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Book 1 (to read for the topic)

Stephen Wiggins book for Nonlinear Dynamics
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Book 2 (to read for the topic)

Yuri Kuznetsov book for Bifurcations
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Book 3 (to read for the trimester)

J.L. Gambland book (in Spanish) for breaking myths?
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Why do we need mathematical models?

uncontrolled-model prediction (dynamics)
control through some optimality criterion (or not, just control)
controlled-model prediction
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Prey-Predator systems
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Dengue disease (Aedes Aegypti)
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Sustainable development
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Dynamical Systems
Introduction & Bifurcations

Gerard Olivar

ABC Dynamics - PCI

http://www.manizales.unal.edu.co/gta/abcdynamics
http://www.manizales.unal.edu.co/gta/PCI

CeiBA Complejidad

Universidad Nacional de Colombia, Sede Manizales

Mathematics of Bio-Economics at IHP
January 2013

9/52



escudos/unescudos/ceiba

Contents

Today: very basics
Tomorrow: bifurcations
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Introductory motivation
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Introductory motivation

A word about models

How close can we get?
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Introductory motivation

Dynamical systems: ODEs

As far as this first part of the tutorial, we will only consider sytems of
Ordinary Differential Equations (ODEs)

˙X (t) = F (t ,X (t))

where X is the state vector and F is smooth (say differentiable)
NOT F non-smooth (piecewise-smooth)
NOT PDEs
NOT maps (discrete-time systems), since they will be studied in
detail next week
NOT adding stochasticity (stochastic ODEs or PDEs)
NOT dynamics on networks (graphs)

although all these other cases appear quite usually in practice
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Introductory motivation

Dynamical systems: F non-smooth

They usually appear in some control systems where the control is also
non-smooth (bang-bang, for example)

Depending on the non-smoothness degree, they can be classified into
Impact systems (heaviest non-smoothness, like rigid walls)
Filippov systems (sliding systems from control)
Piecewise-continuous systems (vector field is continuous at the
border)
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Introductory motivation

Dynamical systems: PDEs I

Partial differential equations (PDEs)
when spatial dimension matters

15/52



escudos/unescudos/ceiba

Introductory motivation

Dynamical systems: PDEs II

Wave equation (x = x(t , l1(t), l2(t)))

∂2x
∂t2 = c2(

∂2x
∂l12 +

∂2x
∂l22 )

http://en.wikipedia.org/wiki/Wave_equation

Heat equation (x = x(t , l1(t), l2(t)))

∂x
∂t

= b2(
∂2x
∂l12 +

∂2x
∂l22 )

http://en.wikipedia.org/wiki/Heat_equation
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Introductory motivation

Dynamical systems: Maps

The discrete TRAP-TRICK

Maps are discrete-time systems. My view is:

We would be really interested in continuous-time systems but they
are more difficult to study and simulate than discrete-time systems
Also, in practice, is almost impossible to obtain continuous-time
DATA
And, even if we had the DATA, probably we could not process it
adequately

Thus, we are happy enough with a discretization in time of a really
continuous-time system
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Introductory motivation

Dynamical systems: Stochastics and Networks

Adding stochasticity poses a quite difficult problem (at least for me!).
Something will be seen in the last part of this trimester.

On networks, the geometry of the state space becomes important
(usually is no more isotropic nor homogeneous).

Check http://acn2013.dei.polimi.it

(Milano, 20-22 February 2013)
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Introductory motivation

Dynamical systems: ODEs

Thus we will study
˙X (t) = F (t ,X (t))

where
X (t) = (x1(t), x2(t), . . . , xn(t))

is the state vector (for short, we will write X or (x1, x2, . . . , xn)), which
lives in Rn,

Ẋ = (ẋ1, ẋ2, . . . , ẋn)

are the time-derivatives of the state and F (so-called vector field) is
smooth (say C1)
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Introductory motivation

From control systems to dynamical systems

Usually, control theorists use the state-space framework

Ẋ = F (X ,u)
Y = H(X )

(1)

where Y stands for the observable variables and u(Y ) is the control
action.

This is the so-called control problem, since u(Y ) is still not defined.

But if u(Y ) is already defined, then we have

Ẋ = F (X ,u) = F (X ,u(Y )) = F (X ,u(H(x))) = G(x)

and we recover just a dynamical system.
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Introductory motivation

From optimal control systems to dynamical systems

Finally, in this trimester we want to deal with

Dynamics - Constraints - Optimal Control

Thus...
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Introductory motivation

Our framework is...

