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Chapter 1

Introduction
(Michel De Lara)

In this section, we describe the PGMO/IROE umbrella project OGRE: Optimization, Games and
Renewable Energy.

1.1 Context
The transformation of energy systems is accelerating. The last COP 21 in Paris, the new French
law on energy transition are institutional drivers of such change. On the other hand, local initiatives
are blossoming, with the drop in renewable energy costs and the impulse of decentralized actors
(individuals, collectivities).

Managing an energy system with myriads of decentralized sources (wind, sun) and actors (indi-
viduals, collectivities) is becoming more and more challenging. Equating supply and demand at all
scales is especially delicate with a large share of intermittent and highly variable renewable energies.
”Smart grids”, ”demand response”, ”flexibility”, ”storage” are presented as potential solutions, but
the question remains: how?

For a large actor as EDF, the question is also to better identify how to play in this transformed
field.

1.2 The contributions from PGMO projects
The PGMO has launched several projects which, directly or indirectly, touch the subject of the role
of optimization in the new energy landscape:

• STOCHDEC, Décomposition/Coordination en commande optimale stochastique (PGMO/IROE
project, leader Pierre Carpentier, EDF correspondent Anes Dallagi).

• SMARTDEC, Décomposition/Coordination pour les smart-grids (PGMO/IROE project, leader
Pierre Carpentier, EDF correspondent Anes Dallagi). The initial goal of this three-years (thesis)
project was to apply decomposition methods to smart grids. It has been reorganized at the
beginning of 2016 in a post-doc dealing with the centralized-decentralized approach in the
forthcoming energy management system.

• LASON, Latin America Stochastic Optimization Network, to build a network on stochastic
optimization for energy, with Chilean and French researchers (PGMO/PRMO, leaders Bernardo
Pagnoncelli and Michel De Lara).

2



• LASON2, on Centralized versus Decentralized Energy Management in a Stochastic Setting,
following LASON (PGMO/IROE, leaders Bernardo Pagnoncelli and Michel De Lara).

• STORY, scientific network on Stochastic and Robust Optimization and Applications, with US
and French researchers (PGMO/PRMO, leaders Laurent El Ghaoui and Michel De Lara).

• LORI, Logiciels pour l’Optimisation des Réseaux Intelligents (PGMO/IROE, leader Michel De
Lara).

• PALON, Stochastics and optimization for markets with renewable energy (PALON) PGMO/PRMO,
leaders Teemu Pennanen and Jean-Philippe Chancelier, one year.

Through these projects, there now exists a critical mass of researchers that have learned to work
together on energy systems management:

• Pierre Carpentier, ENSTA ParisTech, UMA, France

• Rodrigo Carrasco, University Adolfo Ibanez, Chile

• Jean Philippe Chancelier, Ecole des Ponts, CERMICS, France

• Michel De Lara, Ecole des Ponts, CERMICS, France

• Laurent El Ghaoui, UC Berkeley, USA

• Tito Homem-de-Mello, University Adolfo Ibanez, Chile

• Hélène Le Cadre, ENSTA ParisTech, UMA, France

• Vincent Leclère, Ecole des Ponts, CERMICS, France

• Bernardo Pagnoncelli, University Adolfo Ibanez, Chile

• Teemu Pennanen, King’s college London, UK

Together with EDF researchers:

• Olivier Beaude, EDF R&D OSIRIS, France

• Sandrine Charousset, EDF R&D OSIRIS, France

• Anes Dallagi, EDF, UK

• Arnaud Lenoir, EDF R&D OSIRIS, France

• Nadia Oudjane, EDF R&D OSIRIS, France

• Riadh Zorgati, EDF R&D OSIRIS, France
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1.3 Our proposal of a PGMO/IROE umbrella project OGRE
It is now time to digest all the material produced by different PGMO projects. We propose OGRE:
Optimization, Games and Renewable Energy, as an umbrella project that aims at covering the above
projects, gathering the expertise produced and restitute it in an integrated way.

The OGRE report is made of five chapters.

• Chapter 2 presents how EDF perceives the new playground of energy systems, with its different
actors; it underlines some new management problems that EDF faces.

• Chapter 3 provides concepts that are useful to enlighten the mathematical structure of the new
management problems: agents, information, criteria; then, it delineates corresponding classes
of optimization and of game problems. Daniel Kadnikov’s PhD thesis at Cermics (supervision
by Michel De Lara) has built upon this framework, and developed it.

• Chapter 4 chapter treats mechanism design within the above formalism.

• Chapter 5 is made of a series of case studies.
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Chapter 2

Challenges for the New Energy Systems
(Riadh Zorgati)
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2.1 The French electricity system: from the former fully-integrated
context to a decentralized vision

To introduce the current need for identifying the challenges in decentralized management of the elec-
trical system, let us start with a brief description of the former context, when it was no question of this
approach. By doing so, the major determinants of the activity of a stakeholder of the energy system,
responsible for generation / distribution and supply, will be also introduced.

2.1.1 The fundamentals of energy management
Managed in a centralized or a decentralized manner, the operation of the electrical system is subject
to a few fundamental aspects. This paragraph will present these key points within the context of
a fully integrated management when generation, distribution and supply are controlled by a unique
stakeholder (e.g., EDF in France before 2002).

Supply-demand balance: a physical and economic necessity

The first mission of such a unique (centralized) operator is to ensure the supply-demand balance. By
using both physical and financial means (supply), this operator must provide the electricity needed
by its customers (demand) at each time instant. In addition with the service provided to the end
electricity users, this balance must be preserved for many reasons related to the electrical network
operations. Both quantities must be balanced at each instant due to the current difficulty of storing
energy at reasonable cost. This must be anticipated at different time scales from the long-term, when
planning the evolution of power generation capacities, to the short-term, when adjusting in real-time
the generation planning of the different units and also eventually using different financial electricity
contracts to adjust the balance in real-time.

On the demand-side, an inherent aspect is the capability of forecasting electricity consumption
at different time horizons, and different geographic scales. In turn, various studies about energy
management use stochastic models and tools to fit with this fundamental point: even at a global scale
and a few minutes before real-time, the demand forecast is not perfect. A wide variety of methods
have been proposed to address this problem Bunn (2000); Taylor and McSharry (2007); Hippert et al.
(2001); a good introduction and comparative analysis of these existing methods can be found in
Feinberg and Genethliou (2005). Identifying the main drivers of this demand is part of this research.
In this direction, both physical and societal aspects must be taken into account. Concerning physical
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aspects, the most significant is the thermosensibility of demand. Taking France as an extreme example
due to the extensive use of electric heating, a decrease of one degree during the winter induces an
increase of 2400MW de Transport d’Électricité (2016). Other very intuitive physical factors impact
the demand profile: natural lighting, wind, rain, etc. Concerning societal aspects, the economic
situation is the more relevant but other very specific events have a significant impact on the demand
(e.g, an electoral event or the world cup final, which significantly impact television audience).

On the supply-side, physical and financial means need to be distinguished. Consider first the
physical production means. The physical supply is the electricity that can be generated by the units
available at a given time. This supply mainly consists of thermal plants (nuclear, fossil fuel, coal,
gas turbines), hydraulic power units, and renewable electricity units (mainly photovoltaic, wind ener-
gies). As mentioned later, the later units are becoming increasingly important in the electrical system.
Each power unit is characterized by static and dynamic constraints (minimal running time, predefinite
interval and levels of production, etc.), a cost structure, as well as a few constraints related to the inter-
action with its local ecosystem. In conjunction with the physical supply, financial means are available
for the operator responsible for the supply-demand balance. Tariff options allow to indirectly control
a part of the demand in order to get a better temporal distribution of the total load. For example, a
producer/provider can contract with (at this time, generally major) customers on “shedding mecha-
nisms”. In these contracts, it is specified that high tariffs can be used on a few time-slots, in return for
a reduced tariff during the usual time-slots. With such a tariff, customers have a strong incentive to
consume during the usual time-slots. A producer can also exchange a quantity of electricity with other
producers at a predefinite price for a given period (”over-the-counter”). Eventually, the electricity or
fuel markets may be used to adjust the supply.

The weather and the market: conditioning fluctuations

Ensuring the supply-demand balance is not an easy task. One of the main reasons for that is the
stochastic nature of the main determinants of both supply and demand. As a first determinant, the
weather directly - and significantly - impacts both supply and demand. It conditions the need for
heating, but also water-flows, and primary energy resources of renewable units. A huge amount of
research work is dedicated to make the link between weather forecast methods and the variables of the
electrical system which strongly rely on it. In particular, the prediction of renewable energy genera-
tion is a key topic Ernst et al. (2007); Soman et al. (2010). Furthermore, these studies have to be now
conducted at different temporal and geographical scales. While at a global scale the forecast errors
roughly cancel out, the ones at a local scale can be dramatic1. This contributes to the strategic reflec-
tion about the choice between a decentralized or centralized management. The outage of production
plants is another crucial stochastic aspect. Even if correlated with the weather, the dependency be-
tween both should be further analyzed to get a proper forecast on the availibility of the different units.
In addition with these physical uncertainties, the energy market fluctuations must also be taken into
account. Many studies model the formation of energy market prices Chen et al. (2010); Gonzalez
et al. (2005), introducing a stochastic component.

Protection of the environment: in the air

The balance of supply and demand must be ensured while taking into account a certain number of
rules to protect the environment and to combat climate change. These rules are often based on Euro-
pean Union directives. For the electricity producers, it mainly consists in limiting (or reducing) the
greenhouse gas emissions, adapting to the rapid development of renewable energies, and evaluating,

1In other words, while we face a variability issue at a global scale, this is an intermittency one at a local scale Burtin
and Silva (2015).
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on the demand-side, the modifications induced by the changed building regulation (High Environment
Quality labels). In particular, the massive integration or renewable energies strengthen the need for a
comprehensive reflection about the technical and economical feasibility - at a local and a global scale
- of connecting these sources to the existing largely interconnected system. A very recent EDF con-
tribution considered the possibility for the European electricity system to integrate 60% of renewable
energy sources Burtin and Silva (2015).

Energy management in this context

Energy management consists in making decisions to optimally manage both physical and financial
assets, while providing the services contracted with the customers and respecting current legislative
and commercial constraints. More precisely, two coherent and complementary strategies must be
defined: on the one hand, the (physical) planning of the production units; on the other hand, the
positions on the electricity market and the management of gas assets. These strategic choices are done
in order to minimize the total cost, which contains both a physical and a financial component. With
the later financial part, the risk must also be taken into account. Furthermore, energy management
decisions have to be taken at different horizons, from long-term investment choices, to very short-term
operation planning for the production units.

2.1.2 The progressive separation of activities in the electricity system: a new
context is emerging

With the construction of the European electricity markets, opening-up to competition, generation,
transmission and distribution activities have been - functionnaly then legally - separated in France.
This leads to the creation of both a Transmission Network Operator (TNO) Réseau de Transport
d’Électricité (RTE), and a Distribution Network Operator (DNO), Électricité Réseau Distribution
France (ERDF). These new players are respectively responsible of providing an equal access - in
an objective and transparent manner - to the transmission and distribution networks. This allows
all the new power system players to access to the services provided by the electrical network. This
naturally leads to a decentralized framework, by distinguishing different players - producers, TNO,
DNO, suppliers - with different objectives, information available, and possible actions. It induces a
need for coordination, information exchange between the different entities involved. Designing good
rules for this new “game” will condition the performance of the different services, whose management
is now shared between various players. The legislator will have a key role in this context; he directly
contributes to the design of electricity markets, and the definition of the rules for the new services
proposed to the customers.

Let us now present the main ingredients of this new decentralized vision of energy management
in the electricity system.

