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The social problem of overexploited fisheries

Low catch quotas

What is a viable quota?

How to take into account the social expectation of a quota
assignment?

How to minimize the social impact produced by a recovery
program for an overexploited fishery?
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Controlled dynamical systems

Discrete time
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X(t + 1) — g(X(t), u(t)) t = t07 to —|— 17 . Design of optimal

recovery strategies

X(to) = Xo given (e.g. the current state of the resource)

where

@ x(t) € X c RN is thestate variable
@ u(t) € U c RMis thedecision(action or control)

@ g: X x U — X is the dynamics (maps a state and a
control into the state of the next period)
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Controlled dynamical systems in discrete time
Framework

Sustainability of
constraints

Maxi m n as a
sustainable indicatol

X(t —+ 1) = f(X(t)) — u(t) t = th to —+ l’ - Design of optimal

recovery strategies

X(to) = Xo
where

@ x(t) € X C R is thetotal biomas®of a renewable resource
@ u(t) € U C R is thelevel of harvesting

o f : X — Xis the biological growth function
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where

@ X(t) € X C R is thetotal biomas®©f a renewable resource
@ u(t) € U C R is theharvesting effort

o f : X — Xis the biological growth function
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X(to) = XO Design of optimal
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where
xa(t)
o X(t) = : eXcRN
Xn(t)

representsibundancesf one or more speciesructured
(age, maturity, size, weight)

e u(t) € U c RM is a vector oharvesting effort¢one ore
more technology, selectivity)




Examples: Dynamics

Controlled dynamical systems in discrete time

Framework

Sustainability of
constraints

Maxi m nasa

YL Y2 ... . YN 0 sustainable indicato
Design of optimal
aq O O . O 0 recovery strategies
xt+)=] 0 ap O . i |xt)+
0
L 0 0 0 QaN—1 QN | -1
where
xa(t)
o X(t) = : EXCRV ut)cUCR

XN (t)




Examples: Dynamics

Controlled dynamical systems in discrete time
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Indicators - Observations

@ Usually, it is verydifficult to observe the statgt)
variable at each period

@ In place to observe the statmje follows some indicators
that are functions of the state and of the decisions
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Indicators - Observations

Framework

Sustainability of
constraints

If the state of the resource is and we apply a control Vaxim nasa

sustainable indicato
(decision) u, we can observe the following quantities P p—

recovery strategies

[1(x, u), Ia(x u), ..., In(X u)

wherel; : X xU—R for i=12...,n

We can also use functionisin order to represent some relation
between statg and controlu




Examples: Indicators

Controlled dynamical systems in discrete time

X(t+1) = f(x(t)) —ogx* (O’ (t) t=to,to+1,...

X(to) = %o

Indicators
® Y(x,u) = gx*u?: catches
o CPUE(x,u) = Y& catch by unit of effort
@ B(x,u) = x: biomass

@ U(x,u) = pY(x,u) — cu: instantaneous utility
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Examples: Indicators

Controlled dynamical systems in discrete time

X(t+1) = AX(t) + Bu(t) t=to,to+1,...

X(to) = Xo

Indicators

@ U(x, u): instantaneous profit

@ M(x,u) = x: a particular component of the st{eeg. age)
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Main example: Dynamics

Age-structured fish stock population model

X (t+ 1)
Xo(t+ 1)

xa(t+1)

XNfl(t + 1)

xn(t+ 1)

© ¢ ¢ ¢ ¢

Xn—2(t) exp(—M — u(t)su—2)

Xn—1(t) exp(—M — u(t)sn—1) + xn(t) exp(—M — u(t)sw)

xj(t): abundance (number of individuals) at gge
SB(x(t)): spawning stock biomass at peribd

M: natural mortality

u(t): fishing effort

S: selectivity pattern at age
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Main example: Dynamics

Age-structured fish stock population model

Stock-recruitment function (examples)

B

A= e

p(SB) = o B exp(—f W)
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Main example: Dynamics

Age-structured fish stock population model

Stock-recruitment function
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Main example: Indicators

Age-structured fish stock population model
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j=1
where

@ ~;: fecundity pattern at age
@ w;: average weight at age

Yield (catch in weight)