Dynamical system
Ẋ = F (t ,X ,u)

Constraints
X ∈ A u ∈ B

Control optimization criteria

Max L(t ,X ,u) Min L(t ,X ,u)
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Introductory motivation

Back again to dynamical systems

Once we have
u∗ = u∗(t ,X )

which optimizes L, then solve

Ẋ = F (t ,X ,u∗(t ,X )) = G(t ,X )

which is just a dynamical system again

(taking the constraints into account)
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Basics

Outline for today
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Basics

Systems of ODEs

˙X (t) = F (t ,X (t),p)

where
X (t) = (x1(t), x2(t), . . . , xn(t))

is the state vector (for short, we will write X or (x1, x2, . . . , xn)), which
lives in Rn,

Ẋ = (ẋ1, ẋ2, . . . , ẋn)

are the time-derivatives of the state,

F = (F1(x1, x2, . . . , xn),F2(x1, x2, . . . , xn), . . . ,Fn(x1, x2, . . . , xn))

is the smooth vector field (say C1), and

p = (p1,p2, . . . ,pm) ∈ Rm

is the parameters (parameters are unknown constants) vector.
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Basics

Study cases

It may be that:
F does not depend explicitly on t (autonomous system)
F depends T -periodically on t (periodically-forced system)
F depends non-periodically on t (non-autonomous system)

Also, it may be that
F is linear
F is nonlinear

(comment on linear is to systems as dogs is to animals)
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Basics

Equilibrium points

For the rest of the day, assume that the system is autonomous and
parameters p are fixed to p∗. Thus we have

Ẋ = F (X )

An equilibrium is a state X ∗ such that

F (X ∗) = 0

Moreover, X ∗ is
stable, if all orbits which start with initial conditions in a
neighbourhood Ω close enough to X ∗, remain in a neighbourhood
of X ∗.
assymptotically stable, if it is stable, and all the orbits starting at Ω
tend to X ∗ as time tends to infinity.
unstable, in other case.
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Basics

Linear systems I

Assume we have a linear system

Ẋ = F (X ) = AX + b

If det(A) 6= 0 then the unique equilibrium point is X ∗ = −A−1b
If det(A) = 0 then there is an infinite number of non-isolated
equilibrium points (a linear manifold: a line, a plane,...)
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Basics

Linear systems II

Assume we have a linear system

Ẋ = F (X ) = AX + b

with equilibrium point X ∗ = −A−1b.
If all eigenvalues of A have strictly negative real part then X ∗ is
assymptotically stable
If there is an eigenvalue of A with strictly positive real part then X ∗

is unstable
If there are no eigenvalues of A with strictly positive real part, and
all eigenvalues with zero real part (thus they are non-zero pure
imaginary eigenvalues) have multiplicity one, then X ∗ is stable
(but not assymptotically). In this case, the equilibrium point is
called a center, and it is surrounded by an infinite family of
isochronic periodic orbits.

(other cases are more technical)
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Basics

Different configurations in the linear case

See blackboard
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Basics

Nonlinear systems I

Assume we have a nonlinear system

Ẋ = F (X )

Now, we can have any number of isolated equilibrium points (even
noone). Moreover there are other stationary sets:

Limit cycles (isolated periodic orbits)
Quasiperiodic orbits (if dimension of the state space is at least 3)
Chaotic orbits (if dimension of the state space is at least 3)

which can be stable or unstable.

31/52



escudos/unescudos/ceiba

Basics

Nonlinear systems II

Assume we have a nonlinear system

Ẋ = F (X )

and an isolated equilibrium point X ∗.

We compute the jacobian at the equilibrium point

A = Jac(F (X ∗)) = DF (X ∗)

If all eigenvalues of A have strictly negative real part then X ∗ is
assymptotically stable
If there is an eigenvalue of A with strictly positive real part then X ∗

is unstable
(the case with zero real-part eigenvalues is not solved)
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Basics

Stationary states
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Basics

Transient versus Stationary states

The role of stationary states: take into account that
If the system has a slow time-constant, sometimes the study of
the stationary behavior is nonsense, and what is really important
are the possible transient states (sustainable development,
sludges, bioreactors,...)
If the system has a fast time-constant, although the transient may
be important, the study of the satationary state is worthwhile
(circuits, power electronics, powers systems, ...)
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Nonlinear tools

Outline for today
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Nonlinear tools

Invariant manifolds (linear case)

In the linear case, we can consider
n− = number of strictly negative real-part eigenvalues
n+ = number of strictly positive real-part eigenvalues
n0 = number of zero real-part eigenvalues.