2.2 The new decentralized vision: main ingredients

2.2.1 The multiplicity of stakeholders in the electricity system
As mentioned above in §2.1.2, new players recently entered the electricity system. The objective
and management of production, network management and electricity supply are now clearly distin-
guished. But there is more than these traditional stakeholders; with the sociological and economic
trend of reducing or at least better understanding and controlling the electricity usages, many new
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players enter this system in the so-called smart grids, or smart cities. This comes with the progressive
implication of the society into the question of environmental protection.

This stimulates everyone’s involvement in this field, starting from the motivation to get informed
about his own consumption. Reference Faruqui et al. (2010) indicates that the residential electricity
consumption could be decreased by 7-14% only by sending a signal to the households when they
are consuming a significant amount of power, or when the network is congested (or it is very costly
to produce electricity). More than being informed, big electricity customers are already thinking of
making their consumption profile flexible according to individual metrics (electricity bill), or even
taking into account (local) constraints of the electricity system (energy losses, asset aging). As a first
step in this research direction, Mathieu et al. (2011) proposes a tool for building energy managers
in order to better understand their electricity consumption profile and implement Demand Response.
Reference Rao et al. (2012) studies how Internet service providers with distributed data centers could
optimally schedule their electricity consumption across time and space in order to reduce their elec-
tricity bill, while ensuring their core service. Specific electricity contracts are already dedicated to
these big consumers, as explained in §2.1.1.

The new paradigm of Smart Grid proposes to enlarge the pool of flexible customers to all house-
holds Du and Lu (2011). By optimally scheduling its own load profile, each household can meet the
objective of minimum electricity payment or maximum comfort Mohsenian-Rad et al. (2010). This
modifies the traditional relation between electricity suppliers and their customers, leading naturally to
a competitive framework, as presented hereafter. City operators are also envisioned to be part of this
evolution by optimizing their electricity consumption profiles. Smart lighting Karlicek (2012), smart
scheduling of electric bus charging profiles Rı́os et al. (2014), coordination of the charging decisions
of a public system of shared vehicles or a taxi fleet Akhavan-Hejazi et al. (2014) are a few examples
of this attempt. By making their consumption flexible, all these new players will directly impact the
aggregate electricity demand profile. Thus, all these new decision-makers should be integrated in the
decentralized vision of the electricity system.

The multiplicity of stakeholders in the electricity system comes with the development of new
generation means, which also naturally lead to a decentralized vision.

2.2.2 The new physical generation means: rapid growth of renewable energies
We will not provide many details in this section, whose topic has been already mentioned in §2.1.1. A
good introduction can be found in Burtin and Silva (2015). We only remind here the main characteris-
tics of renewable energies generation. First, its variable cost and polluting emission is (approximately)
zero, which makes it particularly appealing in the current evolution. However, because it is still dif-
ficult to forecast Ernst et al. (2007), it leads to an intermittency problems at a local scale. There is
a clear need for local management of this production, in coordination with the electricity network
Thomson and Infield (2007); Siano et al. (2010). In most cases, local production is thought to be
used locally to promote self-production and self-consumption Novel-Cattin et al. (2015). Note that,
even if a societal conviction also pushes forward to this local management, the service provided is not
completly local, in the sense that the support of the interconnected network is needed in the event of
a punctual need.

In conjunction with these new physical supply means, the concept of virtual power plant Ruiz
et al. (2009) is now emerging. It defines a system integrating several types of physical or virtual
power sources, so as to give a reliable overall power supply. For example, it can consist of the
aggregation of many renewable energy units in order to mitigate the significant intermittency issue
faced by a unique unit. Forming a coalition Baeyens et al. (2013), renewable producers can exploit
the reduced aggregate power output intermittency to submit less risky offers to an electricity market.
A virtual power plant can also integrate flexible electricity users, e.g. with shedding mechanisms.
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2.2.3 New electricity consumptions and equipments
Many new electricity appliances also lead to rethink the standard centralized vision of the electric-
ity system. As mobile electricity consumption units, electric vehicles are a typical example of these
new consumptions. Here, the problem consists in designing good electric vehicle charging policies,
if possible in interaction with the constraints observed on the electricity system. When capable of
reinjecting electricity to the grid (vehicle-to-grid), electric vehicles can also be considered as a local
production unit. Affordable residential storage units2 could help the development of local consump-
tion units, without necessarily being connected to the global electricity network.

2.2.4 New information technologies and capabilities
The envisioned smart grids of the future Ipakchi and Albuyeh (2009) also include a variety of local
measures on the electricity network and on the consumption units. By using smart meters3, a detailed
analysis of the residential consumption profiles will be possible as well as sending incentive prices to
these customers. In particular, this allows designing local energy management strategies to coordinate
the consumption decisions of a set of electricity users Mohsenian-Rad et al. (2010). These newly
available measures can be coupled with the fast-growing potential of learning methods (for example,
deep learning), applied on large sets of data (big data). In turn, this new component seems particularly
appealing in the context of electricity networks.

2.2.5 A new social perception of the electricity system
To conclude the description of the decentralized paradigm emerging in the electricity system, let us re-
mark that this comes with a new societal perception of the electricity system. By strongly supporting
the development of renewable energies, and deeply questioning the model of a fully centralized and
integrated management in the electricity system, the political power naturally proposes to adopt a de-
centralized vision. By locally managing a small production/consumption units, this may also give the
impression to local actors to escape from complex global mechanisms, related to the interconnected
network or electricity markets.

Note, however, that this tendency brings up a certain number of difficult issues. First, this tendency
could seem contradictory with regards to some fundamental principles still upheld by the political
power to guide the definition of a future electricity system. Currently, geographically distinguishing
residential electricity tariffs comes not into question; tariff equalisation is still valid. This is contra-
dictory with the strong development of local production units and the objective of locally consuming
the power generated. Currently, it seems natural that the electricity network plays its insurance role;
when usually stand-alone consumption units need electricity from the grid, they pay for it as would
do each other standard customer. However, the electricity system was not conceived with this opera-
tional vision in mind, and neither were the current economic signals sent to the consumption units. In
the decentralized context, two first relevant questions arises:

• with the current electricity network structure, what kind of signals should be sent to the local
electricity consumption units to properly guide their electricity network use?

• what would be the new structure of the electricity distribution (and transmission) network if it
was based on a local philosophy?

2The Tesla powerwall, https://www.teslamotors.com/powerwall, recently received a great attention.
3In France, the installation of Linky is ongoing; by 2021, 35 millions of these smart meters should have been replaced

according to ERDF.
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Figure 2.1: Overview of the centralized/decentralized general problem.

These questions are two first examples of very concrete analysis that may be conducted to think
energy management in a decentralized vision. The next section proposes a schematic description of a
few main questions arising in this context for a stakeholder like EDF.

2.3 Decentralized vision: a variety of problems
To conclude this part, Figure 2.1 illustrates the variety of problems in the electricity system that
could be tackled in a decentralized context. Among the many suggested and directly related to the
ingredients introduced in Sec. 2.2, let us introduce two particular problems.

The first is related to the joint optimization of production and demand. It is relevant for an elec-
tricity producer for which a set of flexible electricity consumers is available. Then, if this producer
can directly manage demand flexibility (e.g., by shedding mechanisms as described previously), the
framework obtained is the one a virtual power plant. With this innovative vision, production and
demand decisions are jointly taken in order to minimize the production cost and the inconvenience of
the consumer (which strongly depends on the type of appliances that take part of the flexibility mech-
anism). Observe that this problem can be formulated in a bilevel setting, where one problem (the one
of the electricity customer) is embedded into another one (the one the producer). This structure is
typical of many studies in a decentralized framework, with an operator of the network / production /
markets at the upper-level and customers at the lower-level.

The second problem models the competitive interaction between different providers to share the
market of residential electricity customers. Because the activity of electricity supply has been open
to competition, this is the situation we currently face in France. Again, this can be interpreted in a
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model with two levels:

• at the upper-level, electricity suppliers propose electricity tariffs to the residential customers.
Their choices result from an optimization problem, which essentially consists in maximizing
their profit ;

• at the lower-level, residential customers choose the best electricity provider for them. This
choice also results from an optimization problem in which the tariffs proposed by the suppliers
is an input. Hence, the customers react to the decisions taken by the suppliers.

This model can be reinterpreted in many situations emerging in the electricity system, for example if
an operator of the distribution network sends a signal to incite customers not to significantly increase
energy losses and equipment aging. This model is studied in the case of electric vehicles as the
flexible electricity consumption in Beaude et al. (2016).
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Chapter 3

A Formal Presentation of
Centralized/Decentralized Problems
(Michel De Lara, Hélène Le Cadre, Benjamin
Heymann)
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3.1 One agent, one criterion (optimization)
• Optimization set U containing optimization variables u ∈ U

• A criterion J : U→ R ∪ {+∞}

• Constraints of the form u ∈ Uad ⊂ U

inf
u∈Uad

J(u)

3.1.1 Deterministic optimization

3.1.2 Deterministic multi-stage optimization
• A set {t0, t0 + 1, . . . , T} ⊂ N of discrete times t

• Control sets Ut containing control variable ut ∈ Ut, for t = t0, t0 + 1, . . . , T

• A criterion J :
∏T

t=t0
Ut → R ∪ {+∞}

• Constraints of the form u = (ut0 , . . . , uT ) ∈ Uad ⊂
∏T

t=t0
Ut

inf
(ut0 ,...,uT )∈Uad

J(ut0 , . . . , uT )

3.1.3 One-stage optimization under uncertainty
What makes optimization under uncertainty specific

• Optimization set is made of random variables

• Criterion generally derives from a mathematical expectation,
or from a risk measure
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• Constraints

– generally include measurability constraints,
like the nonanticipativity constraints,

– and may also include probability constraints, or robust constraints

Here are the ingredients for a general abstract optimization problem under uncertainty

• A set U

• A set Ω of scenarios

• An optimization set V ⊂ UΩ containing random variables V : Ω→ U

• A criterion J : V→ R ∪ {+∞}

• Constraints of the form V ∈ Vad ⊂ V

inf
V∈Vad

J(V)

Here is the most common framework for robust and stochastic optimization

• A set U

• A set Ω of scenarios, or states of Nature,
possibly equipped with a σ-algebra

• An optimization set V ⊂ UΩ containing random variables V : Ω→ U

• A risk measure F : V→ R ∪ {+∞}

• A function j : U× Ω→ R ∪ {+∞} (say, the “deterministic” criterion)

• Constraints of the form V ∈ Vad ⊂ V

inf
V∈Vad

J(V) = F
[
j(V(·), ·)

]
where the notation means that the risk measure F
has for argument the random variable

j(V(·), ·) : Ω→ R ∪ {+∞} , ω 7→ j(V(ω), ω)

Examples of classes of robust and stochastic optimization problems

• Stochastic optimization “à la” gradient stochastique

– The risk measure F is a mathematical expectation E
– Measurability constraints make that random variables V ∈ Vad are constant, that is, are

deterministic decision variables

inf
u∈Uad

EP
[
j(u, ·)

]
15



• Robust optimization

– The risk measure F is the fear operator/worst case supω∈Ω,
where Ω ⊂ Ω

– Measurability constraints make that random variables V ∈ Vad

are constant, that is, are deterministic decision variables

inf
u∈Uad

sup
ω∈Ω

j(u, ·)

Examples

• A set U

• A set Ω of scenarios
Ω finite, Ω = N×WN for discrete time stochastic processes

• An optimization set V ⊂ UΩ containing random variables V : Ω→ U

• A risk measure F : V→ R ∪ {+∞}
most often a mathematical expectation E,
but can be supω∈Ω in the robust case, with Ω ⊂ Ω

• A function j : U× Ω→ R ∪ {+∞}

• Constraints of the form V ∈ Vad ⊂ V

– Measurability constraints

– Pointwise constraints,
like probability constraints and robust constraints

Most common constraints in robust and stochastic optimization problems

• Measurability constraints
V ∈ linear subspace of UΩ

• Pointwise constraints, with Uad : Ω ⇒ U

– probability constraints
P
(
V ∈ Uad

)
≥ 1− ε

– robust constraints
V(ω) ∈ Uad(ω) , ∀ω ∈ Ω ⊂ Ω

Savage’s minimal regret criterion... “Had I known” The regret performs an additive normaliza-
tion of the function j : U× Ω→ R ∪ {+∞}

For u ∈ U and ω ∈ Ω, the regret is

r(u, ω) = j(u, ω)−min
u′∈U

j(u′, ω)

Then, take any risk measure F and solve

min
V∈Vad

F
[
r(V, ·)

]
= min

V∈Vad
F
[
j(V(ω), ω)−min

u∈U
j(u, ω)

]
so that one can have minimal worse regret, minimal expected regret, etc.
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3.2 One agent, multiple criteria (multi criteria optimization)
Here are the ingredients for a multi criteria optimization problem

• A set U

• A finite set A of players or stakeholders

• A collection of criteria Ja : U→ R ∪ {+∞}, for a ∈ A

In multi criteria optimization, stakeholders a ∈ A bargain over a common decision u ∈ U

In a multi criteria optimization problem,
a solution is a Pareto optimum A decision u[ ∈ U is dominated by a decision u] ∈ U if

• all stake holders prefer u] to u[, that is,

Ja(u
]) ≥ Ja(u

[) , ∀a ∈ A

• at least one stake holder strictly prefers u] to u[, that is,

∃a ∈ A , Ja(u
]) > Ja(u

[)

A decision is a Pareto optimum if it is not dominated
by any other decision

3.3 An abstract model to highlight the role of information
Energy systems, which were controlled by a central agent, are becoming more and more decentralized
with a multiplicity of local agents acting selfishly and having only partial access to the data and then
to the information contained in these data.

