Introduction to Optimization

Pedro Gajardo ${ }^{1}$ and Eladio Ocaña ${ }^{2}$

${ }^{1}$ Universidad Técnica Federico Santa María - Valparaíso - Chile
${ }^{2}$ IMCA-FC. Universidad Nacional de Ingeniería - Lima - Peru

Mathematics of Bio-Economics (MABIES) - IHP

Contents

Introduction

Optimality conditions

Optimization problems

In order to formulate an optimization problem, the following concepts must be very clear:

- decision variables
- restrictions
- objective function

Optimization problems

In order to formulate an optimization problem, the following concepts must be very clear:

- decision variables
- restrictions
- objective function

Optimization problems

In order to formulate an optimization problem, the following concepts must be very clear:

- decision variables
- restrictions
- objective function

Optimization problems

Decision variables

- One or more variables on which we can decide (harvesting rate or effort, level of investment, distribution of tasks, parameters)

Optimization problems

Decision variables

- One or more variables on which we can decide (harvesting rate or effort, level of investment, distribution of tasks, parameters)
- Objective: to find the best value for the decision variable

Optimization problems

Decision variables

- One or more variables on which we can decide (harvesting rate or effort, level of investment, distribution of tasks, parameters)
- Objective: to find the best value for the decision variable
- We denote by x the decision variable
x can be a number, a vector, a sequence, a function, - In a general framework, we denote by X the set where the decision variable is $(x \in X)$

Optimization problems

Decision variables

- One or more variables on which we can decide (harvesting rate or effort, level of investment, distribution of tasks, parameters)
- Objective: to find the best value for the decision variable
- We denote by x the decision variable
- x can be a number, a vector, a sequence, a function,

Optimization problems

Decision variables

- One or more variables on which we can decide (harvesting rate or effort, level of investment, distribution of tasks, parameters)
- Objective: to find the best value for the decision variable
- We denote by x the decision variable
- x can be a number, a vector, a sequence, a function,
- In a general framework, we denote by X the set where the decision variable is $(x \in X)$

Warning

This tutorial is on Continuous Optimization

That means that decision variables are continuous variables

What that means?

Warning

This tutorial is on Continuous Optimization

That means that decision variables are continuous variables

What that means?

Firstly, the set X where the decision variable belongs, is a
(linear) vector space

Warning

This tutorial is on Continuous Optimization

That means that decision variables are continuous variables

What that means?

Firstly, the set X where the decision variable belongs, is a
(linear) vector space

Warning

This tutorial is on Continuous Optimization

That means that decision variables are continuous variables

What that means?

Firstly, the set X where the decision variable belongs, is a (linear) vector space

Optimization problems

Restrictions

- Constraints that the decision variable has to satisfy
- If for a certain value of the decision variable the restrictions are satisfied, we say that it is a feasible solution
- In a general framework, we denote by $C \subseteq X$ the set of all feasible solutions

Optimization problems

Restrictions

- Constraints that the decision variable has to satisfy
- If for a certain value of the decision variable the restrictions are satisfied, we say that it is a feasible solution

Optimization problems

Restrictions

- Constraints that the decision variable has to satisfy
- If for a certain value of the decision variable the restrictions are satisfied, we say that it is a feasible solution
- In a general framework, we denote by $C \subseteq X$ the set of all feasible solutions

Optimization problems

Restrictions

- Constraints that the decision variable has to satisfy
- If for a certain value of the decision variable the restrictions are satisfied, we say that it is a feasible solution
- In a general framework, we denote by $C \subseteq X$ the set of all feasible solutions
- If we have two decision variables, x_{1} and x_{2} and they have to satisfy the following constraints: $x_{1} \geq 0, x_{2} \geq 0$, $2 x_{1}+3 x_{2} \leq 5$, we denote

$$
C=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} \geq 0, x_{2} \geq 0,2 x_{1}+3 x_{2} \leq 5\right\}
$$

Warning

This tutorial is on Continuous Optimization

That means that decision variables are continuous variables

What that means?

Secondly, the set C of feasible solutions is not a discrete set (set of isolated points)

Warning

This tutorial is on Continuous Optimization

That means that decision variables are continuous variables

What that means?

Secondly, the set C of feasible solutions is not a discrete set (set of isolated points)

Optimization problems

Objective function

It is the mathematical representation for measuring the goodness of values for the decision variable This representation is done through a function

Optimization problems

Objective function

It is the mathematical representation for measuring the goodness of values for the decision variable

This representation is done through a function

$$
f: X \longrightarrow \mathbb{R}
$$

Optimization problems

To find the best value for the decision variable from all feasible solutions

Optimization problems

To find the best value for the decision variable from all feasible solutions

To find $\bar{x} \in C \subseteq X$ such that

$$
f(\bar{x}) \leq f(x) \quad(\text { or } f(\bar{x}) \geq f(x)) \text { for all } x \in C
$$

