[Evaluation of](#page-58-0) Management Procedures

Héctor Ramírez Evaluation of Management Procedures Application to Chilean Jack Mackerel Fishery

Vincent Martinet¹ Julio Peña² Héctor Ramírez C.³ Michel de Lara⁴

Economie Publique, UMR INRA - AgroParisTech, France Universidad Alberto Hurtado, Santiago de Chile DIM & CMM, Universidad de Chile, Santiago de Chile Université Paris-Est, CERMICS, France

XXIX Congreso Ciencias del Mar 25 al 28 de Mayo 2009 -INPESCA, Concepción, Chile

Outline

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

2 [The Model](#page-16-0)

3 [Viability Approach](#page-27-0)

4 [Evaluation of Management Procedures](#page-41-0)

K ロ K K 個 K K ミ K K ミ K ショーク Q Q Q

[Conclusions](#page-53-0)

Outline

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[Introduction](#page-2-0)

1 [Introduction](#page-2-0)

[The Model](#page-16-0)

[Viability Approach](#page-27-0)

[Evaluation of Management Procedures](#page-41-0)

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 《 경 》

 2990

[Conclusions](#page-53-0)

- [Evaluation of](#page-0-0) Management Procedures Héctor Ramírez
- [Introduction](#page-2-0)
-
-
-
- [Conclusions](#page-53-0)

Chilean Jack Mackerel (Jurel) fishery is the bigger one in Chile in terms of catches as well as in economical terms

• This pelagic fish is affected by climatic factors that generate uncertainties in its stock dynamic model (El Niño)

イロト (例) (通) (通) (通) 三重

- [Evaluation of](#page-0-0) Management Procedures Héctor Ramírez
- [Introduction](#page-2-0)
-
-
-
- [Conclusions](#page-53-0)

Chilean Jack Mackerel (Jurel) fishery is the bigger one in Chile in terms of catches as well as in economical terms

This pelagic fish is affected by climatic factors that generate uncertainties in its stock dynamic model (El Niño)

- [Evaluation of](#page-0-0) Management Procedures Héctor Ramírez
- [Introduction](#page-2-0)
-
-
-
- [Conclusions](#page-53-0)
- These uncertainties are an obstacle for the implementation of sustainable exploitation strategies
- Until now, this has been done via yearly Total Allowable
- TAC can be considered as a management procedures (MP)

イロト (例) (通) (通) (通) 三重

- [Evaluation of](#page-0-0) Management Procedures Héctor Ramírez
- [Introduction](#page-2-0)
-
-
-
- [Conclusions](#page-53-0)
- These uncertainties are an obstacle for the implementation of sustainable exploitation strategies
- Until now, this has been done via yearly Total Allowable Catches (TACs) and their assignation by using non-transferable individuals quotas

• TAC can be considered as a management procedures (MP)

- [Evaluation of](#page-0-0) Management Procedures Héctor Ramírez
- [Introduction](#page-2-0)
-
-
-
- [Conclusions](#page-53-0)
- These uncertainties are an obstacle for the implementation of sustainable exploitation strategies
- Until now, this has been done via yearly Total Allowable Catches (TACs) and their assignation by using non-transferable individuals quotas
- TAC can be considered as a management procedures (MP)

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[Introduction](#page-2-0)

[Conclusions](#page-53-0)

- A Management Procedure (MP) is defined in Butterworth et al. 1997 as a set of rules, which translates data from a fishery into a regulatory mechanism, such as total allowable catches (TAC) or maximum fishing effort
- According to Oliveira and Butterworth 2004, such MPs have the International Whaling Commission in the late 1980s

- [Evaluation of](#page-0-0) Management Procedures Héctor Ramírez
- [Introduction](#page-2-0)
-
-
-
- [Conclusions](#page-53-0)
- A Management Procedure (MP) is defined in Butterworth et al. 1997 as a set of rules, which translates data from a fishery into a regulatory mechanism, such as total allowable catches (TAC) or maximum fishing effort
- According to Oliveira and Butterworth 2004, such MPs have been developed (though not always implemented) for a number of disparate fisheries since their development within the International Whaling Commission in the late 1980s

K ロ K イロ K イミ K イミ K ニョー りんぐ

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[Introduction](#page-2-0)