Decentralized systems can take various forms: hierarchical, team based, coalition based, etc. In
this section, we present a formal typology of such systems based on the Witsenhausen’s intrinsic
model Witsenhausen (1971, 1975a) which enables an abstract representation of the information avail-
able to each agent and of its relative influence on the other agents’ decisions. We will also discuss the
terminology to characterize decentralized systems.

We choose to restrict the presentation of this abstract information model to the most salient points
that will be useful for the study of decentralized energy systems. A more detailed description can be
found in Carpentier et al. (2015).

In § 3.3.1, we expose the so-called Witsenhausen’s intrinsic model, with its high level of generality
on how information is taken into account, and we examine the notions of solvability and of causality
in § 3.3.2. In § 3.3.3, we provide a unified framework to define and study three binary relations
between agents: i) precedence, ii) subsystem, and iii) information-memory relations. Equipped with
these three binary relations between agents, we provide a synthetic overview of system typology in
§ 3.3.4, among which we distinguish the sequential and the partially nested ones.
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3.3.1 Witsenhausen’s intrinsic model
In this subsection, we focus on information representation and do consider neither costs nor con-
straints.

The Witsenhausen’s intrinsic model Witsenhausen (1971, 1975a) consists of a finite set of agents,
of a collection of decision sets, with a corresponding collection of σ-fields, and of a single sample
set (universe) equipped with a σ-field, and representing uncertainties, or states of Nature. This model
does not suppose any temporal ordering of decisions.

The extensive space of decisions and states of Nature

Let Ω be a measurable set, equipped with σ-field F, which represents all uncertainties: any ω ∈ Ω is
called a state of Nature.

The history space is the product space

H = UA × Ω =
∏
b∈A

Ub × Ω , (3.1)

equipped with the product history field

H = UA ⊗ F =
⊗
b∈A

Ub ⊗ F . (3.2)

Example 1. To illustrate the above concepts in the framework of energy systems, we consider an
energy provider, called a. Its decision ua ∈ Ua coincides with the unit price at which it supplies energy
to its consumers and production level. It is therefore a vector. In case of a power plant, the energy
provider dynamically optimizes its power production following a production schedule determined in
day ahead; in case of a renewable producer, the energy provider dynamically optimizes the speed
of its wind turbines depending on meteorological conditions. The state of Nature ω ∈ Ω contains
the meteorological conditions (whether the sun shines, the wind blows, etc.). It also captures the
stochasticity associated with the consumer demand. Stochasticity might be caused by bias introduced
in the day-ahead forecasts of the consumer demand (we will make this assumption in the rest of this
chapter) or by privacy.

We consider now a more general problem involving card(A) agents. The history h ∈ H associated
with this problem contains the product of the past decisions of all the energy providers

∏
a∈A ua i.e.,

the past prices and production levels and the state of Nature ω ∈ Ω.

For every subset C ⊂ A of agents, we introduce the subfield

UC =
⊗
b∈C

Ub ⊗
⊗
b6∈C

{∅,Ub} ⊗ F ⊂ UA , (3.3)

and the subfield

DC = UC ⊗ {∅,Ω} =
⊗
b∈C

Ub ⊗
⊗
b 6∈C

{∅,Ub} ⊗ {∅,Ω} ⊂ UA ⊗ F =⊂ H (3.4)

which contains the information provided by the decisions of the agents in C.
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Information fields

The information field of agent a ∈ A is a σ-field:

Ia ⊂ H . (3.5)

This representation means that the information of agent a may depend on the states of Nature and on
all agents’ decisions (including itself in case of self-information, as we will define below).

Example 2. We replace this formal representation in the framework of the energy provider a already
introduced in Example 1. Its information Ia depends on its prices and production level (in case of
self-information), on the other providers’ prices and production levels and on the state of Nature,
capturing meteorological conditions and demand forecast error.

Definition 3. A stochastic system is a collection consisting of a finite set A of agents, states of Nature
(Ω,F), decision sets, fields and information fields: {Ua,Ua, Ia}a∈A.

Example 4. To illustrate the use of information fields, we consider two energy providers a and b:

• The condition Ib ⊂ Ia formally expresses that what provider b knows is known by provider a.

• The condition Db ⊂ Ia formally expresses that what does provider b is observed by provider a.
In other words, provider a observes the price and the quantity of power produced by b.

We define a partition field, or a π-field, as a collection of subsets of the universe Ω which is stable
under arbitrary union and intersection (countable or not). Partition fields may be adequate to represent
information Carpentier et al. (2015).

Consider P and P ′ two partition fields on Ω. The greatest lower bound of the partition fields P
and P ′ is P ∨ P ′ = P ∩ P ′, made of subsets of Ω which belong both to P and P ′. The least upper
bound of the partition fields P and P ′ is P ∧ P ′ = π

(
P ∪ P ′

)
the partition field generated by the

subsets of Ω which belongs either to P or to P ′.

The set of σ-fields on Ω is a lattice, with the operators ∨ and ∧ defined as for the partition fields
Carpentier et al. (2015).

We define the information IC ⊂ H of the subset C ⊂ A of agents by:

IC =
∨
b∈C

Ib . (3.6)

With the above notations, we can express the property that the information of an agent cannot
depend on its own decision.

Definition 5. The absence of self-information is the property that:

Ia ⊂ UA\{a} ⊗ F , (3.7)

for all agent a ∈ A.

This means that the information of agent a may depend on the states of Nature and on all the other
agents’ decisions but not on its own decision. In other words, in case of absence of self-information,
agent a’s decision has no impact on its information.

Another difficult aspect of dynamic information patterns is that future information may be affected
by past decisions. Such situations are called situations with dual effect, a terminology that tries to
convey the idea that present decisions have two, very conflicting effects: directly contributing to
optimizing the cost function on the one hand, modifying the informational constraints to which future
decisions are subject, on the other hand Carpentier et al. (2015).
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Pure and randomized strategies

A pure strategy for agent a is a measurable mapping

γa : (H,H)→ (Ua,Ua) (3.8)

from histories to decisions.
By extension, a randomized (also called mixed) strategy for any agent a is a probability distribu-

tion over Ua. Formally, it is a measurable mapping:

γa : (H,H)→ (∆(Ua),F∆(Ua)) . (3.9)

where ∆(Ua) denotes the set of all possible probability distributions over Ua for agent a and F∆(Ua)

is the σ-field associated with ∆(Ua).

Example 6. To illustrate the notion of randomized strategy, we consider an agent a which needs to
take a decision in Ua based on its observations and following a randomized strategy γa. In case where
Ua is a discrete finite set, this means that agent a associates with each element in Ua a probability
in [0; 1] (the sum of the probabilities of all the elements in Ua sums up to 1). In case where Ua is a
continuous set, this means that agent a defines a continuous probability distribution over Ua. Then,
agent a makes its choice by sampling an action in Ua according to the probability distribution that it
has defined on Ua.

To emphasize the distinction from randomized strategies, the strategies in Ua are called pure
strategies. A randomized strategy profile is any vector that specifies one randomized strategy for each
agent; so the set of all randomized strategy profiles is

∏
a∈A ∆(Ua).

Definition 7. An admissible pure strategy, for agent a is a mapping γa : (H,H)→ (Ua,Ua) which is
measurable w.r.t. the information field Ia of agent a:

γ−1
a (Ua) ⊂ Ia . (3.10)

Condition (3.10) expresses the property that the admissible strategy of agent a may only depend
upon the information Ia available to it.

We denote the set of admissible pure strategies of agent a by:

Γada =
{
γa : (H,H)→ (Ua,Ua)

∣∣ γ−1
a (Ua) ⊂ Ia

}
(3.11)

and the set of admissible strategies of all agents is:

ΓadA =
∏
a∈A

Γada . (3.12)

Identically, to characterize the set of admissible randomized strategies of agent a, we introduce
the set

Γ̃ada =
{
γa : (H,H)→ (∆(Ua),F∆(Ua))

∣∣ γ−1
a (F∆(Ua)) ⊂ Ia

}
. (3.13)

3.3.2 Solvability and causality
In the Witsenhausen’s intrinsic model Witsenhausen (1971, 1975a), agents make decisions in an order
which is not fixed in advance. Briefly speaking, solvability is the property that, for each state of
Nature, the agents’ decisions are uniquely determined by their strategies. In a causal system, agents
are ordered, one playing after the other with available information depending only on agents acting
earlier, but the order may depend upon the history.

20



Solvability

Consider a collection γ = {γa}a∈A ∈ ΓadA of admissible policies. By (3.11) and (3.12), the policy
γa : UA × Ω→ Ua of agent a is measurable w.r.t. the information field Ia.

Thus, agent a makes a decision according to the information it has on the state of Nature ω and
on all the decisions {ub}b∈A.

The problem is to find, for any ω ∈ Ω, solutions u ∈ UA (depending upon ω) satisfying the
implicit equations

u = γ(u, ω) , (3.14)

or, equivalently,
ua = γa({ub}b∈A , ω) , ∀a ∈ A . (3.15)

Existence and uniqueness of the solutions of (3.14) is related to information patterns. For in-
stance, consider an information structure with two agents a and b, and displaying the absence of
self-information. Assuming that Ua and Ub contain singletons, by (3.10), policies have the form:
γa(u, ω) = γ̃a(ub, ω) and γb(u, ω) = γ̃b(ua, ω). Equation (3.14) is now ua = γ̃a(ub, ω) and ub =
γ̃b(ua, ω), which may display zero solutions, one solution (solvability) or multiple solutions (undeter-
minacy).

Definition 8. The solvability property holds true when, for any collection γ ∈ ΓadA of admissible
pure strategies, and any state of Nature ω ∈ Ω, there exists one, and only one, decision u ∈ UA

satisfying (3.14). Denoting Mγ(ω) this unique u ∈ UA, we obtain a mapping: Mγ : Ω → UA.
The solvability/measurability property holds true when, in addition, the mapping Mγ : Ω → UA is
measurable from (Ω,F) to (UA,UA).