Optimization problems

To find the best value for the decision variable from all feasible solutions

To find $\bar{x} \in C \subseteq X$ such that

$$
\begin{aligned}
& f(\bar{x}) \leq f(x) \quad(\text { or } f(\bar{x}) \geq f(x)) \text { for all } x \in C \\
& \\
& \left\{\begin{array}{l}
\min _{x \in X} f(x) \quad\left(\text { or } \max _{x \in X} f(x)\right) \\
\text { subject to } \\
x \in C
\end{array}\right.
\end{aligned}
$$

Optimization problems

Example: maximizing a rectangular surface

With a given fence, to enclose the largest rectangular area

- Objective: maximize the rectangular surface
- Decision variables: lengths of the rectangular figure
- Constraints:

Optimization problems

Example: maximizing a rectangular surface

With a given fence, to enclose the largest rectangular area

- Objective: maximize the rectangular surface
- Decision variables: lengths of the rectangular figure
- Constraints:

Optimization problems

Example: maximizing a rectangular surface

With a given fence, to enclose the largest rectangular area

- Objective: maximize the rectangular surface
- Decision variables: lengths of the rectangular figure
- Constraints:

Optimization problems

Example: maximizing a rectangular surface

With a given fence, to enclose the largest rectangular area

- Objective: maximize the rectangular surface
- Decision variables: lengths of the rectangular figure
- Constraints:
- positive lengths
- length of the fence

Optimization problems

Example: maximizing a rectangular surface

With a given fence, to enclose the largest rectangular area

- Objective: maximize the rectangular surface
- Decision variables: lengths of the rectangular figure
- Constraints:
- positive lengths
- length of the fence

Optimization problems

Example: maximizing a rectangular surface

- Decision variables: a (height) and b (width)
- Objective: maximize $s(a, b)=a b$
- Constraints:

Optimization problems

Example: maximizing a rectangular surface

- Decision variables: a (height) and b (width)
- Objective: maximize $s(a, b)=a b$

Optimization problems

Example: maximizing a rectangular surface

- Decision variables: a (height) and b (width)
- Objective: maximize $s(a, b)=a b$
- Constraints:

Optimization problems

Example: maximizing a rectangular surface

- Decision variables: a (height) and b (width)
- Objective: maximize $s(a, b)=a b$
- Constraints:
- positive lengths: $a>0, b>0$

Optimization problems

Example: maximizing a rectangular surface

- Decision variables: a (height) and b (width)
- Objective: maximize $s(a, b)=a b$
- Constraints:
- positive lengths: $a>0, b>0$
- length of fence $(L>0): 2(a+b)=L$

Optimization problems

Example: maximizing a rectangular surface

- Decision variables: a (height) and b (width)
- Objective: maximize $s(a, b)=a b$
- Constraints:
- positive lengths: $a>0, b>0$
- length of fence $(L>0): 2(a+b)=L$
- $b=\frac{L}{2}-a$
- New objective function $f(a)=a\left(\frac{L}{2}-a\right)$

Optimization problems

Example: maximizing a rectangular surface

- Decision variables: a (height) and b (width)
- Objective: maximize $s(a, b)=a b$
- Constraints:
- positive lengths: $a>0, b>0$
- length of fence $(L>0): 2(a+b)=L$
- $b=\frac{L}{2}-a$
- New objective function $f(a)=a\left(\frac{L}{2}-a\right)$

Optimization problems

Example: maximizing a rectangular surface

- Decision variables: a (height) and b (width)
- Objective: maximize $s(a, b)=a b$
- Constraints:
- positive lengths: $a>0, b>0$
- length of fence $(L>0): 2(a+b)=L$
- $b=\frac{L}{2}-a$
- New objective function $f(a)=a\left(\frac{L}{2}-a\right)$
- Rewrite restrictions: $a>0, a<\frac{L}{2}$

Optimization problems

Example: maximizing a rectangular surface

$$
\left\{\begin{array}{l}
\max _{a \in \mathbb{R}} f(a)=a\left(\frac{L}{2}-a\right) \\
\text { subject to } \\
a>0 \\
a<\frac{L}{2}
\end{array}\right.
$$

Optimization problems

Example: Optimizing a portafolio

A firm wishes to maximize the utilities of its portafolio

- Objective: maximize profits
- Decision variables: amount to invest in each fund
- Constraints:

Optimization problems

Example: Optimizing a portafolio

A firm wishes to maximize the utilities of its portafolio

- Objective: maximize profits
- Decision variables: amount to invest in each fund
- Constraints:

Optimization problems

Example: Optimizing a portafolio

A firm wishes to maximize the utilities of its portafolio

- Objective: maximize profits
- Decision variables: amount to invest in each fund
- Constraints:
- nonnegative investments

Optimization problems

Example: Optimizing a portafolio

A firm wishes to maximize the utilities of its portafolio

- Objective: maximize profits
- Decision variables: amount to invest in each fund
- Constraints:
- nonnegative investments
- budget restrictions
- minimal or maximal bounds for investments

