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1 Introduction

The objective of this lecture is to show how a certain modeling approach is used
for dealing with problems related to the management of natural resources with
focus in two particular questions: how to compute trade-off between different
kinds of objectives (environmental and production)?; and how to define a good

state (of the exploited resource)?. Concerning the second question, we propose
a method for design a recovering (or restoring) strategy (in order to attain a
good state). Some examples of Chilean fisheries will be presented.

Even if it is not mentioned explicitely, the concepts behind this lecture are bor-
rowed from the viability theory ([1, 3, 6, 8, 4, 9, 5, 12]).

The purpose of this document, is just to show the framework and the kind
of problems that we will study during the lecture.

2 Preliminaries

The general framework will be controlled dynamical systems in discrete time
(see [3]):

{

x(t+ 1) = g(x(t), u(t)) t = t0, t0 + 1, . . .

x(t0) = x0 given
(1)

where x(t) ∈ X is the state variable, u(t) ∈ U the decision (action or control)
and g : X× U −→ X is the dynamics.
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Constraints on the trajectory. Often, it is desirable that trajectories, of
states and decisions, satisfy some constraints expressed in terms of inequalities.
In a general framework, we write

(x(t), u(t)) ∈ Dθ := {(x, u) ∈ X× U : Ii(x, u) ≥ θi, i = 1, . . . , n},

where, for i = 1, . . . , n, the functions Ii : X× U −→ R represent indicators and
θ = (θ1, . . . , θn) is the vector where the i-component is the associated threshold
to the constraint Ii .

Thus, the controlled dynamical systems with constraints that we will study is
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x(t + 1) = g(x(t), u(t)) t = t0, t0 + 1, . . .

x(t0) = x0 given

(x(t), u(t)) ∈ Dθ t = t0, t0 + 1, . . .

(2)

The natural questions is: when there exists a trajectory of controls

u(t0), u(t0 + 1), . . . such that the system (2) is feasible?

Of course the answer depends on the initial condition x0 and also depends on
the constraints, parametrized by the vector of threshold θ.

Formal answers to that question will be presented in:

• Monday 18, February 9h00-12h00: course by Luc Doyen. Viability.

• Thursday 21, February 14h00-17h00: Tutorial by Eladio Ocaña. Appli-

cations of viability theory in fisheries management.

Let us formulate the above question in a different way: Given an initial state

x0, for what vectors of thresholds θ = (θ1, . . . , θn) the system (2) is fea-

sible?

This question is equivalent to compute the following set :

S(x0) ≡
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θ = (θ1, . . . , θn) ∈ R
n
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∃ (u(t0), u(t0 + 1), . . .) and

(x(t0), x(t0 + 1), . . .)

satisfying x(t0) = x0

x(t+ 1) = g
(

x(t), u(t)
)

∀ t = t0, t0 + 1, . . . and

Ii
(

x(t), u(t)
)

≥ θi ∀ i = 1, . . . , n
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. (3)

Intuitively, if the initial condition x0 is good the set S(x0) should be large and
if we manage well the resource, the set S(x(t)) will be larger at each period of

2



time t.

Of course to compute S(x0) is hard but, under some assumptions, we know
how to do it.

3 Maximin as a sustainable indicator

For a given vector of thresholds θ = (θ1, . . . , θn), consider the set of restrictions
for the trajectories of the states and decisions:

Dθ = {(x, u) ∈ X× U : Ii(x, u) ≥ θi, i = 1, . . . , n}.

Suppose that the last indicator In is associated to some kind of (instantaneous)
profit, and the others indicators I1, I2, . . . , In−1 are related to environmental
constraints.

A natural questions is: Given environmental thresholds θ1, θ2, . . . , θn−1

associated to environmental constraints I1, I2, . . . , In−1, starting from

the initial condition x0, what is the maximal minimal constraint θn
that can be satisfied?

Mathematically, to answer this question is equivalent to solve the following
Maximin problem (see Monday 4, February 9h00-12h00: course by Michel De
Lara. Optimality and sustainability):

P (x0, θ1, θ2, . . . , θn−1)


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max
u(·)

min
t≥t0

In(x(t), u(t))

subject to:

x(t+ 1) = g(x(t), u(t)) t = t0, t0 + 1, . . .

x(t0) = x0

Ii(x(t), u(t)) ≥ θi i = 1, . . . , n− 1; t = t0, t0 + 1, . . .

Thus, for a given initial condition x0 and environmental thresholds θ1, θ2, . . . , θn−1,
we will denote by Maximinθ1,θ2,...,θn−1

(x0) the maximal profit that we can obtain
as minimum starting from x0 satisfying environmental thresholds θ1, θ2, . . . , θn−1

(for every period t).

3.1 Use of Maximin as indicator of recovery situation

Assume the vector state x(t) represents the status of one or several renewable
natural resources. The instantaneous profit obtained from the exploitation of
x(t) is given by the indicator In(x(t), u(t)). If the society, the government or
stakeholders involved in the harvesting define a minimum level M of profit, in
order to do not have problems (over-investments, unemployment, strikes), given
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an initial condition x0 and environmental thresholds θ1, θ2, . . . , θn−1, we have
the following situations:

• If Maximinθ1,θ2,...,θn−1
(x0) ≥ M then, it is possible to manage the resource

in order to satisfy the environmental constraints and at each period, to
get at least M as profit.

• If Maximinθ1,θ2,...,θn−1
(x0) < M, it is not possible to satisfy, in a sustainable

way (for each period of time), the required minimal profit. In this case,
we say that the resource is over-exploited in the sense that the current
condition is not so good for satisfying the established minimal requirement
M.

In the second case the idea is, starting from x0, to recover the state in order to,
at some time T , to have

Maximinθ1,θ2,...,θn−1
(x(T )) ≥ M.

This procedure of course has a cost, so the idea is to deal with in an optimal
way.

4 Design of optimal recovery programs

Given an initial condition x0, environmental thresholds θ1, θ2, . . . , θn−1, and a
required minimal profit M, we propose the following optimization problem:

PT (x0, θ1, θ2, . . . , θn−1, M)
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min
u(t0),...,u(T−1)

T−1
∑

t=t0

ρt−t0C(In(x(t), u(t)); M)

subject to:

x(t+ 1) = g(x(t), u(t)) t = t0, t0 + 1, . . .

x(t0) = x0

Ii(x(t), u(t)) ≥ θi i = 1, . . . , n− 1; t = t0, t0 + 1, . . .

Maximinθ1,θ2,...,θn−1
(x(T )) ≥ M

where T is the time for recovery the state and the function C(In(x(t), u(t)); M)
represents the cost of have an instantaneous profit In(x(t), u(t)) lower than the
requirement M during the recovery program. For example:

C(In; M) = max{M− In; 0}.

Associated to this problem, we will present the implementation developed
in [13] (not yet online).
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