[Conclusions](#page-53-0)

- Ideally, before defining the MP to be applied, one should compare different potential MPs and rank them with respect to their ability to keep the fishery sustainable in an uncertain environment
- The so-called Management Strategy Evaluation (MSE) alternative MPs

K ロ K イロ K イミ K イミ K ニョー りんぐ

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[Introduction](#page-2-0)

[Conclusions](#page-53-0)

- Ideally, before defining the MP to be applied, one should compare different potential MPs and rank them with respect to their ability to keep the fishery sustainable in an uncertain environment
- The so-called Management Strategy Evaluation (MSE) denotes a class of procedures based on simulation to compare alternative MPs

Management Strategy Evaluation (MSE)

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[Introduction](#page-2-0)

As detailed in Sainsbury et al. 2000, the MSE approach consists of two main steps:

¹ defining an operational set of management objectives,

Management Strategy Evaluation (MSE)

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[Introduction](#page-2-0)

As detailed in Sainsbury et al. 2000, the MSE approach consists of two main steps:

- ¹ defining an operational set of management objectives,
- ² and evaluating using simulations the performance of various alternative management strategies with respect to the specied objectives, taking into account uncertainty in the modeled processes

MPs and MSE

The MPs are not always comparable!!

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X | 9 Q Q Q

MPs and MSE

The MPs are not always comparable!!

K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X | 9 Q Q Q

Outline

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[The Model](#page-16-0)

[Introduction](#page-2-0)

2 [The Model](#page-16-0)

[Viability Approach](#page-27-0)

[Evaluation of Management Procedures](#page-41-0)

イロトメ部 トメをトメをトッを…

 2990

[Conclusions](#page-53-0)

The Model An age class dynamical model

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[The Model](#page-16-0)

We consider an age structured abundance population model (Quinn & Deriso 1999) for the Chilean Jack Mackerel fishery with

- \bullet *A* = 11 age classes
- An horizon time of $T = 10$ years
- We perform our analysis for the initial year $t_0 = 2002$

The Model An age class dynamical model

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[The Model](#page-16-0)

We consider an age structured abundance population model (Quinn & Deriso 1999) for the Chilean Jack Mackerel fishery with

- $A = 11$ age classes
- An horizon time of $T = 10$ years
- We perform our analysis for the initial year $t_0 = 2002$

KORKARKKERK EL VAN

The Model The stock-recruitment relationship

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[The Model](#page-16-0)

The recruits are supposed to be a Ricker function of the spawning stock biomass at time $t - 1$ (*SSB*($t - 1$)):

$$
N_1(t+1) = \alpha \mathbf{S} \mathbf{B}(t-1) \exp(\beta \mathbf{S} \mathbf{S} \mathbf{B}(t-1))
$$

The Model The stock-recruitment relationship

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[The Model](#page-16-0)

The recruits are supposed to be a Ricker function of the spawning stock biomass at time $t - 1$ (*SSB*($t - 1$)):

$$
N_1(t+1) = \alpha \mathbf{S} \mathbf{B}(t-1) \exp(\beta \mathbf{S} \mathbf{B}(t-1) - 0.12 \text{ni}\tilde{\mathbf{n}}\mathbf{o}(t) + \epsilon(t))
$$

$$
w(t): \text{random part}
$$

The Model The stock-recruitment relationship

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[The Model](#page-16-0)

The recruits are supposed to be a Ricker function of the spawning stock biomass at time $t - 1$ (*SSB*($t - 1$)):

$$
N_1(t+1) = \alpha \mathbf{S} \mathbf{B}(t-1) \exp(\beta \mathbf{S} \mathbf{S} \mathbf{B}(t-1) - 0.12 \text{ni}\tilde{\mathbf{n}}\mathbf{o}(t) + \epsilon(t))
$$

$$
w(t): \text{random part}
$$

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ . 할 | K 9 Q @

the random variable $w(t)$ reflects the uncertainties in the recruitment (*El Niño*)

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[The Model](#page-16-0)

The stock-recruitment relationship is given by¹:

 $N_1(t + 1) = \alpha S\mathfrak{B}(t - 1) \exp(\beta S\mathfrak{B}(t - 1) - 0.12\text{ni}\mathfrak{B}(t) + \epsilon(t))$

where the uncertainties are defined as follows:

 \bullet $\epsilon(t) \sim \mathcal{N}(0; 0.18)$

 \bullet niño(*t*) is a dummy (0 or 1) random variable reflecting the

¹M. Yepes 2008 (Thesis supervised by J. Peñ[a\)](#page-21-0) **DEA** A REA A REA REA REA \odot

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[The Model](#page-16-0)

The stock-recruitment relationship is given by¹:

 $N_1(t + 1) = \alpha S\mathfrak{B}(t - 1) \exp(\beta S\mathfrak{B}(t - 1) - 0.12\text{ni}\mathfrak{B}(t) + \epsilon(t))$

where the uncertainties are defined as follows:

 \bullet $\epsilon(t) \sim \mathcal{N}(0; 0.18)$

 \bullet niño(*t*) is a dummy (0 or 1) random variable reflecting the

 $\min_1(\tau) = \begin{cases} 1, & \text{if } \text{promsdf} > 0.5 \\ 0, & \text{otherwise} \end{cases}$

promsdf = $-1.2 \sin(18.19 + 2\pi(t - 1959)/3.17)$

¹M. Yepes 2008 (Thesis supervised by J. Peñ[a\)](#page-22-0) $\Box \rightarrow \Box \Box \rightarrow \Box \Box \rightarrow \Box \Box \rightarrow \Box \Box$

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[The Model](#page-16-0)

The stock-recruitment relationship is given by¹:

$$
N_1(t+1) = \alpha \mathbf{S} \mathbf{B}(t-1) \exp(\beta \mathbf{S} \mathbf{B}(t-1) - 0.12 \text{ni} \mathbf{\tilde{n}} \mathbf{o}(t) + \epsilon(t))
$$

where the uncertainties are defined as follows:

- \bullet $\epsilon(t) \sim \mathcal{N}(0; 0.18)$
- \bullet niño(*t*) is a dummy (0 or 1) random variable reflecting the presence of *El Niño* phenomena. It is defined by:

 $\min_1(\tau) = \begin{cases} 1, & \text{if } \text{promsdf} > 0.5 \\ 0, & \text{otherwise} \end{cases}$

promsdf = $-1.2 \sin(18.19 + 2\pi(t - 1959)/3.17)$

¹M. Yepes 2008 (Thesis supervised by J. Peñ[a\)](#page-23-0) **DEA** A REA A REA REA REA \odot

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[The Model](#page-16-0)

[Conclusions](#page-53-0)

The stock-recruitment relationship is given by¹:

$$
N_1(t+1) = \alpha \mathbf{S} \mathbf{B}(t-1) \exp(\beta \mathbf{S} \mathbf{B}(t-1) - 0.12 \text{ni} \mathbf{\tilde{n}} \mathbf{o}(t) + \epsilon(t))
$$

where the uncertainties are defined as follows:

- \bullet $\epsilon(t) \sim \mathcal{N}(0; 0.18)$
- \bullet niño(*t*) is a dummy (0 or 1) random variable reflecting the presence of *El Niño* phenomena. It is defined by:

$$
\text{niño}(t) = \begin{cases} 1, & \text{if } \text{promsdf} > 0.5 \\ 0, & \text{otherwise} \end{cases}
$$

where

$$
promsdf = -1.2\sin(18.19 + 2\pi(t - 1959)/3.17)
$$

¹M. Yepes 2008 (Thesis supervised by J. Peñ[a\)](#page-24-0) $\Box \rightarrow \Box \Box \rightarrow \Box \Box \rightarrow \Box \Box \rightarrow \Box \Box$

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 《 경 》 2990

Outline

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

Viability [Approach](#page-27-0)

[Introduction](#page-2-0)

[The Model](#page-16-0)

3 [Viability Approach](#page-27-0)

[Evaluation of Management Procedures](#page-41-0)

イロトメ部 トメをトメをトッを…

 2990

[Conclusions](#page-53-0)

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

Viability [Approach](#page-27-0)