Optimization problems

Example: Optimizing a portafolio

A firm wishes to maximize the utilities of its portafolio

- Objective: maximize profits
- Decision variables: amount to invest in each fund
- Constraints:
- nonnegative investments
- budget restrictions
- minimal or maximal bounds for investments

Optimization problems

Example: Optimizing a portafolio

A firm wishes to maximize the utilities of its portafolio

- Objective: maximize profits
- Decision variables: amount to invest in each fund
- Constraints:
- nonnegative investments
- budget restrictions
- minimal or maximal bounds for investments

Optimization problems

Example: Optimizing a portafolio

- Decision variables: $x_{1}, x_{2}, \ldots, x_{n}$, where x_{j} the quantity to invest in the fund j
- Objective: maximize where r_{j} is the rentability of the fund j
- nestictions

Optimization problems

Example: Optimizing a portafolio

- Decision variables: $x_{1}, x_{2}, \ldots, x_{n}$, where x_{j} the quantity to invest in the fund j
- Objective: maximize

$$
\left(1+r_{1}\right) x_{1}+\left(1+r_{2}\right) x_{2}+\ldots+\left(1+r_{n}\right) x_{n}
$$

where r_{j} is the rentability of the fund j

Optimization problems

Example: Optimizing a portafolio

- Decision variables: $x_{1}, x_{2}, \ldots, x_{n}$, where x_{j} the quantity to invest in the fund j
- Objective: maximize

$$
\left(1+r_{1}\right) x_{1}+\left(1+r_{2}\right) x_{2}+\ldots+\left(1+r_{n}\right) x_{n}
$$

where r_{j} is the rentability of the fund j

- Restrictions:

Optimization problems

Example: Optimizing a portafolio

- Decision variables: $x_{1}, x_{2}, \ldots, x_{n}$, where x_{j} the quantity to invest in the fund j
- Objective: maximize

$$
\left(1+r_{1}\right) x_{1}+\left(1+r_{2}\right) x_{2}+\ldots+\left(1+r_{n}\right) x_{n}
$$

where r_{j} is the rentability of the fund j

- Restrictions:
- Non-negative investments: $x_{j} \geq 0 \quad j=1,2, \ldots, n$ - Budget restriction:

Optimization problems

Example: Optimizing a portafolio

- Decision variables: $x_{1}, x_{2}, \ldots, x_{n}$, where x_{j} the quantity to invest in the fund j
- Objective: maximize

$$
\left(1+r_{1}\right) x_{1}+\left(1+r_{2}\right) x_{2}+\ldots+\left(1+r_{n}\right) x_{n}
$$

where r_{j} is the rentability of the fund j

- Restrictions:
- Non-negative investments: $x_{j} \geq 0 \quad j=1,2, \ldots, n$
- Budget restriction:

$$
x_{1}+x_{2}+\ldots+x_{n} \leq B
$$

- Minimal/maximal bounds for investments

Optimization problems

Example: Optimizing a portafolio

- Decision variables: $x_{1}, x_{2}, \ldots, x_{n}$, where x_{j} the quantity to invest in the fund j
- Objective: maximize

$$
\left(1+r_{1}\right) x_{1}+\left(1+r_{2}\right) x_{2}+\ldots+\left(1+r_{n}\right) x_{n}
$$

where r_{j} is the rentability of the fund j

- Restrictions:
- Non-negative investments: $x_{j} \geq 0 \quad j=1,2, \ldots, n$
- Budget restriction:

$$
x_{1}+x_{2}+\ldots+x_{n} \leq B
$$

- Minimal/maximal bounds for investments:

$$
a_{j} \leq x_{j} \leq b_{j} \quad \text { for } j=1,2, \ldots, n
$$

Optimization problems

Example: Optimizing a portafolio

$$
\int \max _{x_{1}, x_{2}, \ldots, x_{n} \in \mathbb{R}}\left(1+r_{1}\right) x_{1}+\left(1+r_{2}\right) x_{2}+\ldots+\left(1+r_{n}\right) x_{n}
$$

subject to

$$
x_{j} \geq 0 \quad j=1,2, \ldots, n
$$

$$
x_{1}+x_{2}+\ldots+x_{n} \leq B
$$

$$
a_{j} \leq x_{j} \leq b_{j} \quad j=1,2, \ldots, n
$$

Optimization problems

Example: Least square problem

Given points on the plane, to find the line of best fit through these points

- Objective: To minimize the (squared) error between a line and the points
- Decision variables: the parameters of a line

Optimization problems

Example: Least square problem

Given points on the plane, to find the line of best fit through these points

- Objective: To minimize the (squared) error between a line and the points
- Decision variables: the parameters of a line

