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rate or effort, level of investment, distribution of tasks,
parameters)

Objective: to find thebestvalue for the decision variable

We denote byx the decision variable

x can be a number, a vector, a sequence, a function, ..........

In a general framework, we denote byX the set where the
decision variable is (x ∈ X)
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Optimization problems
Restrictions

Constraints that the decision variable has to satisfy

If for a certain value of the decision variable the
restrictions are satisfied, we say that it is a feasible
solution

In a general framework, we denote byC ⊆ X the set of all
feasible solutions

If we have two decision variables,x1 andx2 and they have
to satisfy the following constraints:x1 ≥ 0, x2 ≥ 0,
2 x1 + 3 x2 ≤ 5, we denote

C = {(x1, x2) ∈ R
2 | x1 ≥ 0, x2 ≥ 0, 2 x1 + 3x2 ≤ 5}
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Optimization problems

To find thebestvalue for the decision variable from all feasible
solutions

To find x̄ ∈ C ⊆ X such that

f (x̄) ≤ f (x) (or f (x̄) ≥ f (x)) for all x ∈ C


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











min
x∈X

f (x)

(

or max
x∈X

f (x)

)

subject to

x ∈ C
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With a given fence, to enclose the largest rectangular area

Objective: maximize the rectangular surface

Decision variables: lengths of the rectangular figure

Constraints:

positive lengths

length of the fence
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Optimization problems
Example: maximizing a rectangular surface

Decision variables: a (height) andb (width)

Objective: maximizes(a,b) = a b

Constraints:
positive lengths:a > 0, b > 0

length of fence (L > 0): 2(a+ b) = L

b = L
2 − a

New objective functionf (a) = a
(

L
2 − a

)

Rewrite restrictions:a > 0, a < L
2
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A firm wishes to maximize the utilities of its portafolio

Objective: maximize profits

Decision variables: amount to invest in each fund

Constraints:

nonnegative investments

budget restrictions

minimal or maximal bounds for investments
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Optimization problems
Example: Optimizing a portafolio

Decision variables: x1, x2, . . . , xn, wherexj the quantity to
invest in the fundj

Objective: maximize

(1+ r1)x1 + (1+ r2)x2 + . . .+ (1+ rn)xn

wherer j is the rentability of the fundj

Restrictions:

Non-negative investments:xj ≥ 0 j = 1, 2, . . . , n

Budget restriction:

x1 + x2 + . . .+ xn ≤ B

Minimal/maximal bounds for investments:

aj ≤ xj ≤ bj for j = 1, 2, . . . , n
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to find theline of best fitthrough these points

Decision variables (the parameters of a line): mandn,
where the expression of a line in the plane is

y = mx+ n

Objective: To minimize

n
∑

k=1

(mxk + n− yk)
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To maximize the benefit from the harvesting of a natural
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Objective: maximize present utilities

Decision variables: harvesting levels (or effort) at each
period

Constraints:

nonnegative harvesting

biology

relation between harvesting and the amount of the resource

environmental constraints
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Example: Harvesting of a renewable resource

x(t + 1) = F(x(t)) − h(t) t = t0, t0 + 1, . . . ,T − 1

x(t0) = x0 given (e.g. the current state of the resource)

where

x(t) ≥ 0 is the level of the resource at periodt

h(t) ≥ 0 is the harvesting at periodt

F : R −→ R is the biological growth function of the
resource
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Example: Harvesting of a renewable resource

The total benefits can be represented by

B =
T−1
∑

t=t0

ρ(t−t0)U(x(t),h(t))

where

U(x,h) is the instantaneous profit if we havex and we
harvesth

0 ≤ ρ ≤ 1 is a descount factor
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T−1
∑
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subject to

x(t + 1) = F(x(t)) − h(t) t = t0, t0 + 1, . . . ,T − 1
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−f (x)

subject to

x ∈ C

In the following sense:

x̄ is solution of(Pmax) if and only if it is solution of(Pmin)

The optimal value of(Pmax) is the negative of the optimal
value of(Pmin)
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When(P) has solution?