Our model can be described in the following discrete time dynamic framework:

$$
\begin{cases}\nN(t+1) = g(N(t), \lambda(t), w(t)), & t = t_0, \ldots, T \\
N(t_0) & \text{given,}\n\end{cases}
$$

- state variable $N(t)$ (abundances)
- control $\lambda(t)$ (fishing effort)
- \bullet uncertainty $w(t)$ (recruitment uncertainties)

Scenarios are perturbations of the dynamics (in this case of the stock-recruitement relation) due to climate factors (*El Niño*)

イロト (例) (通) (通) (通) 三重

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[The Model](#page-16-0)

Viability [Approach](#page-27-0)

Our model can be described in the following discrete time dynamic framework:

$$
\begin{cases}\nN(t+1) = g(N(t), \lambda(t), w(t)), & t = t_0, \ldots, T \\
N(t_0) & \text{given,}\n\end{cases}
$$

where

- \bullet state variable $N(t)$ (abundances)
- control $\lambda(t)$ (fishing effort)
- \bullet uncertainty $w(t)$ (recruitment uncertainties)

The notation for a scenario being $w(\cdot) := (w(t_0), ..., w(T))$

Scenarios are perturbations of the dynamics (in this case of the stock-recruitement relation) due to climate factors (*El Niño*)

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[The Model](#page-16-0)

Viability [Approach](#page-27-0)

Our model can be described in the following discrete time dynamic framework:

$$
\begin{cases}\nN(t+1) = g(N(t), \lambda(t), w(t)), & t = t_0, \ldots, T \\
N(t_0) & \text{given,}\n\end{cases}
$$

where

- state variable $N(t)$ (abundances)
- **•** control $\lambda(t)$ (fishing effort)
- \bullet uncertainty $w(t)$ (recruitment uncertainties)

The notation for a scenario being $w(\cdot) := (w(t_0), ..., w(T))$

Scenarios are perturbations of the dynamics (in this case of the stock-recruitement relation) due to climate factors (*El Niño*)

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[The Model](#page-16-0)

Viability [Approach](#page-27-0)

Our model can be described in the following discrete time dynamic framework:

$$
\begin{cases}\nN(t+1) = g(N(t), \lambda(t), w(t)), & t = t_0, \ldots, T \\
N(t_0) & \text{given,} \n\end{cases}
$$

where

- state variable $N(t)$ (abundances)
- control $\lambda(t)$ (fishing effort)
- \bullet uncertainty $w(t)$ (recruitment uncertainties)

The notation for a scenario being $w(\cdot) := (w(t_0), ..., w(T))$

Scenarios are perturbations of the dynamics (in this case of the stock-recruitement relation) due to climate factors (*El Niño*)

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

Viability [Approach](#page-27-0)

Consider constraints to be satisfied at every time $t = t_0, \ldots, T$.

-
-

²It could be defined more general as function[s o](#page-31-0)f [un](#page-33-0)[c](#page-31-0)[e](#page-40-0)[rt](#page-36-0)[ai](#page-37-0)[n](#page-26-0)[ti](#page-27-0)e[s](#page-41-0) $w(\equiv)$ $w(\equiv)$ $w(\equiv)$ $w(\equiv)$ $2Q$

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

Viability [Approach](#page-27-0)

[Conclusions](#page-53-0)

Consider constraints to be satisfied at every time $t = t_0, \ldots, T$.

They are given by indicators² $I_k = I_k(N, \lambda)$ and thresholds or reference points *ik*.

• Biological: $\mathbf{S}\mathbf{B}(t) \geq \text{percentage } \cdot \mathbf{S}\mathbf{B}_{\text{viro}}$ where

- $\mathcal{S}S_{\text{vir}}$ = 6.44 millions tons. is the virginal spawning stock
- percentage is typically 0.2, 0.3 or 0.4

²It could be defined more general as function[s o](#page-32-0)f [un](#page-34-0)[c](#page-31-0)[e](#page-40-0)[rt](#page-36-0)[ai](#page-37-0)[n](#page-26-0)[ti](#page-27-0)e[s](#page-41-0) $w(\equiv)$ $w(\equiv)$ $w(\equiv)$ $w(\equiv)$ \equiv ΩQ

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

Viability [Approach](#page-27-0)

Consider constraints to be satisfied at every time $t = t_0, \ldots, T$.