Optimization problems

Example: Least square problem

Given points

$$
\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) ; \ldots ;\left(x_{n}, y_{n}\right)
$$

to find the line of best fit through these points

- Decision variables (the parameters of a line): m and n, where the expression of a line in the plane is

$$
y=m x+n
$$

- Objective: To minimize

Optimization problems

Example: Least square problem

Given points

$$
\left(x_{1}, y_{1}\right) ;\left(x_{2}, y_{2}\right) ; \ldots ;\left(x_{n}, y_{n}\right)
$$

to find the line of best fit through these points

- Decision variables (the parameters of a line): m and n, where the expression of a line in the plane is

$$
y=m x+n
$$

- Objective: To minimize

$$
\sum_{k=1}^{n}\left(m x_{k}+n-y_{k}\right)^{2}
$$

Optimization problems

Example: Least square problem

$$
\max _{m, n \in \mathbb{R}} \sum_{k=1}^{n}\left(m x_{k}+n-y_{k}\right)^{2}
$$

Optimization problems

Example: Harvesting of a renewable resource

To maximize the benefit from the harvesting of a natural resource

- Objective: maximize present utilities
- Decision variables: harvesting levels (or effort) at each period
- Constraints:

Optimization problems

Example: Harvesting of a renewable resource

To maximize the benefit from the harvesting of a natural resource

- Objective: maximize present utilities
- Decision variables: harvesting levels (or effort) at each period
- Constraints:

Optimization problems

Example: Harvesting of a renewable resource

To maximize the benefit from the harvesting of a natural resource

- Objective: maximize present utilities
- Decision variables: harvesting levels (or effort) at each period
- Constraints:

Optimization problems

Example: Harvesting of a renewable resource

To maximize the benefit from the harvesting of a natural resource

- Objective: maximize present utilities
- Decision variables: harvesting levels (or effort) at each period
- Constraints:
- nonnegative harvesting
- biology
- relation between harvesting and the amount of the resource

Optimization problems

Example: Harvesting of a renewable resource

To maximize the benefit from the harvesting of a natural resource

- Objective: maximize present utilities
- Decision variables: harvesting levels (or effort) at each period
- Constraints:
- nonnegative harvesting
- biology
- relation between harvesting and the amount of the resource
\qquad

Optimization problems

Example: Harvesting of a renewable resource

To maximize the benefit from the harvesting of a natural resource

- Objective: maximize present utilities
- Decision variables: harvesting levels (or effort) at each period
- Constraints:
- nonnegative harvesting
- biology
- relation between harvesting and the amount of the resource
- environmental constraints

Optimization problems

Example: Harvesting of a renewable resource

To maximize the benefit from the harvesting of a natural resource

- Objective: maximize present utilities
- Decision variables: harvesting levels (or effort) at each period
- Constraints:
- nonnegative harvesting
- biology
- relation between harvesting and the amount of the resource
- environmental constraints

Optimization problems

Example: Harvesting of a renewable resource

$$
\begin{aligned}
& x(t+1)=F(x(t))-h(t) \quad t=t_{0}, t_{0}+1, \ldots, T-1 \\
& x\left(t_{0}\right)=x_{0} \text { given (e.g. the current state of the resource) }
\end{aligned}
$$

where

- $x(t) \geq 0$ is the level of the resource at period t

Optimization problems

Example: Harvesting of a renewable resource

$$
\begin{aligned}
& x(t+1)=F(x(t))-h(t) \quad t=t_{0}, t_{0}+1, \ldots, T-1 \\
& x\left(t_{0}\right)=x_{0} \text { given (e.g. the current state of the resource) }
\end{aligned}
$$

where

- $x(t) \geq 0$ is the level of the resource at period t
- $h(t) \geq 0$ is the harvesting at period t

Optimization problems

Example: Harvesting of a renewable resource
$x(t+1)=F(x(t))-h(t) \quad t=t_{0}, t_{0}+1, \ldots, T-1$
$x\left(t_{0}\right)=x_{0}$ given (e.g. the current state of the resource)
where

- $x(t) \geq 0$ is the level of the resource at period t
- $h(t) \geq 0$ is the harvesting at period t
- $F: \mathbb{R} \longrightarrow \mathbb{R}$ is the biological growth function of the resource

Optimization problems

Example: Harvesting of a renewable resource

The total benefits can be represented by

$$
B=\sum_{t=t_{0}}^{T-1} \rho^{\left(t-t_{0}\right)} U(x(t), h(t))
$$

Optimization problems

Example: Harvesting of a renewable resource

The total benefits can be represented by

$$
B=\sum_{t=t_{0}}^{T-1} \rho^{\left(t-t_{0}\right)} U(x(t), h(t))
$$

where

- $U(x, h)$ is the instantaneous profit if we have x and we harvest h

Optimization problems

Example: Harvesting of a renewable resource

The total benefits can be represented by

$$
B=\sum_{t=t_{0}}^{T-1} \rho^{\left(t-t_{0}\right)} U(x(t), h(t))
$$

where

- $U(x, h)$ is the instantaneous profit if we have x and we harvest h
- $0 \leq \rho \leq 1$ is a descount factor