Then we can decompose

Rn = Es ⊕ Eu ⊕ E0

where
Es is the linear stable manifold with dimension n−

Eu is the linear unstable manifold with dimension n+ and,
E0 is the linear neutral manifold with dimension n0.

They are expanded by the corresponding eigenvalues (or generalized
eigenvalues).

Note that, since they are linear, they can only meet at the equilibrium
point X ∗
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Nonlinear tools

Invariant manifolds (nonlinear case)

In the nonlinear case, we can do something similar with the Jacobian
A = DF (X ∗). We also consider

n− = number of strictly negative real-part eigenvalues
n+ = number of strictly positive real-part eigenvalues
n0 = number of zero real-part eigenvalues.

Then we can decompose (at least, locally)

Rn = W s ⊕W u ⊕W 0

where
W s is the stable manifold with dimension n−

W u is the unstable manifold with dimension n+ and,
W 0 is the neutral manifold with dimension n0.
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Nonlinear tools

Invariant manifolds (nonlinear case)

They are expanded locally close to the equilibrium point X ∗ also by the
corresponding eigenvalues (or generalized eigenvalues). This means
that the linear manifolds are tangent to the invariant manifolds at the
equilibrium point.

Note that now, since they are nonlinear surfaces, or curves, a priori,
they may meet at points other than the equilibrium point X ∗.

But note also that the existence and uniqueness theorem for ODEs
avoids this, and then

the invariant manifolds coincide, or
we have another equilibrium point, or in general, another
stationary set
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Nonlinear tools

Homoclinic and heteroclinic orbits

In the first case we have a so-called homoclinic connection and, in the
second case we have an heteroclinic connection.
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Nonlinear tools

Basins of attraction

Also, in the nonlinear case, different attractors have their own basin of
attraction, which includes all initial conditions in the state space whose
orbits in positive time reach the attractor.
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Poincaré maps
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Poincaré maps

Poincaré map I

Poincaré maps are often used for discretizing continuous-time
systems, keeping most of the properties of the original one.

Consider
Ẋ = F (t ,X )

and the flow φt corresponding to the orbits of the system.

Consider (locally) a smooth surface Π of dimension n − 1.

Choose an initial condition X0 on Π, and the orbit through X0. If we
assume that this orbit hits again Π for first time at time t1 at a point
X1 ∈ Π, we can define this point as the image of X0 through a so-called
Poincaré map P,

P : Π→ Π Π(X0) = X1
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Poincaré maps

Poincaré map I

We can do this for a convenient neighbourhood of X0 as this (local)
map is well-defined (some orbits can never go back again to Π)
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Poincaré maps

Poincaré map II

This procedure is specially useful in two situations:
When the system is T -periodically forced
Close to a periodic orbit

44/52



escudos/unescudos/ceiba

Poincaré maps

A T -periodically forced system

In this case, we can rewrite the problem in a cylindrical space Rn × S1,
and choose our Poincaré section as the set {t = 0 = T}. Then the
Poincaré map is globally defined (and it is known as a stroboscopic
map).
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Poincaré maps

Close to a periodic orbit

In this case, if L is the periodic orbit, we choose a (local) Poincaré
section which is normal to L.

If we choose point q∗ as the intersection of the periodic orbit and the
section, we will have that

P(q∗) = q∗

and thus q∗ is a fixed point of map P.
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Poincaré maps

Close to a periodic orbit

Consider now a neighbourhood of q∗ in Π such that this Poincaré map
is well-defined.

Then all stability properties of L (in the continuous-time system) are
equivalent to those of q∗ (as a fixed point of the Poincaré map).
The same applies if we consider a quasiperiodic orbit or a chaotic orbit
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Examples
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Examples

Simple model in Sustainable development

Resource dynamics (forest):

dS
dt

= ρ

(
S
k
− 1

)(
1− S

K

)
S − αβLS

Natural growth
Resource profit

Population dynamics:

dL
dt

= ( γλ (1− β)δ Lδ−1 + φαβS − σ )L

Rents
Poverty threshold
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Examples

Phase portrait

Figure : Equilibrium points and nullclines. P4 is assymptotically stable while P6 is unstable and
P5 is a saddle
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Examples

Basins of attraction

Figure : Basins
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Examples

End of slides for today...

More examples on the blackboard
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