They are given by indicators² $I_k = I_k(N, \lambda)$ and thresholds or reference points *ik*.

So, we impose $I_k(N(t), \lambda(t)) \geq i_k$ for all $t = t_0, \ldots, T$

- Biological: $\mathbf{S}\mathbf{B}(t) \geq \text{percentage } \cdot \mathbf{S}\mathbf{B}_{\text{viro}}$ where
	- $\text{SSE}_{\text{virg}} = 6.44$ millions tons. is the virginal spawning stock
	- percentage is typically 0.2, 0.3 or 0.4

• Economical: $Y(N(t), \lambda(t)) > y_{\text{min}}$ where

• *Y* is the catches in term of biomass

²It could be defined more general as function[s o](#page-33-0)f [un](#page-35-0)[c](#page-31-0)[e](#page-40-0)[rt](#page-36-0)[ai](#page-37-0)[n](#page-26-0)[ti](#page-27-0)e[s](#page-41-0) $w(\equiv)$ $w(\equiv)$ $w(\equiv)$ $w(\equiv)$

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

Viability [Approach](#page-27-0)

Consider constraints to be satisfied at every time $t = t_0, \ldots, T$.

They are given by indicators² $I_k = I_k(N, \lambda)$ and thresholds or reference points *ik*.

So, we impose $I_k(N(t), \lambda(t)) \geq i_k$ for all $t = t_0, \ldots, T$

In this talk we focus on two conflicting issues:

- Biological: $\mathcal{S}\mathcal{B}(t) \geq$ percentage $\cdot \mathcal{S}\mathcal{B}_{\text{virp}}$ where
	- $\mathcal{S} \mathcal{S}$ _{Virg} = 6.44 millions tons. is the virginal spawning stock biomass
	- percentage is typically 0.2, 0.3 or 0.4

• Economical: $Y(N(t), \lambda(t)) \ge y_{\text{min}}$ where

• *Y* is the catches in term of biomass

²It could be defined more general as function[s o](#page-34-0)f [un](#page-36-0)[c](#page-31-0)[e](#page-40-0)[rt](#page-36-0)[ai](#page-37-0)[n](#page-26-0)[ti](#page-27-0)e[s](#page-41-0) $w(\equiv)$ $w(\equiv)$ $w(\equiv)$ $w(\equiv)$

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

Viability [Approach](#page-27-0)

Consider constraints to be satisfied at every time $t = t_0, \ldots, T$.

They are given by indicators² $I_k = I_k(N, \lambda)$ and thresholds or reference points *ik*.

So, we impose $I_k(N(t), \lambda(t)) \geq i_k$ for all $t = t_0, \ldots, T$

In this talk we focus on two conflicting issues:

- Biological: $\mathcal{S}\mathcal{B}(t) \geq$ percentage $\cdot \mathcal{S}\mathcal{B}_{\text{virp}}$ where
	- $\mathcal{S}B_{\text{virg}} = 6.44$ millions tons. is the virginal spawning stock biomass
	- percentage is typically 0.2, 0.3 or 0.4
- Economical: $Y(N(t), \lambda(t)) > y_{\text{min}}$ where
	- *Y* is the catches in term of biomass

²It could be defined more general as function[s o](#page-35-0)f [un](#page-37-0)[c](#page-31-0)[e](#page-40-0)[rt](#page-36-0)[ai](#page-37-0)[n](#page-26-0)[ti](#page-27-0)e[s](#page-41-0) $w(\equiv)$ $w(\equiv)$ $w(\equiv)$ $w(\equiv)$

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

Viability [Approach](#page-27-0)

We use the probability on the set of all possible scenarios as a common currency.

$$
\mathbf{P}\left(\begin{array}{c}N(t_0) = N_0\\N(t+1) = g(N(t), \lambda(t), w(t))\\w(\cdot): \lambda(t) = \lambda^*(t, N(t))\\I_k(N(t), \lambda(t)) \geq i_k\\ \text{for all } k = 1, 2 \text{ and } t = t_0, \dots, T\end{array}\right)
$$

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

Viability [Approach](#page-27-0)

[Conclusions](#page-53-0)

We use the probability on the set of all possible scenarios as a common currency.

