in the reported data: three waves, delays in 
some states, and the third (longer lasting) wave.  
 
3. School closures, summer vacations, have a strong 
modulating effect on the epidemic curves. 

Challenges in Mathematical Epidemiology 



Time course of pandemic reported Mexican data up to Jan 4, 2010 
First two local maxima: at times around social distancing and/or school closures.  
First two local minima: at times when social distancing is relaxed or schools reopen. 

School closing and social distancing implementations impact the shape the epidemic waves. 
April 30 – School closures 
June 30 – School Vacations 
August 31 – Classes start 



Confirmed cases reported by each of the Mexican States.  

Three reports dated June 4, September 5, 2009 and January 4, 2010.  
Left: cumulative, Right: Difference between reports.   
Different states contribute at different times to the outbreak.  



Local mass transportation by land 

In Mexico most traffic flow goes through  
Mexico City. Did transportation drove 
 the waves? 
 
State populations of the model  
were modeled as nodes in a star-shaped  
graph with the center (hub) 
 corresponding to  the capital 
“El Distrito Federal or DF or Mexico 
City”. 



Cities are classified as strongly connected to México City if the in and out traffic from 
Mexico City is heavy. These cities  form part of the historical “influenza corridor” that  
extends from north to south and is bounded by two mountain ranges,  the east and west 
Sierra Madres (e.g. Morelos, D.F. State of México, Tlaxcala, Queretaro, San Luis Potosí)  

Strongly connected 
Weakly connected 
Corridor 

Everybody that travels from X to Y is assumed to go  through Mexico City.” 
The  Mexican States are nodes of an internal transportation network that divides them  
into strongly and weakly connected depending on the strength of the traffic 
Land flow in and out of Mexico City (The influenza corridor describe by historian 
Roberto Acuña-Soto). 
 



Mexican population by State: The black and gray bars show,  
the states that are strongly and weakly connected to D.F. (Mexico City), 
respectively. 
 

Histogram of populations(x1000) in México.  



Adjusted land transportation flow by state per day. 
 

Number of people transported every day between different states and D.F. The flow has been 
adjusted to reflect the strong or weak connectivity and the population size in each state.  



Susceptible (S); Exposed (Incubating, E); Infected 
(asymptomatic and symptomatic, I); Symptomatic diagnosed 
(confirmed cases, J); Recovered (R) and Vaccinated (V) 
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Flow between disjoint epidemiological compartments: 
The vaccines is distributed daily and it is a function of the remaining stock pile available. 
Stockpile size is controlled by the known maximum number of vaccines available 
 



A rate of infection of about .95 gives the closest shape to the data (incubation 
and recovery periods of 2 and 7 days). The data (black) and model (green) 
curves are normalized to have peaks at 1. The infection rate is adjusted until 
the best fit (rate of change of the data curve) up to the peak is found. The 
start date is changed systematically until the best approximation is found.  



Sigmoid Modulation Function g(t), captures the 
changes in effective contact rates. 

A - School closure (Apr 30)               
B - Vacation Starts (Jun 30)     
C - School Classes Start (Aug 30) 

A B C 



Influence of the transportation in the time 
course of the epidemic: q the probability that 
the flow originates at a strongly connected state 

Thick gray: All cases. Black solid:  Strongly connected. Black dashed:  
Weakly connected. Dotted line: Starting state, Oaxaca. 



Social distancing and school closures may generate multiple waves 
(Thick curves --- cumulative; solid –from strongly connected; dash—from weakly 
connected). 

 
  

Lines in panel A correspond (from top to bottom) to the different panels in B.  



Wasted Vaccine: vaccinated individuals come from the 
unprotected, incubating, unconfirmed, or recovered groups 
(people not presenting symptoms)  

Days after epidemic start Days after epidemic start 

% of the 
population 

Different epidemic outbreaks 
for third wave 

Wasted vaccines: Day 0 is 
September 1st.    

– 40 days  
+ 65 days  
+ 120 days  



1. Transportation/internal travel alone cannot entirely 
explain the three different waves of the AH1N1 
epidemic that have been observed in Mexico. 
 
2. Social distancing measures (school closures and 
more), vacations and travel within the network help 
account for the characteristics and spatial tendencies 
observed in the reported data: three waves, delays in 
some states, and the third (longer lasting) wave.  
 
3. School closures, summer vacations, have a strong 
modulating effect on the epidemic curves. 

Conclusions I: (Marco Herrera-Valdez; Maytee Cruz-
Aponte; and Jose Vega-Guzman at ASU): http://mcmsc.asu.edu/  



Conclusions II (Marco Herrera-Valdez; Maytee Cruz-
Aponte; and Jose Vega-Guzman at ASU): http://mcmsc.asu.edu/    

1. Early  arrival of H1N1 vaccines (40 days before the 
fall start of school)  before the third wave, even at 
30% levels, would have reduced the number of 
infected people. Late arrival has been less effective. 
 
2. The number of wasted vaccines increases linearly 
from the start of the epidemic. 
 
3. The number of wasted vaccines turned out to be 
almost as large as the number of administered 
vaccines (after the start of third wave). 



Conclusions A  

1. Mexico did a superb job in responding to this health 
emergency given the high levels of uncertainty. So far, we 
have had a hurricane “Rita” rather than a “Katrina”. So 
what did we learn? 
 
2. . Massive social distancing measures cannot be sustained for 
long periods of time due to economic reasons. 
 
3. Vaccine production limitations meant that most nations had 
limited and late access to vaccines at best. National health 
disparities became flagrantly as the ability to secure/purchase  
antiviral medication, “fast” access to vaccine stockpiles, and 
the reductions in risks from access to modern delivery, 
surveillance and diagnostic systems … well are country-
dependent. An issue that must be addressed (WHO or UN?). 



Conclusions B  

1. The importance of global surveillance/sentinel disease-
specific systems like those in use to warn us against hurricanes, 
tsunamis, or earthquakes, are needed at a global scale. 
 
2. . Timely serological accurate studies that assess in real time 
the magnitude and severity of influenza outbreaks are missing. 
How many cases did we really have? We “count” the number of 
severe (reported) A-H1N1 cases but hardly know anything 
about the potentially huge number of asymptomatic or mild 
infections. 
 
3. A definition of pandemic that incorporates severity (via fast 
and effective serological studies) via the ratio of severe to 
asymptomatic and mild infections, is needed.  
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