Y(x,u) z; (uSHLM>(1—exp(—|\/|—u§))xJ

where
@ M: natural mortality
@ u(t): fishing effort
@ 5. selectivity pattern at age




Main example: Indicators

Age-structured fish stock population model

Catch by unit of effort

CPUE(x, u) = 0 Y)

Induced fishing mortality

F(x,u) = uZa
=1
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Constraints

in terms of indicators

Framework
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. .. sustainable indicato
e Often, it is requested that some (observable) quantities D“Z'”TF":“T
that depend on states (resource) and decisions (harvest JEEENEIREdEs

effort), satisfy certain restrictions

@ These requirements can be represented by observationg
indicators satisfying inequalities during all the periods

@ Relationships between states and controls (e.g. do not
harvest more than available resources), can be expressg
also as inequalities to be satisfied by indicators
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Constraints

in terms of indicators

X(t+1) = g(x(t),u(t)) t=1t,to+1,...

X(to) = Xo

Requirement for the yield

Y(X(t),u(t)) > Ymin t=to,to+1,...
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Constraints

in terms of indicators

X(t+1) = g(x(t),u(t)) t=1t,to+1,...

X(to) = Xo

Requirement for the spawning-stock biomass

B, u(t) > SBrin t=1to,lo+1,...
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in terms of indicators
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X(t + 1) = g(X(t), U(t)) t = t07 to + 17 Tt Maxi m nasa
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X(tO) = Xo Design of optimal

recovery strategies

Requeriments

L(x(t),ut) >6 t=to,to+1,...; i=2L12...,n

where

o |j : X x U — R is thei indicator(observation) function

@ ;i € R thethresholdassociated to the indicator
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Is it possible to manage the above system?
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Design of optimal

X(to) = Xo recovery strategies

LxO),ut) > 6 t=totot+l...; i=12....n

Is it possible to manage the above system?
The above system has a solution?

There exists a sequence of controft), u(tp + 1), . .. for the
above system?
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There exists a sequence of control), u(to + 1), ... for the
above system?

Viability theory
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Constraints

in terms of indicators

Framework

Sustainability of
constraints

Maxi m nasa
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Design of optimal
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above system?

Viability theory

@ Viability : Monday 18, February 9h00-12h00, course by
Luc Doyen

@ Applications of viability theory in fisheries
management Thursday 21, February 14h00-17h00,
tutorial by Eladio Ocafa




Viability theory

Viability kernel
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X®),ut) > 6  t=toto+1,...; i=12...,n Design of optiml

recovery strategies

Theviability kernelassociated to théareshold¥) = (61,02, . . ., On) is the

set ofinitial statesxp for which the above system has solution
3 (u(to), u(to + 1), ...) and

(X(to), X(to + 1), ...)

satisfying x(to) = Xo

X(t+ 1) = g(x(t), u(t))
Vt=toto+1,... and

V() =% eX

Li(x(t),ut)) >6 Vi=1,...,n




Viability theory

Viable thresholds
Framework
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|i(X(t)7 U(t)) 2 ei t= to7 to + ].7 ey i = ]_7 27 ...,N Design of optimal

recovery strategies

Given theinitial statexy (the current state of the resources), for what vector
of threshold®) = (01,62, . .., 0n) the above system has solution?

3 (u(to), u(to + 1),....) and
(X(to), X(to + 1), ...)
satisfying x(to) = Xo

X(t+ 1) = g(x(t), u(t))

Vt:to,to+17... and

Sx) &9 =(61,...,00) €R"

Li(x(t),ut)) >6 Vi=1,...,n
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Boulogne-sur-Mer, France (2009)




What is a viable quota?

Age-structured fish stock population model
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X(t + l) — g(X(t), U(t)) t - to, tO + 1, e recovery strategies
X(to) = %o (current state of the resource)

Y(X(t)v U(t)) = Ymin t=1ty,to+1,...

A viable quota is a level of yield/ni, such that the above
system has a solution




What is a viable quota?

Age-structured fish stock population model
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One can include a preservation requirement in terms of the  |EECIEEEIEES
spawning-stock biomass Design of optimal

recovery strategies

X(t+1) = g(x(t),u(t)) t=to,to+1,...
X(to) = X (current state of the resource)

Y(X(t)> U(t)) > Ymin t= th to + l» e

SB(x(t),u(t)) > SBmin  t=toto+1,...
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X(to) = %o (current state of the resource)

Y(x(t),u(t)) t=to,to+1,...