This viability probability depends on the initial time t_0 , the initial state N_0 and a given control λ^* (exploitation policy, for instance TAC or fixed constant fishing effort), and is defined by:

> *IP* $w(\cdot)$: $\lambda(t) = \lambda^*(t, N(t))$
 $I_k(N(t), \lambda(t)) \geq i_k$ $N(t + 1) = g(N(t), \lambda(t), w(t))$ $\left\{ \right. \left\{ \text{for all } k = 1, 2 \text{ and } t = t_0, \ldots, T \right\}$ \cdot

We use this probability to compare different exploitation strategies

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

Viability [Approach](#page-27-0)

[Conclusions](#page-53-0)

We use the probability on the set of all possible scenarios as a common currency.

This viability probability depends on the initial time t_0 , the initial state N_0 and a given control λ^* (exploitation policy, for instance TAC or fixed constant fishing effort), and is defined by:

$$
\boldsymbol{P}\left(\begin{array}{c}N(t_0) = N_0\\N(t+1) = g(N(t), \lambda(t), w(t))\\w(\cdot) : \lambda(t) = \lambda^*(t, N(t))\\I_k(N(t), \lambda(t)) \geq i_k\\ \text{for all } k = 1, 2 \text{ and } t = t_0, \ldots, T\end{array}\right)
$$

We use this probability to compare different exploitation strategies

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

Viability [Approach](#page-27-0)

[Conclusions](#page-53-0)

We use the probability on the set of all possible scenarios as a common currency.

This viability probability depends on the initial time t_0 , the initial state N_0 and a given control λ^* (exploitation policy, for instance TAC or fixed constant fishing effort), and is defined by:

$$
\boldsymbol{P}\left(\begin{array}{c}N(t_0) = N_0\\N(t+1) = g(N(t), \lambda(t), w(t))\\w(\cdot) : \lambda(t) = \lambda^*(t, N(t))\\I_k(N(t), \lambda(t)) \geq i_k\\ \text{for all } k = 1, 2 \text{ and } t = t_0, \ldots, T\end{array}\right)
$$

We use this probability to compare different exploitation strategies

4 0 > 4 4 + 4 = + 4 = + = + + 0 4 0

Outline

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[Evaluation of](#page-41-0) Management Procedures

[Conclusions](#page-53-0)

[Introduction](#page-2-0)

[The Model](#page-16-0)

[Viability Approach](#page-27-0)

4 [Evaluation of Management Procedures](#page-41-0)

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 《 경 》

 2990

[Conclusions](#page-53-0)

MPs Evaluation Classical approach: MSE

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[Evaluation of](#page-41-0) Management Procedures

[Conclusions](#page-53-0)

As detailed in Sainsbury et al. (2000), the MSE approach consists of two main steps:

- ¹ defining an operational set of management objectives,
- ² and evaluating using simulations the performance of various alternative management strategies with respect to the specied objectives, taking into account uncertainty in the modeled processes

KORKARKKERK EL VAN

MPs Evaluation Classical approach: MSE

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[Evaluation of](#page-41-0) Management Procedures

[Conclusions](#page-53-0)

MSE example (M. Yepes 2008):

K ロ ▶ K 伊 ▶ K ヨ ▶ K ヨ ▶ È 299

MPs Evaluation Viability approach

When percentage $= 0.2$ and $y_{\text{min}} = 1.2$ millions tons. we have:

 $P(\lambda(t) = 0.2) = 0.155$

MPs Evaluation Visual comparison of two given strategies

 $P(\lambda(t) = 0.2) = 0.155 \le 0.438 = P(\lambda(t) = 0.23)$

So, for these reference points, exploitation strategy $\lambda(t) = 0.23$ should be preferable to $\lambda(t) = 0.2$ イロトメタトメ 君 トメ 君 トー 君 2990

MPs Evaluation Visual comparison of two given strategies

If percentage $= 0.2$ and $y_{\text{min}} = 1.2$ millions tons. we have:

 $P(\lambda(t) = 0.2) = 0.155 \le 0.438 = P(\lambda(t) = 0.23)$

So, for these reference points, exploitation strategy $\lambda(t) = 0.23$ should be preferable to $\lambda(t) = 0.2$ K ロ ▶ K @ ▶ K 할 X X 할 X | 할 X | 9 Q Q Q