Definition 9. Suppose that the solvability property holds true. Thanks to the mapping Mγ , we define
the solution map Sγ : Ω→ H by

Sγ(ω) =
(
Mγ(ω), ω

)
, ∀ω ∈ Ω , (3.16)

that is,
(u, ω) = Sγ(ω) ⇐⇒ u = γ(u, ω) , ∀(u, ω) ∈ UA × Ω . (3.17)

We include ω in the image of Sγ(ω) to map the universe Ω towards the history space H and to
interpret Sγ(ω) as a state trajectory. Indeed, the mapping Sγ yields all the history generated by the
state of Nature ω and by the admissible policy γ.

Causality

In a causal system, agents are ordered, one playing after the other with available information depend-
ing only on agents acting earlier, but the order may depend upon the history.

Let O denote the set of total orderings of agents in A, that is, injective mappings from {1, . . . , n}
to A, where n = card(A). For k ∈ {1, . . . , n}, let Ok denote the set of k-orderings, that is, injective
mappings from {1, . . . , k} to A (thus O = On). There is a natural mapping ψk from O to Ok, the
restriction of any ordering of A to the domain set {1, . . . , k}.

Define a history-ordering as a mapping ϕ : H→ O from histories towards orderings: along each
history h ∈ H, the agents are ordered by ϕ(h) ∈ O. With any history-ordering ϕ, any k ∈ {1, . . . , n}
and k-ordering ρk ∈ Ok, we associate the set Hϕ

k,ρk
which contains all the histories that would induce

the same order for the agents having a rank smaller or equal to k:

Hϕ
k,ρk

= {h ∈ H | ψk(ϕ(h)) = ρk} . (3.18)
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Definition 10. Witsenhausen (1971) A system is causal if there exists (at least one) history-ordering
ϕ from H towards O, with the property that for any k ∈ {1, . . . , n} and ρk ∈ Ok:

Hϕ
k,ρk
∩G ∈ U{ρk(1),...,ρk(k−1)} ⊗ F , ∀G ∈ Iρk(k) . (3.19)

In other words, when the first k agents are known and given by (ρk(1), . . . , ρk(k)), the infor-
mation Iρk(k) of the agent ρk(k) with rank k depends at most on the decisions of agents ρk(1), . . . ,
ρk(k − 1) with rank stricly less than k.

Proposition 11. Witsenhausen (1971) Causality implies (recursive) solvability with a measurable
solution map.

3.3.3 Binary relations between agents
We provide a unified framework to define and study three binary relations between agents Ho and
Chu (1972, 1974); Witsenhausen (1975a).

The precedence relation P

The precedence binary relation identifies the agents whose decisions influence the observations of a
given agent (cf. point 2 of Example 4).

For a given agent a, let us consider the set Pa ⊂ 2A of subsets C ⊂ A such that Ia ⊂ UC ⊗ F.
Any C ∈ Pa contains agents whose decisions may affect the information Ia available to agent a1.

The set Pa is stable under intersection. This motivates the following definition.

Definition 12. Carpentier et al. (2015) Let 〈a〉P ⊂ A be the intersection of subsets C ⊂ A such that
Ia ⊂ UC ⊗ F. We define a precedence binary relation P on A by:

bP a ⇐⇒ b ∈ 〈a〉P , (3.20)

and we say that b is a predecessor of a.

In other words, the decisions of any predecessor of an agent affect the information of this agent:
any agent is influenced by its predecessors (when they exist, because 〈a〉P might be empty).

By construction, the subset of agents 〈a〉P is the smallest subset C ⊂ A such that Ia ⊂ UC ⊗ F.
In other words, 〈a〉P is characterized by:

Ia ⊂ U〈a〉P ⊗ F and
(
Ia ⊂ UC ⊗ F ⇒ 〈a〉P ⊂ C

)
(3.21)

Whenever 〈a〉P 6= ∅, there is a potential for signaling, that is for information transmission. Indeed,
any agent b in 〈a〉P influences the information Ia upon which agent a bases its decisions. Therefore,
whenever agent b is a predecessor of agent a, the former can, by means of its decisions, send a signal
to the latter. In case 〈a〉P = ∅, the decisions of agent a depend, at most, on the state of Nature, and
there is no room for signaling.

We introduce the following definitions:

Definition 13. For any C ⊂ A, we introduce the following subsets of agents:

〈C〉P =
⋃
b∈C

〈b〉P , 〈C〉0P = C and 〈C〉n+1
P =

〈
〈C〉nP

〉
P
, ∀n ∈ N (3.22)

When C is a singleton {a}, we denote 〈a〉nP for 〈{a}〉nP.

1We note that A ∈ Pa because Ia ⊂ UA ⊗ F.
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The converse of the precedence relation P is the successor relation P−1, characterized by

bP−1 a ⇐⇒ aP b (3.23)

Quite naturally, b is a successor of a iff a is a predecessor of b.

The subsystem relation S

It is called subsystem relation in the Witsenhausen’s formalism Witsenhausen (1975a). We prefer
the terminology subsystem which makes the link with the concept in use in network economics and
social network literature Massoulié et al. (2015). In the network economics literature, the problem
of subsystem detection is generally replaced in the context of a graph whose nodes coincides with
one agent. Following Kaufmann et al. Kaufmann et al. (2015), the commonly accepted definition of
a subsystem is that ”nodes tend to be more densely connected within a subsystem than with the rest
of the graph”. In our approach, we forget the graph structure and interpret the relations between the
agents using binary relations which determine how information is passed on them.

Definition 14. Witsenhausen (1975b) A nonempty subset C of agents in A is a subsystem if the
information field IC defined in (3.6) at most depends on the decisions of the agents in C:

IC ⊂ UC ⊗ F

Thus, the information received by agents in C depends upon states of Nature and decisions of
members of C only.

bS a means that agent b belongs to the subsystem generated by agent a or, equivalently, that the
subsystem generated by agent a contains that generated by agent b. Indeed, by the properties of a
topological closure, we have that:

bS a ⇐⇒ {b} ⊂ {a} , ∀(a, b) ∈ A2 (3.24)

Notice also that a subset C ⊂ A is a subsystem if, and only if, it coincides with the generated
subsystem:

C is a subsystem ⇐⇒ C = C (3.25)

Proposition 15. Witsenhausen (1975b) The subsystem relation S is a pre-order, namely it is reflexive
and transitive.

The following Proposition 16 describes connections between the subsystem relation S and the
precedence binary relation P.

Proposition 16. Carpentier et al. (2015) Let C be a subset of the set A of agents, and a be an agent
in A.

1. A subset C ⊂ A is a subsystem iff 〈C〉P ⊂ C, that is, iff the predecessors of agents in C
belong to C:

C is a subsystem ⇐⇒ C = C ⇐⇒ 〈C〉P ⊂ C (3.26)

2. For any a ∈ A, the subsystem generated by agent a is the union of a and of all its iterated
predecessors (see Definition 13):

{a} =
⋃
n∈N

〈a〉nP (3.27)
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When there is a subsystem, the solution map displays the following co-cycle property.

Proposition 17. We suppose that the stochastic system {Ua,Ua, Ia}a∈A displays the solvability prop-
erty. We consider a partition A = B ∪ C and, for any policy γ ∈ ΓadA , we write

γ = (γB, γC) where γB : UB × UC × Ω→ UB , γC : UB × UC × Ω→ UC . (3.28)

If B is a subsystem, the policy γB can be identified with

γB : UB × Ω→ UB , (3.29)

and the solution map has the following (co-cycle) property

M(γB ,γC)(ω) =
(
MγB(ω),M

γC

(
MγB

(ω),·
)(ω)

)
, ∀ω ∈ Ω , (3.30)

in the sense that

M(γB ,γC)(ω) = (uB, uC) ⇐⇒

{
uB = MγB(ω) ,

uC = γC
(
uB, uC , ω

)
.

(3.31)

The information-memory relation M

Definition 18. Barty et al. (2006) With any agent a ∈ A, we associate the subset 〈a〉M of agents
which pass on their information to a:

〈a〉M = {b ∈ A | Ib ⊂ Ia} . (3.32)

We define an information memory binary relation M on A by:

bM a ⇐⇒ b ∈ 〈a〉M ⇐⇒ Ib ⊂ Ia , ∀(a, b) ∈ A2 . (3.33)

When bM b, we say that agent b information is remembered by or passed on to agent a, or that the
information of agent b is embedded in the information of agent a. When agent b belongs to 〈a〉M, the
information available to b is also available to agent a.

By construction, the subset of agents 〈a〉M is the largest subset C ⊂ A such that IC ⊂ Ia.
Therefore, we have that

C ⊂ 〈a〉M ⇐⇒ IC ⊂ Ia , (3.34)

and, in particular,
a ∈ 〈a〉M and I〈a〉M = Ia . (3.35)

Proposition 19. Barty et al. (2006) The information memory relation M is a pre-order, namely M is
reflexive and transitive.

The following Proposition 20 describes connections between the information-memory relation M
and the precedence binary relation P. For any C ⊂ A, let us introduce the set of agents:

〈C〉M =
⋃
b∈C

〈b〉M (3.36)

who pass on their information to at least one agent in C.
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Proposition 20. Barty et al. (2006) Let C and C ′ be two subsets of the set A of agents. We have that
that the composition of the precedence relation and information-memory relation is included into the
precedence relation. Formally, we write:

PM ⊂ P (3.37)

and that, if a setC of agents pass on their information to at least one agent inC ′, then the predecessors
of C are predecessors of C ′:

C ⊂ 〈C ′〉M ⇒ 〈C〉P ⊂ 〈C
′〉P (3.38)

The decision-memory relation D

The following decision-memory relation is not, to our knowledge, found in the literature. It proves
useful to express strictly classical and strictly quasi-classical systems in §3.3.4.

Definition 21. With any agent a ∈ A, we associate

〈a〉D = {b ∈ A |Db ⊂ Ia} , (3.39)

the subset of agents b whose decision is passed on to a, where the decision subfield Db is defined
in (3.4).

We define a decision-memory binary relation D on A by

bD a ⇐⇒ b ∈ 〈a〉D ⇐⇒ Db ⊂ Ia , ∀(a, b) ∈ A2 . (3.40)

When bD a, we say that agent b decision is remembered by or passed on to agent a, or that the
decision of agent b is embedded in the information of agent a. By (3.39) and (3.4), we have that

D〈a〉D ⊂ Ia . (3.41)

By comparing the definition of the decision-memory relation D with that of the precedence relation
P in Definition 12, and by the definition (3.4) of DC , we see that

D〈a〉D = U〈a〉D ⊗ {∅,Ω} ⊂ Ia ⊂ U〈a〉P ⊗ F . (3.42)

Therefore, we conclude that
〈a〉D ⊂ 〈a〉P , ∀a ∈ A , (3.43)

or, equivalently, that
D ⊂ P . (3.44)

Remark 22. If bD a, the decision made by agent b decision is passed on to agent a and, by the fact
that D ⊂ P, b is a predecessor of a. However, the agent b can be a predecessor of a, but his influence
may happen without passing on his decision to a.

3.3.4 Typology of systems
Using the intrinsic model for information representation, Witsenhausen provided a typology of sys-
tems Witsenhausen (1971, 1975a). For each type of systems we provide an illustration in case of two
interacting agents. We also replace this system typology in the framework of Game Theory in § 3.5.2.
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Station

In Witsenhausen’s formalism, a station is a subset of agents such that the set of information fields of
these agents is totally ordered under inclusion (i.e., nested). In other words, a subset C of agents in
A is a station iff the information-memory relation M induces a total order on C (i.e., it consists of a
chain of length m = card(C)) iff there exists an ordering (a1, . . . , am) of C such that

Ia1 ⊂ · · · ⊂ Iak ⊂ Iak+1
⊂ · · · ⊂ Iam , (3.45)

or, equivalently, that ak ∈ 〈ak+1〉M, for k = 1, . . . ,m.

Example 23. For two agents a, b, this means that the information fields can be ordered so that:
Ia ⊂ Ib or Ib ⊂ Ia. One of the agents has private information that is not disclosed to the other agent.
In economics, such problems are said as having information asymmetry because one of the agents
has some kind of advantage on the other regarding information access.