SB(X(t), u(t)) mn ) t=toto+1,...

!

Given the current state of the resoursgefor what constraints
(Ymin, SBmin) the above system has solution?
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What is a viable quota?

Age-structured fish stock population model

Framework

Sustainability of

constraints
X(t+1) =gx®),ut)) t=toto+1,... ST
X(to) = Xo (current state of the resource) iiﬂ?!&’!’.i‘!?lﬁ;
Y(x(t),u(t)) t=to,to+1,...

SB(x(1), u(t)) t=toto+1,...

Given the current state of the resoursgefor what constraints
(Ymin, SBmin) the above system has solution?

To determineS(Xo)




What is a viable quota?

Age-structured fish stock population model

X(t+ 1) = g(x(t), u(t)) t=ty,to+1,...

X(to) = %o (current state of the resource)

Y(x(t), u(t)) t=to,to+1,...

!

Given threshold$Ymin, SBnmin)

the above system has solution ?

%(X(t), U(t)) min t=1to,to+1,...
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What is a viable quota?

Age-structured fish stock population model

X(t+ 1) = g(x(t), u(t)) t=ty,to+1,...

X(to) = %o (current state of the resource)

Y(x(t), u(t)) t=to,to+1,...

!

Given thresholdsymin, SBmin)

the above system has solution ?

To determine if (Ymin, SBmin) € S(Xo)

%(X(t), U(t)) min t=1to,to+1,...
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(Ymins SBmin) © R?

3 (u(to),u(to+ 1),...)
and (x(to),X(to +1),...)
satisfying x(tg) = Xo
X(t+ 1) = g(x(t),u(t))
Vt=ty,to+1,... and

Y(x(t), u(t))
SB(x(1), u(t)) &

‘

min
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Viable quotas

and environmental requirements
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@ To compute the set of thresholds that are sustaingptg)
may be very difficult

@ But under some assumptions on the dynandgcand
indicators |; it is possible ......




Case study: Chilean sea bass
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Design of optimal
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@ Abundance at age (Stat®d:= (X;)j=1,...36
@ Fishing effort multiplier (control)u € [Umin, Umax]
@ The most expensive white meat fish (0* [dollars/ton])

@ Mean quota in the last five years (Chile): 2 563 000
tons
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To recover an overexploited species

How to recover a fishery?

Framework

. . Sustainability of
How to obtaingood viable quotas? constraints

Maxi m nasa
sustainable indicatol

@ To define what is good quota and a good environmental threshold:  EESeaE R el
(@mm ymin) recovery strategies
)

@ What means to be in presence of an overexploited fishery?

(ﬁmim ymin) 6? S(XO)

@ Recovery program: From novip], to manage the resource in order to
have

S(x) C S(x(to+1)) € S(X(to +2)) C ... C S(X(T))

such that

(SBrin Ymin) € S(X(T))
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Maximal minimal production

Framework

X(t + 1) — g(x(t)7 U(t)) t= tO, tO + :|_7 . Sustainability of

constraints

X(tg) = Maxi m nasa
(to) = %o sustainable indicato

L(x(®),ut) > 6  t=toto+1,...; i=12...n Design of optimal

recovery strategies

Let us suppose that ttiest n — 1 indicatorg(with the associated thresholds)

arerelated to environmental constrairfgpawning-stock biomass, total
biomass, ..) and thest indicatorl, is aproductive observatiofcatches)

Givenenvironmental thresholds

associated to environmental constraints, starftiagn the initial condition
Xo , What is the maximal minimal constrairét, that can be satisfied?




Maximal minimal production

F— def . Framework
Maxi m n(xo, 01,602, ...,6h-1) = m(agxmltn In(X(t), u(t))
u(- 2l

Sustainability of

constraints

SUbJeCt to: Maxi mi nasa
sustainable indicato

X(t + 1) = g(X(t), U(t)) t= t07 to + 17 e Design of optimal
recovery strategies

X(to) = %o

li(x(t), u(t)) > 6 i=1,....,n—Lt=t,to+1,...

