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@ One or more variables on which we can decide (harvesti
rate or effort, level of investment, distribution of tasks,
parameters)

@ Objective: to find théestvalue for the decision variable
@ We denote by the decision variable
@ X can be a number, a vector, a sequence, a function, ......

o In a general frameworkye denote by the set where the
decision variable isx € X)
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This tutorial is onContinuous Optimization

That means that decision variables are continuous vasiable

What that means?

Firstly, the seiX where the decision variable belongs, is a
(linear) vector space
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conditions

o If for a certain value of the decision variable the
restrictions are satisfied, we say that it is a feasible
solution

@ In a general frameworkye denote byC C X the set of all
feasible solutions
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@ Constraints that the decision variable has to satisfy A

o If for a certain value of the decision variable the
restrictions are satisfied, we say that it is a feasible
solution

o In a general framework, we denote ByC X the set of all
feasible solutions

o If we have two decision variableg; andx, and they have
to satisfy the following constraintsg > 0, x; > 0,
2 X1+ 3% <5, we denote

C={(x1,%) €R? | x1 >0, X2 >0, 2% + 3 < 5}
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This tutorial is onContinuous Optimization

That means that decision variables are continuous vasiable

What that means?

Secondly, the sef of feasible solutions is not a discrete set (se
of isolated points)
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It is the mathematical representation for measuring the
goodnes®f values for the decision variable

This representation is done through a function

f:X—R
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To find thebestvalue for the decision variable from all feasible Optimaliy
. conaitions

solutions

To find x € C C X such that

f(x) <f(x) (or f(x) >f(x)) forall xeC

min f(x) <or maxf(x)>

XeX XeX
subject to

xeC
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With a given fence, to enclose the largest rectangular area

o Objective: maximize the rectangular surface

@ Decision variables: lengths of the rectangular figure
o Constraints

@ positive lengths

o length of the fence
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@ Decision variablesa (height) andb (width)
@ Objective: maximizes(a,b) = ab

o Constraints:
e positive lengthsa >0, b >0

o length of fencel( > 0): 2(a+b) =L

ob=5-a

NI
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@ Decision variablesa (height) andb (width)
@ Objective: maximizes(a,b) = ab
@ Constraints:

e positive lengthsa >0, b >0

o length of fencel( > 0): 2(a+b) =L
ob:%—a
o Newobjective functiorf(a) = a (5 — a)
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©

Decision variablesa (height) andb (width)

©

Objective: maximizes(a,b) =ab

Constraints:
e positive lengthsa >0, b >0

©

o length of fencel( > 0): 2(a+b) =L

L
ob—i—a

©

New objective functiorf (a) = a (5 — a)

©

Rewriterestrictions:a > 0, a < %




Optimization problems

Example: maximizing a rectangular surface
Introduction

Optimality
conditions

r;e%xf(a) =a(5-a)
subject to
a>0

L
a<§
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A firm wishes to maximize the utilities of its portafolio

o Objective: maximize profits
@ Decision variables: amount to invest in each fund

o Constraints

@ nonnegative investments
o budget restrictions

@ minimal or maximal bounds for investments
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@ Decision variablesxy, X, . . . , Xn, Wherex the quantity to et

conditions

invest in the fund
@ Objective: maximize
(L+r)xe+ (1+r12)% + ...+ (14 )X
wherer; is the rentability of the fungl
@ Restrictions
¢ Non-negative investmentg; >0 j=1,2,...,n
o Budget restriction:

Xi+X+...+% <B

o Minimal/maximal bounds for investments

g <X <Dy forj=1,2,...,n
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max (L+ry)x+ (14r2)% + ... 4+ (L +rp)Xq

X1,X2,..-, Xn€ER

subject to
x>0 j=12...,n

X1+X+...+% <B

g <X < by i=12,...,n
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o Objective: To minimize the (squared) error between a lin
and the points

o Decision variablesthe parameters of a line
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Given pOintS conditions

(X1, ¥1); (X2,¥2); - - - ; (X, ¥n)

to find theline of best fithrough these points
o Decision variables (the parameters of a lineJandn,
where the expression of a line in the plane is
y=mx+n
@ Objective To minimize

n

D (mxc+ n = yi)?

k=1
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n
max > (mx +n—yk)?
mneR =1
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Introduction

Optimality

To maximize the benefit from the harvesting of a natural |k
resource

o Objective: maximize present utilities

o Decision variables: harvesting levels (or effort) at each
period

o Constraints

@ nonnegative harvesting
o biology
o relation between harvesting and the amount of the resou

@ environmental constraints
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X(t+ 1) = F(x(t)) — h(t) t=to,to+1,..., T—1
X(to) = Xo given (e.g. the current state of the resource)

where
@ X(t) > 0is the level of the resource at peribd
@ h(t) > O s the harvesting at peridd

o F: R — Ris the biological growth function of the
resource
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The total benefits can be represented by

T-1

B=Y_ o Dux(t), ht))

t=ty
where

@ U(x, h) is the instantaneous profit if we haxend we
harvesth

@ 0 < p < 1lisadescount factor
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T-1
AL LD 3 pERU (L), h(t))

subject to

X(t+1) = F(x(t)) — h(t) t=to,to+1,...,T—1
X(to) = %o

Xt)>0 t=to+Ltg+2...,T

0<h(t) <F(x(t) t=toto+1,....,T—1
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max f (X) conditions

xeX
(Pmax) § subject to

xeC
is equivalent to problem
min —f(x)
(Pmin) { subject to
xeC
In the following sense:

@ Xis solution of(Pnax) if and only if it is solution of(Pmin)

@ The optimal value ofPnay) is the negative of the optimal
value of (Pnin)
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Existence of solutions
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%‘Q f(x)
(P) { subject to
xeC
When(P) has solution?
o lf[abj=CCX=R
o WhenX = R", there exists at least one solutiorGfis
closed and bounded
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(P) { subject to
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Optimality conditions are mathematical expressions: ggus.
or system of equations, system of inequalities, ordinary
differential equations, partial differential equations

Solutions of the mathematical problems obtained from
optimality conditions are related with the solutions of the
optimization problem
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min f(x)

(P) 4 subject to
xeC

The idea ido obtain optimality conditionand thento solve the
associated mathematical problems (analytically or nucagyi)
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@ Suppose that optimality conditions of this problem are
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I;(T;I)r(] f (X) conditions

(P) { subject to
xeC

@ Suppose that optimality conditions of this problem are
represented by a system of equati¢o8s

@ We say tha('S) is a necessary condition if a solution of
(P) is a solution of(S)

@ The idea is to find solutions @B) in order to have a list of
candidates for the solutions @P)

o If (S) is solved only for one point, then it is solution @)
or (P) does not have solution
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I;(T;I)r(] f (X) conditions

(P) { subject to
xeC

@ Suppose that optimality conditions of this problem are
represented by a system of equati¢o8s

@ We say tha('S) is a necessary condition if a solution of
(P) is a solution of(S)

@ The idea is to find solutions @B) in order to have a list of
candidates for the solutions @P)

o If (9) is solved only for one point, then it is solution @)
or (P) does not have solution

@ Warning A solution of (S) may be not a solution aiP)
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wheref : R — R

@ A necessary condition f$(x) = O where

i =ty FED =109
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xeR

wheref : R — R

@ A necessary condition i(x) = 0 where

]

@ That means: Ik is a solution of(P) thenf(x) = 0

o If we know the expression df we can solve the equation
f’(x) = 0 in order to have candidates of solutions
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(P) { min f(x)

xeR

wheref : R — R

@ A necessary condition i(x) = 0 where

]

@ That means: Ik is a solution of(P) thenf(x) = 0

o If we know the expression df we can solve the equation
f’(x) = 0 in order to have candidates of solutions

@ Warning!!!
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min f (x) conditions
(P) Xe
a<x<b

wheref :R — R

@ At a pointx observe that increase in the sense of (the
sign of) f/(x)

@ There are three posibilities
s an interior poina < X < bis a solution. Theff’(x) = 0
e X = ais asolution. Thef’(x) =f'(a) > 0

@ X = bis asolution Thenf’(x) = f/(b) <0
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. Optimali
min f (x) conditions
(P) Xe
a<x<b

wheref :R — R

@ At a pointx observe that increase in the sense of (the
sign of) f/(x)

@ There are three posibilities:

s an interior poina < X < bis a solution. Theff’(x) = 0
e X = ais asolution. Thef’(x) =f'(a) > 0
@ X = bis asolution. Thef’(x) = f/(b) <0

@ Observe thaif f'(a) > 0 andf’(b) < 0, thenthere exists
a< x < bsuchthaf’(x) =0
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A necessary condition of the problem Optimality

conditions

as<x<b

<m{$$“@

Find x, «, (8 such that
f'(X) —a+5=0

X € [a,b]

a, >0

ax—a)=0

B(x—b) =0
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min f(x)
xeX

(P) { subject to
xeC

@ We say thak € C is a global minimum, if it is a solution
of (P)

o We say thak € C is a local minimum, if for everx € C
close enough, one h&g) < f(x)

@ A global optimum is a local optimum
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(P){ min f(x)

o We say tha(§) is a sufficient condition if a solution dfS)
is a solution of(P)

@ The idea is to find solutions d¢f) in order to have
solutions of(P)

@ In the general case, this is very difficult

@ Itis much realistic to have that solutions (@) are local
solutions of(P)

@ A (local) sufficient condition tqP) is f’(x) = 0 and
f(x) > 0
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Sufficient condition
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Optimality
conditions

If we find X € R such that
f'(x) =0
(S )
f7(x) >0
Thenxis a local minimum of the problem

(p){ min f(x)

XeR
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min f(X) imali

xexX (c)opntdmc:r?;
(P) 4 subject to

xeC

o To formulate an optimization problerthe following
concepts must be clear

o Decision variable(s)x € X
@ Objective functionf : X — R

@ RestrictionsC C X




Conclusions

. f( ) Introduction
min 1(Xx _
Optimalit
xex canditions
(P) { subject to

xeC

o To formulate an optimization problem, the following
concepts must be clear:

o Decision variable(s)x € X
@ Objective functionf : X — R
@ RestrictionsC C X

@ A maximization problem is equivalent to a minimization
problem(deal with—f (x) instead off (x))
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Conclusions

Introduction

min f(x) conditons
XeX
(P){ subjectto

xeC

@ Optimality conditions are mathematical systems

@ The idea ido solve these systenirs order to:

@ have candidates of solutions (if the system is a necessar
condition)

o obtain a local solutioliif the system is aufficient
condition)
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Introduction

min f(x Optimality
XeX ( ) conditions
(P) { subject to

xeC

@ Several decision variableg, X2, ..., X,. Thatis
X1
X2
X = , eR"=X
Xn
@ Necessary and sufficient conditions

@ Why the convexity (or concavity) is relevant?
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