Partially nested systems

A system is partially nested Ho and Chu (1972, 1974) iff the precedence relation P is included in
the information-memory relation M that is, P ⊂ M, namely 〈a〉P ⊂ 〈a〉M for any agent a ∈ A.
In a partially nested system, any agent knows what its predecessors know or, in other words, any
predecessor of a given agent passes its information to that agent.

Example 24. For two agents a, b, this means that b P a (i.e., b is a predecessor of a) implies that
Ib ⊂ Ia.

Partially nested systems can be seen as a special form of Principal-agents models that will be
described in § 4.1.1, but in such models the information reported by the predecessors of the Principal
might be biased. Witsenhausen does not deal with such considerations in its definition of information
fields.

A static team

A static team is a subset C of A such that 〈C〉P = ∅ or, equivalently, that agents in C have no
predecessor. When the whole set A of agents is a static team, any agent a ∈ A has no predecessor:
〈a〉P = ∅, ∀a ∈ A.

A system is static if the set A of agents is a static team.

Example 25. Two agents a, b form a static team iff :

Ia ⊂ {∅,Ua} ⊗ {∅,Ub} ⊗ F , Ib ⊂ {∅,Ua} ⊗ {∅,Ub} ⊗ F .

There is no interdependence between the decisions of the agents, just a dependence upon states of
Nature.

Monic system

A system is monic iff it is reduced to a singleton, that is, a static team: A = {a} and Ia ⊂ {∅,Ua}⊗F.
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Sequential systems

In sequential systems, there exists an ordering (a1, . . . , an) of A such that each agent ak is influenced
at most by the previous agents a1, . . . , ak−1 that is:

〈a1〉P = ∅ and 〈ak〉P ⊂ {a1, . . . , ak−1} , ∀k = 2, . . . , n . (3.46)

Example 26. The set of agents A = {a, b} with information fields given by

Ia = {∅,Ua} ⊗ {∅,Ub} ⊗ F , Ib = Ua ⊗ {∅,Ub} ⊗ {∅,Ω}

forms a sequential system where agent a precedes agent b (〈a〉P = ∅ and 〈b〉P = {a}), but Ia and
Ib are not comparable: agent a observes only the state of Nature, whereas agent b observes only
agent a’s decision.

Quasiclassical systems

A system is quasiclassical Witsenhausen (1975a) iff it is sequential and partially nested. Equivalently,
there exists an ordering (a1, . . . , an) of A such that 〈a1〉P = ∅ and, for k = 2, . . . , n,

〈ak〉P ⊂ {a1, . . . , ak−1} and 〈ak〉P ⊂ 〈ak〉M . (3.47)

In a quasiclassical system, there exists an ordering such that any agent is influenced at most by the
previous agents and knows what his predecessors know.

Classical systems

Systems are called classical iff there exists an ordering (a1, . . . , an) ofA for which it is both sequential
and such that Iak ⊂ Iak+1

for k = 1, . . . , n−1 (station property). Equivalently, there exists an ordering
(a1, . . . , an) of A such that 〈a1〉P = ∅ and, for k = 2, . . . , n,

〈ak〉P ⊂ {a1, . . . , ak−1} ⊂ {a1, . . . , ak−1, ak} ⊂ 〈ak〉M (3.48)

A classical system is necessarily partially nested, because 〈ak〉P ⊂ 〈ak〉M for k = 1, . . . , n; hence, a
classical system is quasiclassical. In a classical system, there exists an ordering such that any agent is
influenced at most by the previous agents and knows what they know.

Example 27. The set of agents A = {a, b} with information fields given by

Ia = {∅,Ua} ⊗ {∅,Ub} ⊗ F , Ib = Ua ⊗ {∅,Ub} ⊗ F ,

forms a classical system. First, the system is sequential, a precedes b (〈a〉P = ∅ and a ∈ 〈b〉P):
agent a observes the state of Nature and makes its decision accordingly; agent b observes both
agent a’s decision and the state of Nature and makes its decision based on that information. Sec-
ond, one has that Ia ⊂ Ib (a ∈ 〈b〉M), which may be interpreted in different ways: one may say that
agent a communicates her own information to agent b.

Causal but non sequential systems

We consider a set of agents A = {a, b} with Ua = {a1, a2}, Ub = {b1, b2}, Ω = {ω−, ω+}. The
agents’ information fields are given by

Ia = γ({a1, a2} × {b1, b2} × {ω+}, {a1, a2} × {b1} × {ω−}) ,
Ib = γ({a1, a2} × {b1, b2} × {ω−}, {a1} × {b1, b2} × {ω+})
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forms a causal but non sequential system.
When the state of Nature is ω+, agent a only sees ω+, whereas agent b sees ω+ and the decision

of a: thus a acts first, then b. The reverse holds true when the state of Nature is ω−. Thus, there
are history-ordering mappings ϕ from H towards {(a, b), (b, a)}, but they differ according to history:
ϕ
(

(ua, ub, ω+)
)

= (a, b) and ϕ
(

(ua, ub, ω−)
)

= (b, a). The system is causal but not sequential.

Non-causal systems

The set of agents A = {a, b} have information fields given by:

Ia = {∅,Ua} ⊗ Ub ⊗ {∅,Ω} , Ib = Ua ⊗ {∅,Ub} ⊗ {∅,Ω} .
In non-causal systems, the decision process may have no solution, one solution, or multiple solutions.

Example 28. Agent a observes agent b’s decision (agent a’s feedback), whereas agent b observes
agent a’s decision (agent b’s feedback). Thus, agent a precedes agent b (a ∈ 〈b〉P) and agent b
precedes agent a (b ∈ 〈a〉P).

Theorem 29 (Witsenhausen (1975a)). Any of the properties static team, monicity, sequentiality, qua-
siclassicality, classicality, causality, non-causality of a system is shared by all its subsystems.

Hierarchical systems

Ho and Chu in Ho and Chu (1974) consider the case when the set A of agents can be partitioned in
(nonempty) disjoint sets A0,. . . , AK as follows. Agents in A0 are Nature’s agents whose decisions
depend only upon ω:

A0 = {a ∈ A | Ia ⊂
⊗
b∈A

{∅,Ub} ⊗ F} . (3.49)

Agents in A0 thus form the largest static team ( 〈A0〉P = ∅ ). Then,

A1 = {a ∈ A | a 6∈ A0 and 〈a〉P ⊂ A0} (3.50)

and

Ak+1 = {a ∈ A | a 6∈
k⋃
i=1

Aj and 〈a〉P ⊂
k⋃
i=1

Aj} . (3.51)

Smart grids can be modeled as hierarchical systems made of three level of agents namely: gen-
erators, suppliers and micro grids. In Le Cadre and Bedo (2016), Le Cadre and Bedo study the
interactions between agents composing a hierarchical systems. They consider renewable energy pro-
ducers, energy suppliers, and captive micro grids. At each time period, each renewable producers
generates a variable amount of power and communicates its price to the suppliers. Each supplier
decides the quantity of power it needs from all generators, and the price it fixes toward its micro grid.
Besides, each micro grid decides the power order that it buys from the supplier in order to maximize
its benefit.

Parallel coordinated systems

We consider the case when the set A of agents can be partitioned in (nonempty) disjoint sets A0, A1,
. . . , AK as follows. Agents in A0 are Nature’s agents whose decisions depend only upon ω:

A0 = {a ∈ A | Ia ⊂
⊗
b∈A

{∅,Ub} ⊗ F} . (3.52)

Agents in A0 thus form the largest static team ( 〈A0〉P = ∅ ). Then, A1, . . . , AK have the property
that every subset A1 ∪ A0, . . . , AK ∪ A0 is a subsystem.
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3.4 Multiple agents, one criterion (team optimization)

3.4.1 Static team optimization

3.4.2 Multi-stage stochastic optimization
Ingredients for a stochastic sequential optimization problem

• A set {t0, t0 + 1, . . . , T} ⊂ N of discrete times,
with generic element t

• Control sets Ut containing control variable ut ∈ Ut,
for t = t0, t0 + 1, . . . , T

• Constraints of the form ut ∈ Uad
t ⊂ Ut

• A set Ω of scenarios, or states of Nature, with generic element ω
(without temporal structure, a priori)

• A pre-criterion j : Ut0 × · · · × UT × Ω→ R,
with generic value j(ut0 , . . . , uT , ω)

Two-stage problem Times t ∈ {0, 1} (and pre-criterion L0

(
u0

)
+ L1

(
u1, ω

)
)

• Stochastic optimization deals with risk attitudes:
mathematical expectation E, risk measure F (including worst case), probability or robust con-
straints

• Stochastic dynamic optimization emphasizes
the handling of online information,
and especially the nonanticipativity constraints

For the purpose of handling online information, we introduce fields and subfields

1. (Ω,F) a measurable space (uncertainties, states of Nature)

2. (Ut0 ,Ut0),. . . , (UT ,UT ) measurable spaces (decision spaces)

3. Subfield It ⊂ Ut0 ⊗ · · · ⊗ Ut−1 ⊗ F, for t = t0, . . . , T (information)

The inclusion
It︸︷︷︸

information

⊂ Ut0 ⊗ · · · ⊗ Ut−1︸ ︷︷ ︸
past controls

⊗F

captures the fact that the information at time t is made at most
of past controls and of the state of Nature (causality)

Static team Subfield It ⊂ F for t = t0, . . . , T (no dynamic flow of information)
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We introduce strategies

Definition 1. Decision rule, policy, strategy A strategy is a sequence γ = {γt}t=t0,...,T
of measurable mappings from past histories to decision sets

γt0 : (Ω,F)→ (Ut0 ,Ut0)

. . .

γt : (Ut0 × · · · × Ut−1 × Ω,Ut0 ⊗ · · · ⊗ Ut−1 ⊗ F)→ (Ut,Ut)

. . .

With obvious notations, the set of strategies is denoted by

Λt0,...,T =
∏

t=t0,...,T

Λt

We introduce admissible strategies to account for
the interplay between decision and information

Definition 2. Admissible strategy An admissible strategy is a strategy γ = {γt}t=t0,...,T

γt0 : (Ω,F)→ (Ut0 ,Ut0)

. . .

γt : (Ut0 × · · · × Ut−1 × Ω,Ut0 ⊗ · · · ⊗ Ut−1 ⊗ F)→ (Ut,Ut)

. . .

satisfying, for t = t0, . . . , T , the information constraints

γ−1
t (Ut) ⊂ It︸︷︷︸

information

With obvious notations, the set of admissible strategies is denoted by

Λad
t0,...,T

=
∏

t=t0,...,T

Λad
t

The solution map is attached to a strategy,
and maps a scenario towards a history

Definition 3. Solution map With a strategy γ, we associate the mapping

Sγ : Ω→ Ut0 × · · · × UT × Ω︸ ︷︷ ︸
history space

called solution map, and defined by

(ut0 , . . . , uT , ω) = Sγ(ω) ⇐⇒


ut0 = γt0(ω)
ut0+1 = γt0+1(ut0 , ω)
...