If [a,b] = C ⊆ X = R

WhenX = R
n, there exists at least one solution ifC is

closed and bounded
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or system of equations, system of inequalities, ordinary
differential equations, partial differential equations

Solutions of the mathematical problems obtained from
optimality conditions are related with the solutions of the
optimization problem



Introduction

Optimality
conditions

Optimality conditions

(P)















min
x∈X

f (x)

subject to

x ∈ C

Optimality conditions are mathematical expressions: equations
or system of equations, system of inequalities, ordinary
differential equations, partial differential equations

Solutions of the mathematical problems obtained from
optimality conditions are related with the solutions of the
optimization problem



Introduction

Optimality
conditions

Optimality conditions

(P)















min
x∈X

f (x)

subject to

x ∈ C

Optimality conditions are mathematical expressions: equations
or system of equations, system of inequalities, ordinary
differential equations, partial differential equations

Solutions of the mathematical problems obtained from
optimality conditions are related with the solutions of the
optimization problem



Introduction

Optimality
conditions

Optimality conditions

(P)















min
x∈X

f (x)

subject to

x ∈ C

The idea is to obtain optimality conditions and then to solvethe
associated mathematical problems (analytically or numerically)



Introduction

Optimality
conditions

Optimality conditions

(P)















min
x∈X

f (x)

subject to

x ∈ C

The idea isto obtain optimality conditionsand thento solve the
associated mathematical problems (analytically or numerically)



Introduction

Optimality
conditions

Optimality conditions
Necessary conditions

(P)















min
x∈X

f (x)

subject to

x ∈ C

Suppose thatoptimality conditionsof this problem are
represented by a system of equations(S)

We say that(S) is a necessary condition if a solution of
(P) is a solution of(S)

The idea is to find solutions of(S) in order to have a list of
candidates for the solutions of(P)

If (S) is solved only for one point, then it is solution of(P)
or (P) does not have solution

Warning: A solution of(S) may be not a solution of(P)
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Necessary condition: unrestricted case

(P)
{

min
x∈R

f (x)

where f : R −→ R

A necessary condition isf ′(x) = 0 where

f ′(x) = lim
t→0

f (x+ t)− f (x)
t

That means: If̄x is a solution of(P) thenf (x̄) = 0

If we know the expression off ′ we can solve the equation
f ′(x) = 0 in order to have candidates of solutions

Warning!!!
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Optimality conditions
Necessary conditions: restrictions

(P)







min
x∈R

f (x)

a ≤ x ≤ b

where f : R −→ R

At a pointx observe thatf increase in the sense of (the
sign of) f ′(x)

There are three posibilities:

an interior pointa < x̄ < b is a solution. Thenf ′(x̄) = 0

x̄ = a is a solution. Thenf ′(x̄) = f ′(a) ≥ 0

x̄ = b is a solution. Thenf ′(x̄) = f ′(b) ≤ 0

Observe that iff ′(a) > 0 andf ′(b) < 0, then there exists
a < x̄ < b such thatf ′(x̄) = 0
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A necessary condition of the problem
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a ≤ x ≤ b
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(S)
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

Find x, α, β such that

f ′(x) − α+ β = 0

x ∈ [a,b]

α, β ≥ 0

α(x− a) = 0

β(x− b) = 0
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Global vs local minimum

(P)















min
x∈X

f (x)

subject to

x ∈ C

We say that̄x ∈ C is a global minimum, if it is a solution
of (P)

We say that̄x ∈ C is a local minimum, if for everyx ∈ C
close enough, one hasf (x̄) ≤ f (x)

A global optimum is a local optimum
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(P)
{

min
x∈R

f (x)

We say that(S) is a sufficient condition if a solution of(S)
is a solution of(P)

The idea is to find solutions of(S) in order to have
solutions of(P)

In the general case, this is very difficult

It is much realistic to have that solutions of(S) are local
solutions of(P)

A (local) sufficient condition to(P) is f ′(x) = 0 and
f ′′(x) > 0
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(S)
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f ′(x̄) = 0
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(P)















min
x∈X

f (x)

subject to

x ∈ C

To formulate an optimization problem,the following
concepts must be clear:

Decision variable(s):x ∈ X

Objective function:f : X −→ R

Restrictions:C ⊂ X

A maximization problem is equivalent to a minimization
problem (deal with−f (x) instead off (x))
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To formulate an optimization problem, the following
concepts must be clear:

Decision variable(s):x ∈ X

Objective function:f : X −→ R

Restrictions:C ⊂ X

A maximization problem is equivalent to a minimization
problem(deal with−f (x) instead off (x))
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Optimality conditions are mathematical systems

The idea is to solve these systems in order to:

have candidates of solutions (if the system is a necessary
condition)

obtain a local solution (if the system is a sufficient
condition)
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Several decision variablesx1, x2, . . . , xn. That is

x =











x1

x2
...

xn











∈ R
n = X

Necessary and sufficient conditions

Why the convexity (or concavity) is relevant?
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