MPs Evaluation: TAC and Constant Fishing Effort Best constant fishing effort strategy

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[Evaluation of](#page-41-0) Management Procedures

[Conclusions](#page-53-0)

For the range of reference points, percentage and y_{min} , we compute the highest viability property we can obtain via a constant fishing effort strategy:

MPs Evaluation: TAC and Constant Fishing Effort Best constant fishing effort strategy

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[Evaluation of](#page-41-0) Management Procedures

[Conclusions](#page-53-0)

For the range of reference points percentage and y_{min} we compute the larger constant fishing effort value (associated with the probability of the previous slide):

 Ω

MPs Evaluation: TAC and Constant Fishing Effort Best TAC strategy

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[Evaluation of](#page-41-0) Management Procedures

[Conclusions](#page-53-0)

For the range of reference points, percentage and *y*_{min}, we compute the highest viability property we can obtain via a TAC strategy:

MPs Evaluation: TAC and Constant Fishing Effort Best TAC strategy

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[Evaluation of](#page-41-0) Management Procedures

[Conclusions](#page-53-0)

For the range of reference points percentage and y_{min} we compute the larger TAC value (associated with the probability of the previous slide):

MPs Evaluation: TAC vs Constant Fishing Effort

Note that TAC type strategy is always more efficient than a co[n](#page-50-0)stant fishing effort type strategy w[he](#page-52-0)n the [p](#page-50-0)[r](#page-51-0)[o](#page-52-0)[b](#page-41-0)[a](#page-40-0)b[i](#page-52-0)[li](#page-53-0)[t](#page-40-0)[y](#page-41-0) ≥ 0.9 ≥ 0.9 ≥ 0.9 2990

MPs Evaluation: TAC vs Constant Fishing Effort

Note that TAC type strategy is always more efficient than a co[n](#page-51-0)stant fishing effort type strategy w[he](#page-53-0)n the [p](#page-50-0)[r](#page-51-0)[o](#page-52-0)[b](#page-41-0)[a](#page-40-0)b[i](#page-52-0)[li](#page-53-0)[t](#page-40-0)[y](#page-41-0) ≥ 0.9 ≥ 0.9 ≥ 0.9

 $2Q$

Outline

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

[Conclusions](#page-53-0)

[Introduction](#page-2-0)

[The Model](#page-16-0)

[Viability Approach](#page-27-0)

[Evaluation of Management Procedures](#page-41-0)

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 《 경 》

 2990

[Conclusions](#page-53-0)

Tool Scheme: MSE

Tool Scheme: Viability Approach

イロトメ 御 トメ 君 トメ 君 トー 君 2990

Conclusions

- [Evaluation of](#page-0-0) Management Procedures Héctor Ramírez
-
-
-
-
- [Conclusions](#page-53-0)
- We consider an age structured abundance population model where the uncertainties only appears in the stock-recruitement relationship
- These uncertainties reflects the impact of *El Niño* phenomena
- We apply a new methodology which establishes a common currency (the viability probability) for the study of MPs
- This methodology provides a flexible tool for the comparison of fishery exploitation strategies

Bibliography

[Evaluation of](#page-0-0) Management Procedures Héctor Ramírez

M. De Lara & L. Doyen

Sustainable Management of Natural Resources Springer-Verlag (2008)

[Conclusions](#page-53-0)

M. De Lara & V. Martinet

Multi-criteria dynamic decision under uncertainty: a stochastic viability analysis and an application to sustainable fishery management. Math. Biosci. 217 (2009), no. 2, 118–124

舙

V. Martinet, J. Peña, H. Ramírez & M. De Lara *Risk and Sustainability: Assessing Resource Management Procedures* Working paper

M. Yepes, J. Peña, P. Barría & A. Gomez-Lobos *Pesquería del Jurel en Chile: Reclutamiento, El Niño y efectos sobre la captura*

Working paper (UAH Master thesis)

Thanks!!

[Evaluation of](#page-0-0) Management **Procedures** Héctor Ramírez

[Conclusions](#page-53-0)