Optimization problems

Example: Harvesting of a renewable resource
subject to
$x(t+1)=F(x(t))-h(t) \quad t=t_{0}, t_{0}+1, \ldots, T-1$
$x\left(t_{0}\right)=x_{0}$
$x(t) \geq 0 \quad t=t_{0}+1, t_{0}+2, \ldots, T$
$0 \leq h(t) \leq F(x(t)) \quad t=t_{0}, t_{0}+1, \ldots, T-1$

Optimization problems

Important remark: \min is equivalent to \max

We can restrict our study only to minimization problems

To find $\bar{x} \in C \subseteq X$ such that

$$
f(\bar{x}) \leq f(x) \quad \text { for all } x \in C
$$

Optimization problems

Important remark: \min is equivalent to \max

We can restrict our study only to minimization problems

To find $\bar{x} \in C \subseteq X$ such that

$$
f(\bar{x}) \leq f(x) \quad \text { for all } x \in C
$$

$$
\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

Optimization problems

Important remark: min is equivalent to \max

To find $\bar{x} \in C \subseteq X$ such that

$$
f(\bar{x}) \geq f(x) \quad \text { for all } x \in C
$$

Optimization problems

Important remark: \min is equivalent to \max

To find $\bar{x} \in C \subseteq X$ such that

$$
f(\bar{x}) \geq f(x) \quad \text { for all } x \in C
$$

$$
\left\{\begin{array}{l}
\max _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

Optimization problems

Important remark: min is equivalent to \max

$$
\left(P_{\max }\right)\left\{\begin{array}{l}
\max _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

is equivalent to problem

Optimization problems

Important remark: \min is equivalent to \max

$$
\left(P_{\max }\right)\left\{\begin{array}{l}
\max _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

is equivalent to problem

$$
\left(P_{\text {min }}\right)\left\{\begin{array}{l}
\min _{x \in X}-f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

In the following sense:

- \bar{x} is solution of $\left(P_{\max }\right)$ if and only if it is solution of $\left(P_{\min }\right)$
- The optimal value of $\left(P_{\max }\right)$ is the negative of the optimal value of $\left(P_{\text {min }}\right)$

Optimization problems

Important remark: \min is equivalent to \max

$$
\left(P_{\max }\right)\left\{\begin{array}{l}
\max _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

is equivalent to problem

$$
\left(P_{\text {min }}\right)\left\{\begin{array}{l}
\min _{x \in X}-f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

In the following sense:

- \bar{x} is solution of $\left(P_{\max }\right)$ if and only if it is solution of $\left(P_{\min }\right)$
- The optimal value of $\left(P_{\max }\right)$ is the negative of the optimal value of $\left(P_{\text {min }}\right)$

Optimization problems

Existence of solutions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

When (P) has solution?

- If $[a, b]=C \subseteq X=\mathbb{R}$
- When $X=\mathbb{R}^{n}$, there exists at least one solution if C is closed and bounded

Optimization problems

Existence of solutions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

When (P) has solution?

- If $[a, b]=C \subseteq X=\mathbb{R}$
- When $X=\mathbb{R}^{n}$, there exists at least one solution if C is closed and bounded

Contents

Introduction

Optimality conditions

Optimality conditions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

Optimality conditions are mathematical expressions: equations

 or cvetem of equations svetem of inemualities ordinary differential equations, partial differential equationsSolutions of the mathematical problems obtained from ontimality conditions are related with the solutions of the optimization problem

Optimality conditions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

Optimality conditions are mathematical expressions: equations or system of equations, system of inequalities, ordinary differential equations, partial differential equations

Solutions of the mathematical problems obtained from optimality conditions are related with the solutions of the optimization problem

Optimality conditions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

Optimality conditions are mathematical expressions: equations or system of equations, system of inequalities, ordinary differential equations, partial differential equations

Solutions of the mathematical problems obtained from optimality conditions are related with the solutions of the optimization problem

Optimality conditions

$(P)\left\{\begin{array}{l}\min _{x \in X} f(x) \\ \text { subject to } \\ x \in C\end{array}\right.$

Optimality conditions

The idea is to obtain optimality conditions and then to solve the associated mathematical problems (analytically or numerically)

Optimality conditions

Necessary conditions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- Suppose that optimality conditions of this problem are represented by a system of equations (S)

We say that (S) is a necessary condition if a solution of

 (P) is a solution of (S) The idea is to hind solutions of (S) in order to have a list of candidates for the solutions of (P)
Optimality conditions

Necessary conditions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- Suppose that optimality conditions of this problem are represented by a system of equations (S)
- We say that (S) is a necessary condition if a solution of (P) is a solution of (S)
candidates for the solutions of (P)
o If (S) is solvei only for one point, then it is solution of (P) or (P) does not have solution

Optimality conditions

Necessary conditions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- Suppose that optimality conditions of this problem are represented by a system of equations (S)
- We say that (S) is a necessary condition if a solution of (P) is a solution of (S)
- The idea is to find solutions of (S) in order to have a list of candidates for the solutions of (P)