...
uT = γT (ut0 , · · · , uT−1, ω)
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By composing the pre-criterion with the solution map,
we move forward the design of a criterion

• With a strategy γ, we associate the solution map

Sγ : Ω→ Ut0 × · · · × UT × Ω︸ ︷︷ ︸
history space

that maps a scenario towards a history

• The pre-criterion
j : Ut0 × · · · × UT × Ω→ R

maps a a history towards the real numbers

• Therefore, by composing the pre-criterion with the solution map,
we obtain

j ◦ Sγ : Ω→ R

that maps a scenario towards the real numbers

For the purpose of building a criterion
(and of handling risk attitudes),
we introduce a risk measure As j ◦ Sγ ∈ RΩ, all we need is a risk measure

F : RΩ → R ∪ {+∞}

to build a criterion that maps a strategy γ
towards the (extended) real numbers

γ ∈ Λt0,...,T 7→ F ◦ j ◦ Sγ ∈ R ∪ {+∞}

where we recall that Λt0,...,T denotes the set of strategies

We can now formulate
an optimization problem under uncertainty

Definition 4. Optimization problem under uncertainty When F is a risk measure on Ω,

F : RΩ → R ∪ {+∞} ,

the corresponding optimization problem under uncertainty is

min
γ∈Λadt0,...,T

F
(
j
(
Sγ(·)

))
where we recall that Λad

t0,...,T
denotes the set of admissible strategies, those such that

γ−1
t (Ut) ⊂ It , ∀t = t0, . . . , T
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Risk neutral and robust optimization appear as special cases

Definition 5. When (Ω,F,P) is a probability space,
the risk-neutral stochastic optimization problem is

min
γ∈Λadt0,...,T

EP

(
j
(
Sγ(·)

))
Definition 6. When Ω ⊂ Ω, the robust optimization problem is

min
γ∈Λadt0,...,T

sup
ω∈Ω

j
(
Sγ(ω)

)

3.5 Multiple agents, multiple criteria (non-cooperative game the-
ory)

In previous chapters we showed how decentralized stochastic control problems can be formulated with
Witsenhausen intrinsic model. This chapter is an extension of the intrinsic model to game theoretical
settings.

We first present some standard classes of games. The aim of this first section is twofold: first it
could serve as an introduction to game theory for people coming from the fields of optimization and
control, second the class of games we introduce serves as a benchmark for the intrinsic model. We
then complete the intrinsic model with the standard notions required for the study of games. Last, we
present some preliminary results and point out some open questions.

3.5.1 Definitions
To extend Witsenhausen intrinsic model Witsenhausen (1971, 1975a) to game theory, we need to
translate the standard notions of the field in this framework. Games defined in this framework will be
designed as Witsenhausen games or, equivalently, intrinsic games.

In what follows we assume that the solvability/measurability property holds true.

Agents and Players

A player p is defined as a subset Ap of A such that the criterion ja and the probability Pa are the same
for all a ∈ Ap. We hence introduce the notation jp and Pp. If P is the set of all player, then (Ap)p∈P
form a partition of A. Observe that the information fields of the agents do not need to be completely
ordered.

Strategies and payoff

For a player p ∈ P a (pure) strategy λp is an element of Πp :=
∏

a∈Ap Λad
a . A mixed strategy µp is

an element of ∆Πp, the set of distributions over Πp. We use the term strategy (resp. mixed strategy)
profile to designate a vector (γp)p∈P (resp. (µp)p∈P ). For a given mixed strategy profile µ and a player
p, the expected payoff is defined as: ∫

Λ

Ep[jp ◦ Sγ]dµ(γ),

where Ep denote the expectation with respect to Pp. We observe that we could have restricted the
study to pure strategy, since as Witsenhausen stated in Witsenhausen (1975a).
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”The possibility of mixed (i.e., randomized) decisions is implicitly included, with the
randomizing devices included as factors (in Ω).”

Yet, we consider that mixed strategies are interesting mathematical tools (allow for the convexification
of the strategy set) and the simplify the economical interpretations.

Intrinsic form game

To summarize an intrinsic form game is defined by:

• a set of agents partitioned by a player equivalence relation

• a random set Ω and for each agent, an action set Ua, all equipped with σ-fields

• for each agent an information field,

• for each agent, a set of measurable and admissible policies, which are mapping from the history
to the decision set

• the solvability/measurability property needs to be satisfied, and all for the introduction of a
measurable solution map Sγ

• for each player, a measurable and bounded criterion and a prior probability distribution

Nash equilibrium

Pure Nash Equilibrium A (pure) Nash Equilibrium is a strategy profile λ∗ such that, for any
player p ∈ P and any strategy λp ∈ Πp

Ep[jp ◦ S(λ∗p,λ
∗
−p)] ≥ Ep[jp ◦ S(λp,λ∗−p)].

Mixed Nash Equilibrium A mixed Nash Equilibrium is a mixed strategy profile µ∗ such that, for
any player p ∈ P and any mixed strategy µp ∈ ∆Πp∫

Λp

∫
Λ−p

Ep[jp ◦ Sλ]dµ∗−p(λ)dµ∗p(λ) ≥
∫

Λp

∫
Λ−p

Ep[jp ◦ Sλ]dµ∗−p(λ)dµp(λ).

3.5.2 Nash equilibrium under uncertainty
We denote real-valued random variables on (Ω,F) by

L(Ω,F) = {X : (Ω,F)→ (R,BR) , X−1(BR) ⊂ F} . (3.53)

To each agent a ∈ A, we attach three features:

• a measurable criterion
ja : H→ R , (3.54)

• a risk measure
Ga : L(Ω,F)→ R ∪ {+∞} , (3.55)

where domGa = {X ∈ L(Ω,F) , Ga(X) < +∞} can account for restrictions on the random
variables to be evaluated by the risk measure Ga,
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• an information field
Ia ⊂ H . (3.56)

We suppose that the stochastic system {Ua,Ua, Ia}a∈A displays no self-information and displays the
solvability property. Therefore, by Definition 9, there is a solution map Sγ : Ω → H, for any
admissible policy γ ∈ ΓadA . We suppose in addition that the solution map is measurable.

Definition 30. We say that the admissible policy γ ∈ ΓadA is a Nash equilibrium under uncertainty if

Ga

[
ja ◦ Sγa,γ−a

]
≤ Ga

[
ja ◦ Sγa,γ−a

]
, ∀a ∈ A , ∀γa ∈ Γada . (3.57)

Classical Nash equilibrium

The classical Nash equilibrium can be seen as a special case where

Ω = {ω} , Ia =
⊗
b∈A

{∅,Ub} ⊗ {∅,Ω} , ∀a ∈ A . (3.58)

This setting is deterministic because Ω is reduced to a singleton. As all information fields Ia are trivial,
admissible strategies are reduced to pure constant strategies, that is, to constant mappings identified
with decision profiles in UA. As a consequence, the solvability property trivially holds true.

Stackelberg equilibrium

A Stackelberg equilibrium is a Nash equilibrium under uncertainty when there exists a (nonempty)
subsystem, whose agents are called leaders.

When there is a subsystem, we know by Proposition 17 that the solution map displays a co-cycle
property. This allows to display a Nash equilibrium under uncertainty as the solution of a bi-level
optimization problem.

As an illustration, consider the case ot two agents A = {a, b} with information fields given by

Ia ⊂ {∅,Ua} ⊗ {∅,Ub} ⊗ F , {∅,Ua} ⊗ {∅,Ub} ⊗ F ( Ib ⊂ Ua ⊗ {∅,Ub} ⊗ F .

Agent a is the leader since 〈a〉P = ∅ (agent a has no predecessor), hence {a} = {a} by (3.27). The
co-cycle property (3.30) of the solution map writes

M(γa,γb)(ω) =
(
Mγa(ω),M

γb

(
Mγa (ω),·

)(ω)
)
, ∀ω ∈ Ω . (3.59)

The definition (3.57) of a Nash equilibrium under uncertainty becomes (where we abusively keep ω)

Ga

[
ja

(
γa(ω), γb

(
γa(ω)

)
, ω
)]
≤Ga

[
ja

(
γa(ω), γb

(
γa(ω)

)
, ω
)]

, ∀γa ∈ Γada , (3.60)

Gb

[
jb

(
γa(ω), γb

(
γa(ω)

)
, ω
)]
≤Gb

[
jb

(
γa(ω), γb

(
γa(ω)

)
, ω
)]

, ∀γb ∈ Γadb . (3.61)

In the deterministic case, this gives

ja

(
ua, γb

(
ua
))
≤ja

(
ua, γb

(
ua
))

, ∀ua ∈ Ua , (3.62)

jb

(
ua, γb

(
ua
))
≤jb
(
ua, γb

(
ua
))

, ∀γb ∈ Γadb . (3.63)
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Types and Bayesian games

The private information of agent a ∈ A is captured through its type. Agent a type set is Ωa. We
introduce the product of the agents’ type sets Ω as follows

Ω =
∏
a∈A

Ωa . (3.64)

In Bayesian games, Ga is an expectation.

Time

We introduce players i ∈ {1, . . . , I} and time t ∈ {0, 1, . . . , T}. Agents are couples (i, t) ∈ A =
{1, . . . , I} × {0, 1, . . . , T}. We have

〈(i, 0)〉P = ∅ , 〈(i, t)〉P ⊂ {1, . . . , I} × {0, 1, . . . , t− 1} , ∀t ∈ {1, . . . , T} . (3.65)

Moral Hazard

Moral hazard (hidden action) occurs when decisions of the agent b are hidden to the principal a, that
is, 〈a〉P = ∅ or, equivalently,

Ia ⊂ {∅,Ub} ⊗ {∅,Ua} ⊗ F . (3.66)

In case of moral hazard, the system is sequential with the principal a as first player (which does not
preclude to choose the agent b as first player in some special cases, as in a static team situation). An
insurance company cannot observe the efforts of the insured to avoid risky behavior: the firm faces
the hazard that insured persons behave immorally.

Adverse Selection

Adverse selection occurs when the agent b knows the state of nature, but the principal a, does not:

{∅,Ub} ⊗ {∅,Ua} ⊗ F ( Ib ⊂ {∅,Ub} ⊗ Ua ⊗ F , Ia ⊂ Ub ⊗ {∅,Ua} ⊗ {∅,Ω} . (3.67)

In the absence of observable information on potential customers, an insurance company offers a
unique price for a contract, hence screens and selects the “bad” ones.

When 〈a〉P = ∅, we have both moral hazard and adverse selection, and the principal has no
information whatsoever. The system is sequential with the principal as first player.

Signaling

When 〈a〉P = {b}, the agent b may reveal the state of nature by her decision which is observable by
the principal a: this the so-called signaling. The most interesting case is when 〈b〉P = {a} yielding a
non causal system (when 〈b〉P = ∅, the system is sequential with the agent as first player).

In evolutionary biology, animals signal their genotype by their phenotype as in the handicap
paradox Zahavi (1975).

The first application of signaling games to economic problems was Spence’s model of job market
signaling Spence (1974). Spence describes a game where workers have a certain ability (high or low)
that the employer does not know. The workers send a signal by their choice of education. The cost of
the education is higher for a low ability worker than for a high ability worker. The employers observe
the workers’ education but not their ability, and choose to offer the worker a high or low wage. In
this model it is assumed that the level of education does not cause the high ability of the worker, but
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rather, only workers with high ability are able to attain a specific level of education without it being
more costly than their increase in wage. In other words, the benefits of education are only greater
than the costs for workers with a high level of ability, so only workers with a high ability will get an
education.

Information may be given by mappings called signals, which capture what agent a observes from
the history

Sa : (H,H)→ (Sa, Sa)

where (Sa, Sa) is some measurable space. Assuming that Sa is measurable from (H,H) to (Sa, Sa),
the connection with the “field” approach is given by the σ-field generated by the mapping:

Ia = S−1
a (Sa)

3.5.3 Extensive form game representation
As pointed out by Witsenhausen in Witsenhausen (1971), the difficulties in specifying the information
structure of a game were faced and overcomed in the early days of Game Theory through the intro-
duction of extensive form games Myerson (1997). The extensive form is the most richly structured
way to describe game situations. The definition of the extensive form that is now standard in most
of the literature on Game Theory, is due to Kuhn Kuhn (1997), who modified the earlier definition
used by von Neumann and Morgenstern Myerson (1997). The strategic form and its generalization,
the Bayesian form, are conceptually simpler forms that are more convenient for purposes of general
analysis but are generally viewed as being derived from the extensive form.