Maxi m n(xo, 01,02, ...,0h-1) is the maximal level of production
(measured withlp)
that we can obtain as minimum
satisfying the environmental thresholds, 6, . . ., On—1 for all periods

starting from xo




Maximal minimal production

Framework

Sustainability of
constraints

P def . Maxi m nasa
Maxi m ﬂ(Xo, 017 027 ey Gn—l) = rn(a)XIt’gltn In(x(t)7 U(t)) sustainable indicatoi
u(-) t=tg

Design of optimal

subject to: recovery strategies
X(t+ 1) = g(x(t), u(t)) t=to,to+1,...

X(to) = Xo

li(x(t), u(t)) > 6 i=1,....,n—L t=t,to+1,...

How to computeévaxi m n(xo, 01,02, . . ., On—1)??




Maximal minimal production

Framework
i m ?27?
Howto CompUtEMiXI m n(X07 917 927 T enil) o Sustainability of
constraints
Maxi m nasa
@ Takeall the sequences of contralé-) = {u(to), u(to +1),...} sustainable indicato
such that Design of optimal

recovery strategies

X(to) = Xo
li(x(t),u(t)) > 6 i=1...,n—Lt=t,to+1,...
@ Compare

minIn(x(t), u(t))

t>to

@ Tochooseu(-) = {u(to), u(to+ 1), ...} for which the above quantity
is the maximum




Maximal minimal production

How to computd\/axi m h(Xo7 01,02, ..., 9n_1)?? Framework

Sustainability of
constraints

@ Takeall the sequences of controlg-) = {u(to), u(to + 1),...}

Maxi m nasa
such that sustainable indicato

Design of optimal
recovery strategies

X(t+1) = g(x(t), u(t)) t=to,to+1,...

li(x(t),u(t)) > 6 i=1...,n—Lt=t,to+1,...

HOW?

In general it is not easy but, under soassumptionsn thedynamicsg and
on theindicators

Iy, I2,. .. lhz1, In

we know how to do it




Maximal minimal production

i ; - Framework
@ For a given production thresholé, we can define a sequence of
Sustainability of
controls Ug, () = {Uen (t0)7 Ugy, (tO + 1)7 .- } constraints

Q If g, (-) = {Ug,(to), Us,(to +1),...} does not satisfy Maxi m b asa

sustainable indicatoi

Design of optimal
recovery strategies

X(t+ 1) = g(x(t), ug, (1)) t=to,to+1,...
X(to) = %o
li(x(t), ug, (1)) > 6 i=1....,n—1nt=t,to+1,...

we can prove thdbr all other controls, the above system is not
admissible In this case, weepeat the Step 1 with a lowet,

© If the abovesystem is admissible foug, (-) werepeat the Step 1 with a
higher 6,

@ This bisection algorithm leads to

On — Maxi m n(xo,01,02,...,0h-1)




Maximal minimal production

Monotonicity

Framework

Sustainability of

. constraints

The dynamics
Maxi m nasa

g . X X [U — X sustainable indicatoi

Design of optimal

(X, u) — g(X7 U) recovery strategies

@ is increasing with respect to the stati :

x< X implies g(x,u) <g(x,u) forall ueU

@ is decreasing with respect to the contuaf :

u<ad implies g(x,u) >g(x,ua) forall xeX




Main example: Dynamics

Age-structured fish stock population model

x(t+1) = o(SBX))
%(t+1) = x(t)exp—M - u(t)s)
Xn—1(t+1) = xn—2(t)exp(—M — u(t)sv—2)
n(t+1) = Xu—1(t)exp(—M — u(t)su—1) + Xn(t) exp(—M — u(t)sn)
@ x;(t): abundance (number of individuals) at gge
@ SB(x(t)): spawning stock biomass at peribd
@ M: natural mortality
@ u(t): fishing effort
@ §: selectivity pattern at age

g is increasing with respect the state variable anddecreasing with respect
to the control variablel