Optimality conditions

Necessary conditions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- Suppose that optimality conditions of this problem are represented by a system of equations (S)
- We say that (S) is a necessary condition if a solution of (P) is a solution of (S)
- The idea is to find solutions of (S) in order to have a list of candidates for the solutions of (P)
- If (S) is solved only for one point, then it is solution of (P) or (P) does not have solution

Optimality conditions

Necessary conditions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- Suppose that optimality conditions of this problem are represented by a system of equations (S)
- We say that (S) is a necessary condition if a solution of (P) is a solution of (S)
- The idea is to find solutions of (S) in order to have a list of candidates for the solutions of (P)
- If (S) is solved only for one point, then it is solution of (P) or (P) does not have solution
- Warning: A solution of (S) may be not a solution of (P)

Optimality conditions

Necessary condition: unrestricted case

$$
(P)\left\{\min _{x \in \mathbb{R}} f(x)\right.
$$

where $f: \mathbb{R} \longrightarrow \mathbb{R}$

- A necessary condition is $f^{\prime}(x)=0$ where

$$
f^{\prime}(x)=\lim _{t \rightarrow 0} \frac{f(x+t)-f(x)}{t}
$$

- That means: If \bar{x} is a solution of (P) then $f(\bar{x})=0$
- If we know the expression of f^{\prime} we can solve the equation $f^{\prime}(x)=0$ in order to have candidates of solutions

Optimality conditions

Necessary condition: unrestricted case

$$
(P)\left\{\min _{x \in \mathbb{R}} f(x)\right.
$$

where $f: \mathbb{R} \longrightarrow \mathbb{R}$

- A necessary condition is $f^{\prime}(x)=0$ where

$$
f^{\prime}(x)=\lim _{t \rightarrow 0} \frac{f(x+t)-f(x)}{t}
$$

- That means: If \bar{x} is a solution of (P) then $f(\bar{x})=0$
- If we know the expression of f^{\prime} we can solve the equation $f^{\prime}(x)=0$ in order to have candidates of solutions

Optimality conditions

Necessary condition: unrestricted case

$$
(P)\left\{\min _{x \in \mathbb{R}} f(x)\right.
$$

where $f: \mathbb{R} \longrightarrow \mathbb{R}$

- A necessary condition is $f^{\prime}(x)=0$ where

$$
f^{\prime}(x)=\lim _{t \rightarrow 0} \frac{f(x+t)-f(x)}{t}
$$

- That means: If \bar{x} is a solution of (P) then $f(\bar{x})=0$
- If we know the expression of f^{\prime} we can solve the equation $f^{\prime}(x)=0$ in order to have candidates of solutions

Optimality conditions

Necessary condition: unrestricted case

$$
(P)\left\{\min _{x \in \mathbb{R}} f(x)\right.
$$

where $f: \mathbb{R} \longrightarrow \mathbb{R}$

- A necessary condition is $f^{\prime}(x)=0$ where

$$
f^{\prime}(x)=\lim _{t \rightarrow 0} \frac{f(x+t)-f(x)}{t}
$$

- That means: If \bar{x} is a solution of (P) then $f(\bar{x})=0$
- If we know the expression of f^{\prime} we can solve the equation $f^{\prime}(x)=0$ in order to have candidates of solutions
- Warning!!!

Optimality conditions

Necessary conditions: restrictions

$$
(P)\left\{\begin{array}{l}
\min _{x \in \mathbb{R}} f(x) \\
a \leq x \leq b
\end{array}\right.
$$

where $f: \mathbb{R} \longrightarrow \mathbb{R}$

- At a point x observe that f increase in the sense of (the sign of) $f^{\prime}(x)$
- There are three posibilities:

Optimality conditions

Necessary conditions: restrictions

$$
(P)\left\{\begin{array}{l}
\min _{x \in \mathbb{R}} f(x) \\
a \leq x \leq b
\end{array}\right.
$$

where $f: \mathbb{R} \longrightarrow \mathbb{R}$

- At a point x observe that f increase in the sense of (the sign of) $f^{\prime}(x)$
- There are three posibilities:

Optimality conditions

Necessary conditions: restrictions

$$
(P)\left\{\begin{array}{l}
\min _{x \in \mathbb{R}} f(x) \\
a \leq x \leq b
\end{array}\right.
$$

where $f: \mathbb{R} \longrightarrow \mathbb{R}$

- At a point x observe that f increase in the sense of (the sign of) $f^{\prime}(x)$
- There are three posibilities:
- an interior point $a<\bar{x}<b$ is a solution. Then $f^{\prime}(\bar{x})=0$
- $\bar{x}=a$ is a solution. Then $f^{\prime}(\bar{x})=f^{\prime}(a) \geq 0$
- $\bar{x}=b$ is a solution. Then $f^{\prime}(\bar{x})=f^{\prime}(b) \leq 0$