3.5.4 Sub-game perfect equilibrium (SPE)
(...) This motivate our tentative to define a notion of subgame perfect equilibrium for intrinsic games.
In this section we consider the game has a sequential structure. We denote by γ〈a〉P the vector of
agent a’s predecessors policies, and by γ〈a〉P−1 the vector of agent a’s successors policies. In the
following, we propose two definitions of increasing generality. We show that those definitions are
coherent with Kuhn’s conception of SPE.

Tentative definitions

Sequential and deterministic A strategy profile λ∗ is a sub-game perfect equilibrium iff for any
p ∈ P , a ∈ Ap, γ〈a〉P ∈ Λ〈a〉P and γa ∈ Λ,

jp ◦ Sγ〈a〉P ,γ∗a ,γ∗〈a〉P−1
≥ jp ◦ Sγ〈a〉P ,γa,γ∗〈a〉P−1

.

Sequential and stochastic A strategy profile λ∗ is a sub-game perfect equilibrium iff for any
p ∈ P , a ∈ Ap, γ〈a〉P ∈ Λ〈a〉P and γa ∈ Λ,

Ep[jp ◦ Sγ〈a〉P ,γ∗a ,γ∗a,〈a〉P
] ≥ Ep[jp ◦ Sγ〈a〉P ,γa,γ∗a,〈a〉P

].

3.5.5 Backward induction
For extensive form games (Kuhn), the notion of sub-game perfect equilibrium presents two interesting
properties. First it is stronger than Nash equilibrium, therefore where we have several Nash equilibria,
we may have only one SPE. Second, SPE, as opposed to Nash equilibrium, can be systematically
computed, using backward induction. Moreover we could argue that from the perspective of rational
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agents, this notion is finer, since rational agents could do this backward induction. We point out that
this is debatable, as psychological experiments show that SPE is not always the solution preferred by
individuals.

See Chapter 9 of Carpentier et al. (2015) for a reference on the notion of policy independence
of conditional expectations (PICE), which was first introduced in Witsenhausen (1975b) with the
following remarks:

”If an observer of a stochastic control system observes both the decision taken by an
agent in the system and the data that was available for this decision, then the conclusions
that the observer can draw do not depend on the functional relation (policy, control law)
used by this agent to reach his decision.”

3.5.6 Comparison of Witsenhausen’s intrinsic model with Kuhn extensive form
Kuhn’s extensive form Witsenhausen intrinsic model

locus of decision nodes agents
information structure decision sets subfields
timing decisions taken sequentially intrinsic structure
representation of a game not unique ”essentially unique”
expression of the order of play tree definition of predecessors and successors

3.5.7 Perfect recall and extended station
Extended station

3.6 Multiple agents, multiple criteria (cooperative game theory)
The formation of coalitions is fundamental in Game Theory. In all interactions with the other agents,
coalition participants act as one unit (it may be useful to think of a “representative agent” taking their
place); however, this arrangement will continue only as long as each player finds it desirable to act
this way. Further bargaining occurs among the members of each coalition on how to divide what
they obtained together. Thus, following Hart and Kurz Hart and Kurz (1983), we can state that the
existence of coalitions implies that the interactions among the agents will be conducted on two levels:
first, among the coalitions, and second, within each coalition.

The goal of this subsection is to introduce the basic notions of cooperative Game Theory, which
might be useful to understand the concept of coalition in energy management problems. We will begin
by formally defining characteristic function games and some of their subclasses, and then present the
standard solution concepts for such games.

Characteristic function games

A game in the sense of Game Theory is an abstract mathematical model of a scenario in which self-
interested agents interact.

We consider a non-empty set A of agents: the players of the game. A coalition is simply a subset
of the players A. We will use C, C′, ..., to denote coalitions. The grand coalition is the set A of all
players.

Definition 31. A characteristic function game G is given by a pair
(
A, v

)
, where A is a finite, non-

empty set of agents and v : 2A → R is a characteristic function, which maps each coalition C ⊆ A to
a real number v

(
C
)
. The number v

(
C
)

is usually referred to as the value of the coalition C.
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Note that characteristic function games assign the value of a coalition to the coalition as a whole,
and not its individual members. In fact, the question of how to divide coalitional value is a funda-
mental research topic in cooperative Game Theory, and we will see some answers to this question,
in the form of solution concepts such as the Shapley value and the nucleolus. Note that an implicit
assumption in characteristic form games is that the coalitional value v

(
C
)

can be divided amongst the
participants in C in any way that the participants in C choose and furthermore that there is no loss in
the coalition value caused by transfers. Formally, games with this property are said to the Transfer-
able Utility (TU) games Chalkiadakis et al. (2011); Myerson (1997). We will restrict in this chapter
to this class of games.

An outcome of a characteristic function game consists of two parts:

• a partition of players into coalitions, called a coalitional structure,

• a payoff vector, which distributes the value of each coalition among its participants.

Definition 32. Given a characteristic function game G =
(
A, v

)
, a coalition structure over A is a

collection of non-empty subsets CS =
{
C1, ...,CK

}
such that:

• ∪Kj=1C
j = A ,

• Ci ∩ Cj = ∅ ∀i, j ∈ {1, ..., K}, i 6= j .

This is equivalent to say that a coalition structure coincides with a partition of A.
A vector j is a payoff vector for a coalition structure CS =

{
C1, ...,CK

}
over A if:

• ja ≥ 0 ∀a ∈ A ,

•
∑

a∈Cj ja ≤ v
(
Cj
)
∀j ∈ {1, ..., K} .

The first requirement means that every player must appear in some coalition. The second, which is a
feasability requirement, says that a player cannot appear in more than one coalition.

An outcome of G is a pair
(
CS, j

)
, where CS is a coalition structure over G and j is a payoff vector

for CS. Given a payoff vector j, we write j(C) to denote the total payoff
∑

a∈C ja of a coalition C ⊆ A
under j.

We will often assume an efficiency requirement: a payoff vector j is efficient if all the payoff
obtained by a coalition is distributed amongst coalition participants i.e.,

∑
a∈Cj ja = v(Cj) ∀j ∈

{1, ..., K}.
We define v(CS) =

∑
C∈CS v(C) the social welfare of the coalition structure CS.

A payoff vector j for a coalition structure CS is said to be an allocation (sometimes also called
imputation Chalkiadakis et al. (2011)) if it is efficient and moreover satisfies the individual rationality
condition i.e., ja ≥ v({a}) ∀a ∈ A.

Subclasses of characteristic function games

We will now define four important subclasses of coalitional games: monotone games, superadditive
games, convex games, and simple games.

Monotone games In such games, adding an agent to an existing coalition can only increase the
overall productivity of this coalition.
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Definition 33. A characteristic function game G = (A, v) is said to be monotone if it satisfies v(C) ≤
v(C′) for every pair of coalitions C,C′ ⊆ A such that C ⊆ C′.

Note that non-monotonicity might be caused by communication and coordination costs Chalki-
adakis et al. (2011).

Superadditive Games In such games, it is always profitable for two groups of players to join
forces.

Definition 34. A characteristic function game G = (A, v) is said to be superadditive if it satisfies
v(C ∪ C′) ≥ v(C) + v(C′) for every pair of disjoint coalitions C,C′ ⊆ A.

In superadditive games, there is no reason for agents to form a coalition structure consisting of
multiple coalitions: the agents can earn at least as much profit by working together within the grand
coalition.

Note that any non-superadditive game can be transformed into a superadditive game by comput-
ing, for each coalition, the maximum amount this coalition can earn by splitting into sub-coalitions.
Formally, given a (non-superadditive) game G = (A, v) we can define a new game G? = (A, v?) by
setting:

v?(C) = max
CS∈CSC

v(CS) ,

for every coalition C ⊆ A, where CSC denotes the space of all coalition structures over C. The game
G? is called the superadditive cover of G. It is superadditive even if G is not Chalkiadakis et al. (2011).

Convex Games
The superadditivity places a restriction on the behavior of the characteristic function v on disjoint

coalitions. By placing a similar restriction on v’s behavior on non-disjoint coalitions, we obtain the
class of convex games.

Definition 35. A characteristic function v is said to be supermodular if it satisfies:

v(C ∪ C′) + v(C ∩ C′) ≥ v(C) + v(C′)

for every pair of coalitions C,C′ ⊆ A. A game with a supermodular characteristic function is said
convex.

Convex games have a very intuitive characterization in terms of players’ marginal contributions:
in a convex game, a player is more useful when he joins a bigger coalition.

Proposition 36 (Chalkiadakis et al. (2011)). A characteristic function G = (A, v) is convex iff for
every pair of coalitions C,C′ such that C ⊂ C′ and very player i ∈ A \ C′ it holds that:

v(C′ ∪ {a})− v(C′) ≥ v(C ∪ {a})− v(C)

Simple games
A game G = (A, v) is said to be simple if it is monotone and its characteristic function only takes

values 0 and 1 i.e., v(C) ∈ {0; 1} for any C ⊆ A.

3.6.1 Solutions
One can evaluate the outcome of a characteristic function game G = (A, v) according to two sets of
criteria:

1) stability i.e., what are the incentives for the agents to stay in a coalition structure,

2) fairness i.e., how well each agent’s payoff reflects his marginal contribution to the coalition
he belongs.
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Stability issue: the core solution

Consider a characteristic function game G = (A, v) and an outcome (CS, j) of this game. j(C)
denotes the total payoff of coalition C under j. Now, if j(C) < v(C) for some C ⊆ A, the agents in C

could do better by abandoning the coalition structure CS and forming a coalition of their own.
The set of stable outcomes i.e., outcomes where no subset of players has an incentive to deviate is

called the core of G.

Definition 37. The core of a characteristic function game G = (A, v) is the set of all outcomes (CS, j)
such that j(C) ≥ v(C) for every C ⊆ A and then j(C) = v(C) for any C ∈ CS.

As a solution concept, the core suffers from three main drawbacks:

• it can be empty,

• it can be quite large, hence selecting a suitable core allocation can be difficult,

• in many cases, the allocations that lie in the core can be unfair to one or more players i.e., the
player’s resulting payoff does not reflect his marginal contribution to the game.

These drawbacks motivated the search for a solution concept which can associate with every charac-
teristic function game G = (A, v), a unique payoff vector known as the value of the game (which is
quite different from the value of a coalition).

Proposition 38. Chalkiadakis et al. (2011) A characteristic function game G = (A, v) has a non-
empty core iff its superadditive cover G? = (A, v?) has a non-empty core.

We now skip from the concept of stability to the concept of fairness.

Fairness issues: Shapley value, Banzhaf power index and the nucleolus

Shapley value
The Shapley value is usually formulated with respect to the grand coalition. It defines a way of

distributing the value v(A) for the grand coalition.
Shapley approaches the problem of searching for a solution concept which could avoid the draw-

backs of the core by defining a set of desirable properties and he characterized a unique collection of
mappings (one for each agent) that satisfies the four axioms listed below, known later as the Shapley
value:

• efficiency axiom:
∑

a∈A Ψa(v) = v(A),

• symmetry axiom: if agent a and b are such that v(C ∪ {a}) = v(C ∪ {b}) for every coalition C

not containing agent a and b, then Ψa(v) = Ψb(v),

• dummy axiom: if agent a is such that v(C) = v(C ∪ {a}) for every coalition C not containing
a, then Ψa(v) = 0,

• additivity axiom: if v and ṽ are characteristic functions, then Ψa(v+ṽ) = Ψa(v)+Ψa(ṽ) ∀a ∈
A .

The Shapley value has an interpretation that takes into account the order in which the players join
the grand coalition A. In the event where the players join the grand coalition in a random order, the
payoff allotted by the Shapley value to an agent a ∈ A is the expected marginal contribution of agent
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a when he joins the grand coalition. Given any Transferable Utility (TU) game G = (A, v), for every
agent a ∈ A the Shapley value Ψa(v) assigns the payoff Ψa(v) given by:

Ψa(v) =
∑

C⊆A\{a}

card(C)!
(
card(A)− card(C)− 1

)
!

card(A)!