Framework

Sustainability of
constraints

Maxi m nasa
sustainable indicatoi

Design of optimal
recovery strategies




Main example: Dynamics

Age-structured fish stock population model

Framework

Sustainability of

Stock-recruitment function ————

Maxi m nasa
sustainable indicatoi

% Design of optimal
recovery strategies

Spawning-stock biomass

N
SBX) =) WX
j=1

where

@ 7;: fecundity pattern at age
@ w;: average weight at age




Maximal minimal production

Monotonicity

Framework

Sustainability of

A function (as indicators) constraints

Maxi m nasa

I . X X '[U s R sustainable indicatoi

Design of optimal
recovery strategies

(X, u) — 1(x,u)

@ is increasing with respect to the staté :

x<x implies I(x,u) <Il(Xx,u) forall ueU

@ is decreasing with respect to the contuof :

u<t implies I(x,u)>1(x,0) forall xeX




Main example: Indicators

Age-structured fish stock population model . )
ramewor!

Sustainability of
constraints

Spawning-stock biomass

Maxi m nasa
sustainable indicatoi

N
U) — § Y VVJ XJ PQSIQF of;orpumal

recovery strategies

SB(x, u) in increasing with respect to the statand decreasing with respect
to the controlu

Yield (catch in weight)

ZN; (o) @-ont-M-us)x

Y(x,u) inincreasing with respect to the statand increasing with respect to
the controlu




Maximal minimal production

Framework

im 2

How to computeVaxi m n(xo, 01,02, . .., 0h—1)?7 ey o
constraints

If Maxi m nasa
sustainable indicatoi

@ gisincreasing with respect the state variable anddecreasing with DT e
respect tdhe control variable recovery strategies

@ Allindicators I4, I2,...,In—1,ln are increasing with respect tioe
state variable

@ Thefirst (n — 1) indicators |1y, I, ..., In—1 are decreasing with
respect tahe control variablei

@ The controlu € U is scalar

Then

@ The bisection algorithm described previously leads to

On — Maxi m n(xo,01,02,...,0h-1)




Maximal minimal production

Age-structured fish stock population model

Framework

How to computeéVaxi m n(xo, 01,02, . ..,60,-1)?? Sustainability of

constraints

. Maxi m nasa
Since sustainable indicato

@ gisincreasing with respect the state variable anddecreasing with PEEENE Ay

recovery strategies

respect tahe control variable

@ The indicatorsSB(x,u) and Y(x,u) are increasing with respect to
the state variable

@ The indicator SB(x, u) is decreasing with respect the control
variableu

@ The controlu € U is scalar

Then

@ The bisection algorithm described previously leads to

O — Maxi m n(x0,91,92,...,9n,1)




Maximal minimal production

Framework
Given the current state of the resourgg and environmental -

constraints

thresholdsé1, 6, . .., 6,_1 and under some assumptions Maxi i n as a

sustainable indicatoi

we can Compute Design of optimal

recovery strategies

Maxi m n(Xo, 01,05, ... 79n—1)

the maximal level of production (measured witk)

that we can obtain as minimum satisfying the environmental
thresholds

917 927 sty 9n—1

for all periods starting fromxg




Yimin [10° tons]

Framework

Sustainability of
8 constraints

Maxi m nasa
sustainable indicatoi

Design of optimal
6 recovery strategies

,I\/BXI m n(X07 §min)

N

0 20 40 60 80 100 SSBmin [%0]




Yimin [10° tons]

Framework

Sustainability of
8 constraints

Maxi m nasa
sustainable indicatoi

Design of optimal
recovery strategies

___________ i m n(xo, §min)

N

0 20 40 60 80 100 SSBmin [%0]
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sustainable indicatol
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Design of optimal recovery strategies




To recover an overexploited species

How to recover a fishery?

Framework

Sustainability of
constraints

How to obtaingood viable quotas?
Maxi m n as a
sustainable indicatol
@ To Qeflne what is @ood quota(social requirement) andgood Design of optimal
environmental threshoid recovery strategies

(SSBin, Ymin) = minimal thresholds for spawning-stock biomass and catche

@ What means to be in presence of an overexploited fishery?

(ﬁmimymin) ¢ S(XO) < Ymin > Maxim n(X07§min)

@ Recovery program: to manage the resource in order to have

Ymin < Maxi mi n(x(T), SBin)



To recover an overexploited species

How to recover a fishery?