Optimality conditions

Necessary conditions: restrictions

$$
(P)\left\{\begin{array}{l}
\min _{x \in \mathbb{R}} f(x) \\
a \leq x \leq b
\end{array}\right.
$$

where $f: \mathbb{R} \longrightarrow \mathbb{R}$

- At a point x observe that f increase in the sense of (the sign of) $f^{\prime}(x)$
- There are three posibilities:
- an interior point $a<\bar{x}<b$ is a solution. Then $f^{\prime}(\bar{x})=0$
- $\bar{x}=a$ is a solution. Then $f^{\prime}(\bar{x})=f^{\prime}(a) \geq 0$
- Observe that if $f^{\prime}(a)>0$ and $f^{\prime}(b)<0$, then there exists

Optimality conditions

Necessary conditions: restrictions

$$
(P)\left\{\begin{array}{l}
\min _{x \in \mathbb{R}} f(x) \\
a \leq x \leq b
\end{array}\right.
$$

where $f: \mathbb{R} \longrightarrow \mathbb{R}$

- At a point x observe that f increase in the sense of (the sign of) $f^{\prime}(x)$
- There are three posibilities:
- an interior point $a<\bar{x}<b$ is a solution. Then $f^{\prime}(\bar{x})=0$
- $\bar{x}=a$ is a solution. Then $f^{\prime}(\bar{x})=f^{\prime}(a) \geq 0$
- $\bar{x}=b$ is a solution. Then $f^{\prime}(\bar{x})=f^{\prime}(b) \leq 0$

Optimality conditions

Necessary conditions: restrictions

$$
(P)\left\{\begin{array}{l}
\min _{x \in \mathbb{R}} f(x) \\
a \leq x \leq b
\end{array}\right.
$$

where $f: \mathbb{R} \longrightarrow \mathbb{R}$

- At a point x observe that f increase in the sense of (the sign of) $f^{\prime}(x)$
- There are three posibilities:
- an interior point $a<\bar{x}<b$ is a solution. Then $f^{\prime}(\bar{x})=0$
- $\bar{x}=a$ is a solution. Then $f^{\prime}(\bar{x})=f^{\prime}(a) \geq 0$
- $\bar{x}=b$ is a solution. Then $f^{\prime}(\bar{x})=f^{\prime}(b) \leq 0$
- Observe that if $f^{\prime}(a)>0$ and $f^{\prime}(b)<0$, then there exists $a<\bar{x}<b$ such that $f^{\prime}(\bar{x})=0$

Optimality conditions

Necessary conditions: restrictions
A necessary condition of the problem

$$
(P)\left\{\begin{array}{l}
\min _{x \in \mathbb{R}} f(x) \\
a \leq x \leq b
\end{array}\right.
$$

is

Optimality conditions

Necessary conditions: restrictions
A necessary condition of the problem

$$
(P)\left\{\begin{array}{l}
\min _{x \in \mathbb{R}} f(x) \\
a \leq x \leq b
\end{array}\right.
$$

is

$$
(S)\left\{\begin{array}{l}
\text { Find } x, \alpha, \beta \text { such that } \\
f^{\prime}(x)-\alpha+\beta=0 \\
x \in[a, b] \\
\alpha, \beta \geq 0 \\
\alpha(x-a)=0 \\
\beta(x-b)=0
\end{array}\right.
$$

Optimality conditions

Global vs local minimum

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- We say that $\bar{x} \in C$ is a global minimum, if it is a solution of (P)
- We say that $\bar{x} \in C$ is a local minimum, if for every $x \in C$ close enough, one has $f(\bar{x}) \leq f(x)$
- A global optimum is a local optimum

Optimality conditions

Global vs local minimum

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- We say that $\bar{x} \in C$ is a global minimum, if it is a solution of (P)
- We say that $\bar{x} \in C$ is a local minimum, if for every $x \in C$ close enough, one has $f(\bar{x}) \leq f(x)$
- A global optimum is a local optimum

Optimality conditions

Global vs local minimum

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- We say that $\bar{x} \in C$ is a global minimum, if it is a solution of (P)
- We say that $\bar{x} \in C$ is a local minimum, if for every $x \in C$ close enough, one has $f(\bar{x}) \leq f(x)$
- A global optimum is a local optimum

Optimality conditions

Sufficient condition: unrestricted case

$$
(P)\left\{\min _{x \in \mathbb{R}} f(x)\right.
$$

- We say that (S) is a sufficient condition if a solution of (S) is a solution of (P)

- The idea is to find solutions of (S) in order to have solutions of (P)

- In the general case, this is very difficult

Optimality conditions

Sufficient condition: unrestricted case

$$
(P)\left\{\min _{x \in \mathbb{R}} f(x)\right.
$$

- We say that (S) is a sufficient condition if a solution of (S) is a solution of (P)
- The idea is to find solutions of (S) in order to have solutions of (P)
- In the general case, this is very difficult
- It is much realistic to have that solutions of (S) are local solutions of (P)

Optimality conditions

Sufficient condition: unrestricted case

$$
(P)\left\{\min _{x \in \mathbb{R}} f(x)\right.
$$

- We say that (S) is a sufficient condition if a solution of (S) is a solution of (P)
- The idea is to find solutions of (S) in order to have solutions of (P)
- In the general case, this is very difficult
- It is much realistic to have that solutions of (S) are local solntions of (P) - A (local) sufficient condition to (P) is $f^{\prime}(x)=0$ and

Optimality conditions

Sufficient condition: unrestricted case

$$
(P)\left\{\min _{x \in \mathbb{R}} f(x)\right.
$$

- We say that (S) is a sufficient condition if a solution of (S) is a solution of (P)
- The idea is to find solutions of (S) in order to have solutions of (P)
- In the general case, this is very difficult
- It is much realistic to have that solutions of (S) are local solutions of (P)
- A (local) sufficient condition to (P) is $f^{\prime}(x)=0$ and

Optimality conditions

Sufficient condition: unrestricted case

$$
(P)\left\{\min _{x \in \mathbb{R}} f(x)\right.
$$

- We say that (S) is a sufficient condition if a solution of (S) is a solution of (P)
- The idea is to find solutions of (S) in order to have solutions of (P)
- In the general case, this is very difficult
- It is much realistic to have that solutions of (S) are local solutions of (P)
- A (local) sufficient condition to (P) is $f^{\prime}(x)=0$ and $f^{\prime \prime}(x)>0$

Optimality conditions

Sufficient condition

If we find $\bar{x} \in \mathbb{R}$ such that

$$
(S)\left\{\begin{array}{l}
f^{\prime}(\bar{x})=0 \\
f^{\prime \prime}(\bar{x})>0
\end{array}\right.
$$

Then \bar{x} is a local minimum of the problem

Optimality conditions

Sufficient condition

If we find $\bar{x} \in \mathbb{R}$ such that

$$
(S)\left\{\begin{array}{l}
f^{\prime}(\bar{x})=0 \\
f^{\prime \prime}(\bar{x})>0
\end{array}\right.
$$

Then \bar{x} is a local minimum of the problem

$$
(P)\left\{\min _{x \in \mathbb{R}} f(x)\right.
$$

Conclusions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- To formulate an optimization problem, the following concepts must be clear:
\qquad

Conclusions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- To formulate an optimization problem, the following concepts must be clear:
- Decision variable(s): $x \in X$
- Objective function: f
- Restrictions: $C \subset X$

Conclusions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- To formulate an optimization problem, the following concepts must be clear:
- Decision variable(s): $x \in X$
- Objective function: $f: X \longrightarrow \mathbb{R}$
- Restrictions: $C \subset X$
- A maximization problem is equivalent to a minimization nroblem (deal with $-f(x)$ instead of $f(x)$)

Conclusions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- To formulate an optimization problem, the following concepts must be clear:
- Decision variable(s): $x \in X$
- Objective function: $f: X \longrightarrow \mathbb{R}$
- Restrictions: $C \subset X$
- A maximization problem is equivalent to a minimization nroblem (deal with $-f(x)$ instead of $f(x)$)

Conclusions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- To formulate an optimization problem, the following concepts must be clear:
- Decision variable(s): $x \in X$
- Objective function: $f: X \longrightarrow \mathbb{R}$
- Restrictions: $C \subset X$
- A maximization problem is equivalent to a minimization problem (deal with $-f(x)$ instead of $f(x)$)

Conclusions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- Optimality conditions are mathematical systems

Conclusions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- Optimality conditions are mathematical systems
- The idea is to solve these systems in order to:
 condition)
obtain a local solution (if the system is a sufficient
condition)

Conclusions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- Optimality conditions are mathematical systems
- The idea is to solve these systems in order to:
- have candidates of solutions (if the system is a necessary condition)
- obtain a local solution (if the system is a sufficient condition)

Conclusions

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- Optimality conditions are mathematical systems
- The idea is to solve these systems in order to:
- have candidates of solutions (if the system is a necessary condition)
- obtain a local solution (if the system is a sufficient condition)

Next part

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- Several decision variables $x_{1}, x_{2}, \ldots, x_{n}$. That is

$$
x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n}=X
$$

- Necessary and sufficient conditions
- Why the convexity (or concavity) is relevant?

Next part

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- Several decision variables $x_{1}, x_{2}, \ldots, x_{n}$. That is

$$
x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n}=X
$$

- Necessary and sufficient conditions
- Why the convexity (or concavity) is relevant?

Next part

$$
(P)\left\{\begin{array}{l}
\min _{x \in X} f(x) \\
\text { subject to } \\
x \in C
\end{array}\right.
$$

- Several decision variables $x_{1}, x_{2}, \ldots, x_{n}$. That is

$$
x=\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n}=X
$$

- Necessary and sufficient conditions
- Why the convexity (or concavity) is relevant?