@ Recovery program: to manage the resource in order to have

Ymin < Maxi mi n(x(T), SBuin)

@ What about the (social) cost?? during= to,to + 1,..., T — 1 where

Ymin > Maxi mi n(x(t), SBmin)

Framework

Sustainability of
constraints

Maxi m nasa
sustainable indicatol

Design of optimal
recovery strategies




The social problem of overexploited fisheries

Low catch quotas

\
sustainable indicato

Design of optimal
recovery strategies

Valparaiso, Chile (2011)




To recover an overexploited species

How to recover a fishery?
Framework

@ For managing the resource in order to have Sustainability of

constraints

Yimin < Maxi i n(X(T)7§min) Maxi ni n as a

sustainable indicatol

Design of optimal
recovery strategies

duringt=to,to+1,...,T — 1 where

Ymin > Maxi mi n(x(t), SBmin)

we will need to have

Y(X(t), u(t)) < Ymin

@ We propose as a proxy of the cost the difference between

ymin and Y(X(t)vu(t))

@ This difference can be interpreted as a subsidy




To recover an overexploited species

How to recover a natural resource?
Framework

Sustainability of
Given an initial conditiorxy, environmental thresholds, 02, . . . | On—1, and EETSIEE
arequired minimal profit,,, we propose the following optimization problem: REEuRESE!

sustainable indicatol

Design of optimal
recovery strategies

ZmaX{anl(() u(t)) ; 0}

u(to) ..... (T 1 (&,
subject to:
X(t 4+ 1) = g(x(t), u(t)) t=to,to+1,...
X(to) = Xo

li(x(t), u(t)) > 6 i=1,....,n—Lt=t,to+1,...

Maxi m n(x(T),Gl,ez,...,Gn,l) > On

whereT is the time for recovery




To recover an overexploited species

Age-structured fish stock population model

Framework
. P . . = Sustainabil f
Given an initial conditiorxo, the environmental threshol@B,, and a bl
requiredminimal level of catchymi, (social requirement), we propose the |GG

foIIowing optimization problem: sustainable indicato

Design of optimal
recovery strategies

U(to),m,iJ}T_l) Et:: max{¥min — Y(x(t),u(t)) ; O}
subject to:

X(t+1) = g(x(t),ut)) t=toto+1,...
X(to) = %o

%(X(t), U(t)) Z ﬁmln t= to, to + 17 e

Maxi m n(X(T)7§m|n) > Ymin

whereT is the time for recovery




To recover an overexploited species

Age-structured fish stock population model

@ We can try to solve the optimization problem using
dynamical programming algorithms

@ In the case of the study, we deal with a easier problem:
constant catches during the recovery periods

Framework

Sustainability of
constraints

Maxi m nasa
sustainable indicatol

Design of optimal

recovery strategies




To recover an overexploited species

Age-structured fish stock population model

Framework
Given an initial conditiorxo, the environmental threshol@SBmin, and a Sustainability of
required minimal level of catclymin (social requirement), we deal with the [EEISERS
following optimization problem: Maxi ni nasa

sustainable indicatol

Design of optimal
recovery strategies

T-1
min S™ maX{¥min — Y ; 0}

u(to) -, u(T—1) S
subject to:
X(t+1) =glx(t),ut)) t=toto+1...
X(to) = Xo
SB(x(1),u(t)) > SBnn ~ t=to,to+1,...

Y(x(t),u(t) =Y

Maxi mi n(x(T), SBrmin) > Ymin

whereT is the time for recovery




Summary and challenges

Framework

Sustainability of
X(t + 1) = g(X(t)7 U(t)) t=to,to+1,... constraints

Maxi m nasa
X(to) = X0 sustainable indicato

Design of optimal

recovery strategies

li(x(t), u(t)) > 6 i=1....n—1nt=t,to+1,...

@ Under some assumptions, we can compute:

o S(x)
o Maxi m I’](Xo7 91, 027 ey anl)
@ In this framework, one can establish an optimal recoverplem

@ How to extend these approach for non-monotonic dynamics?




Project: Recuperemos la Merluza

Let's recover The Hake

Framework

Sustainability of
constraints

Maxi m n as a
sustainable indicatol

Design of optimal
recovery strategies

H‘

Recuperemos

la Merluza

http://ww. recuper enosl anmer | uza. cl /



http://www.recuperemoslamerluza.cl/
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