[
v
(
C ∪ {a}

)
− v
(
C
)]
. (3.68)

In general, the Shapley value is unrelated to the core. However, in some applications, one can
show that the Shapley value lies in the core; Such a result is of interest, since if such an allocation
is found, it combines both the stability of the core as well as the axioms and fairness of the Shapley
value. An interesting result is that for convex games the Shapley value lies in the core.

Banzhaf power index
Another solution concept that is motivated by fairness considerations is the Banzhaf power index.

Just like the Shapley value, the Banzhaf index measures agents’ expected marginal contributions.
However, instead of averaging over all permutations of players, it averages over all coalitions in the
game.

Definition 39. Given a characteristic function game G = (A, v), the Banzhaf power index of an agent
a ∈ A is denoted βa(G) and is given by

βa(G) =
1

2A−1

∑
C⊆A\{a}

[
v(C ∪ {a})− v(C)

]
. (3.69)

Since efficiency is surely a very desirable property of a payoff distribution scheme, a rescaled
version of the Banzhaf index has been proposed. Formally, the normalized Banzhaf index ηa(G) is
defined as

ηa(G) =
βa(G)∑
a∈A βa(G)

. (3.70)

Nucleolus
The nucleolus is a solution concept that defined a unique outcome for a game. The nucleolus is

based on the notion of deficit. Formally, given a super-additive game G = (A, v), a coalition C ⊆ A,
and a payoff vector j for this game, the deficit of C with respect to j is defined as

d(j,C) = v(C)− j(C) . (3.71)

This quantity measures C’s incentive to deviate under j. Any payoff vector j generates a 2A-
dimensional deficit vector d(j) =

(
d(j,Ck)

)
k=1,...,2A

where
(
Ck
)
k=1,...,2A

is the list of all subsets
of A ordered by their deficit under j, from the largest to the smallest: v(Ck)− j(Ck) ≥ v(Cl)− j(Cl)
for any 1 ≤ k < l ≤ 2A. Two deficit vectors can be compared lexicographically: given two payoff
vectors j, j ′, we say that d(j) is lexicographically smaller than d(j′) if there exists a ∈ {1, ..., 2A}
such that the a− 1 entries of d(j) and d(j′) are equal, but the a-th entry of d(j) is smaller than the
a-th entry of d(j′); if this is the case, we write d(j) <lex d(j′). We extend this notation by setting
d(j) ≤lex d(j′) if d(j) <lex d(j

′) or d(j) = d(j′).
The nucleolus is then defined as the set of all allocations that have the lexicographically smallest

deficit vector.

Definition 40. The nucleolus N(G) of a super-additive game G = (A, v) is the set

N(G) =
{
j ∈ A(A)|d(j) ≤lex d(j′) for all j′ ∈ A(A)

}
. (3.72)

where A(A) is the set of all allocations for the grand coalition.
An interesting property of the nucleolus is that it always belongs to the core.
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3.6.2 Games with communication
There are many games, like the Prisoners’ dilemma, in which the Nash equilibria yield very low payoff
for the players, relative to other non equilibrium outcomes. In such situations, the players would want
to transform the game, if possible, to extend the set of equilibria to include better outcomes. Players
might seek to transform a game by trying to communicate with each other and coordinate their moves,
perhaps even by formulating contractual agreements.

When we say that a given game is with contracts, we mean that, in addition to the options that
are given to the players in the formal structure of the game, the players also have very wide options
to bargain with each other and to sign contracts, where each contract binds the players who sign it to
some correlated strategy that may depend on the set of players who sign.

Formally, given any strategic form game G =
(
A, (ua)a∈A, (ja)a∈A

)
, a correlated strategy for a

set of players is any probability distribution over the set of possible combinations of pure strategies
that these players can choose in G. Given any C ⊆ A, a correlated strategy for C is any probability
distribution in ∆(UC), where UC =

∏
a∈C Ua.

A set of players C might implement a correlated strategy τC by having a centralizator who gen-
erates randomly a profile of pure strategies in UC in such a way that the probability of designing any
uC = (ua)a∈C in UC is τC(uC). Then the mediator would tell each player a in C to implement the
strategy ua that is the a-th component of the designated profile uC .

Given any correlated strategy τ in ∆(U) for all players, for each a, let Ja(τ) denote the expected
payoff to player a when τ is implemented in the game G

Ja(τ) =
∑
u∈U

τ(u)ja(u) . (3.73)

Let J(τ) =
(
Ja(τ)

)
a∈A

denote the expected payoff allocation to the players in A that would

result from implementing τ . With this notation, a contract is represented by any vector τ = (τC)C⊆A
in
∏

C⊆A ∆(UC). For any such contract τ , τC represents the correlated strategy that would be imple-
mented by the players in C if C were the set of players who sign the contract. So for any expected
payoff vector in the set {J(τ)|τ ∈ ∆(U)} there exists a contract such that, if the players all signed this
contract, then they would get this expected payoff allocation. This set of possible expected allocations
is closed and convex in RA.

However, not all such contracts could actually be signed by everyone in an equilibrium of the
implicit contract-signing game. For any player a, the max-min value also called security level, in
game G

va = min
τA\a∈∆(UA\a)

(
max
ua∈Ua

∑
uA\a∈UA\a

τA\a(uA\a)ja(uA\a, ua)
)
. (3.74)

The minimax value for agent a is the best expected payoff that agent a could get against the worst
(for him) correlated strategy that the other players could use against him. A minimax strategy against
player a is any correlated strategy in ∆(UA\a) that achieves the minimum in (3.74). The theory of
two-person zero sum game then implies that the minimax value also satisfies

va = max
τa∈∆(Ua)

(
min

uA\a∈UA\a

∑
ua∈Ua

τa(ua)ja(uA\a, ua)
)
. (3.75)

So player a has a randomized strategy that achieves the above maximum and guarantees him an
expected payoff that is not less than his minimax value, no matter what the other players may do.

A correlated strategy τ ∈ ∆(U) is individual rational if

Ja(τ) ≥ va ∀a ∈ A . (3.76)
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This condition is also called participation constraints.
In general, for any finite strategy form game G a mediator who was trying to help coordinate the

agents’ actions would at least need to let each agent a know which strategy in Ua was recommended
for him. In the game with mediated communication, each agent a would actually have an enlarged set
of communication strategies that would include all mappings from Ua into Ua, each of which repre-
sents a possible rule for choosing an element of Ua, as a function of the mediator’s recommendation
in Ua.

Suppose it is common knowledge that the mediator will determine his recommendations according
to the probability distribution τ in ∆(U); so τ(u) denotes the probability that any given pure strategy
profile u = (ua)a∈A would be recommended by the mediator. Then it would be an equilibrium for all
players to obey the mediator’s recommendation if

Ja(τ) ≥
∑
u∈U

τ(u)ja(uA\a, δa(ua)) ∀a ∈ A, ∀δa : Ua → Ua . (3.77)

Following Aumann Aumann and Dreze (1974); Aumann (1987), we say that τ is a correlated
equilibrium of G if τ ∈ ∆(U) and τ satisfies condition described in Equation (3.77). A correlated
equilibrium is any correlated strategy for the players in G that could be self-enforcingly implemented
with the help of a mediator who can make non-binding confidential recommendations to each player.

It can be shown Myerson (1997) that Equation (3.77) is equivalent to the following system of
inequalities ∑

uA\a∈UA\a

τ(u)
(
ja(u)− ja(uA\a, u′a)

)
≥ 0 ∀a ∈ A,∀ua ∈ Ua,∀u′a ∈ Ua . (3.78)

No agent a could expect to increase his expected payoff by using some disobedient action u′a after
getting any recommendation ua from the mediator.
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Chapter 4

Mechanism Design
(Hélène Le Cadre, Benjamin Heymann)
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4.1 Mechanism design

4.1.1 Mechanism Design by an informed principal
We consider a general Bayesian incentive problem. We allow for both informational (adverse selec-
tion) and strategic (moral hazard) constraints on the ability of these individuals to coordinate them-
selves.

As in Bayesian games, for each agent a ∈ A, the set of possible types is Ωa.
A mechanism is any rule determining the agents’ actions as a function of their types. The set of

feasible mechanisms is limited by two factors

• the incentives for each agent to report his private information honestly (types are unverifiable),

• the incentive of agent to control some private decisions that cannot be cooperatively coordinated
with the others (for example, the agent’s level of effort).

This gives rise to two classes of actions: those which are publicly observable and enforceable U0 (that
we will call collective actions), and those that must be privately controlled. Any u0 ∈ U0 represents a
combination of actions which the agents can commit to carry out even if it may turn out ex post to be
harmful to any or all of the agents. For each agent a, we let Ua represent the set of all possible private
actions controlled by agent a.

We let Ω =
∏

a∈A Ωa denote the set of all possible combinations of individual types with ω =
(ωa)a∈A denoting a typical types-vector or state in Ω.We let Ω−a denotes the set of possible combina-
tions of types of the agents other than a. Similarly, we let

U = U0 ×
∏
a∈A

Ua , (4.1)

denote the set of all possible combinations of public and private actions with u =
(
u0, (ua)a∈A

)
denoting a vector of actions or outcomes in U. In this §we assume that U and Ω are (non empty) finite
sets.

In this framework, given any vector of types ω and actions u, we let ja(u, ω) denote the payoff
to agent a, when u is the outcome and ω is the state of the game. We let pa(ω−a|ωa) > 0 denote the
conditional probability that agent a would assign to the event that ω = (ωa)a∈A is the actual state of
the state, given that he knows his actual type to be ωa.

We now describe the set of feasible mechanisms for coordinating the public and private actions,
as a function of the individuals’ types:
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• each agent simultaneously and confidentially reports his type to a trustworthy mediator,

• the mediator then chooses an outcomes u =
(
u0, (ua)a∈A

)
in U as a (possibly random) function

of the vector of reported types,

• the enforceable action u0 is carried out, and each agent is confidentially informed that ua is the
private action recommended for him.

A mechanism is any function τ : U× Ω→ R such that∑
u∈U

τ(u, ω) = 1 ,

τ(u, ω) ≥ 0 ∀u ∈ U ∀ω ∈ Ω . (4.2)

Here τ(u, ω) is interpreted as the probability that u will be the outcome chosen by the mediator
if ω is the reported state in agents’ types. For any possible types ωa, ω′a of agent a, any function
δa : Ua → Ua, and any mechanism τ , we make the following definitions.

Definition 41.
Ja(τ |ωa) =

∑
ω−a∈Ω−a

pa(ω−a|ωa)
∑
u∈U

τ(u, ω)ja(u, ω) (4.3)

and
J?a(τ, δa, ω

′
a|ωa) =

∑
ω−a∈Ω−a

pa(ω−a|ωa)
∑
u∈U

τ(u, ω−a, ω
′
a)ja

((
u−a, δa(ua)

)
, ω
)

(4.4)

In this paper, whenever ω, ωa, and ω−a appears in the same formula, ω−a denotes the vector of
all components other than ωa in the vector ω =

(
ω1, ..., ωA

)
. Also, (ω−a, ω

′
a) and (u−a, δa(ua)) are

respectively the vectors that differ from ω and u in that ω′a replaces ωa and δa(ua) replaces ua.
Thus, Ja(τ |ωa) is the conditionally expected utility for individual a, given that his type is ωa, if

all individuals report their types honestly and carry on their recommended private actions obediently,
when the mediator uses mechanism τ .

On the other hand, if agent a reports ω′a and plans to use private action δa(ua) when ua is recom-
mended, while all other agents are honest and obedient, then J?a(τ, δa, ω

′
a|ωa) is agent a’s conditionally

expected utility from mechanism τ , given that a’s true type is ωa. Notice that the mediator’s recom-
mendation may convert information to agent a about the others’ types, so that a might rationally
choose his private actions as some function δa(.) of his recommended action.

Definition 42. The mechanism τ is incentive compatible if

Ja(τ |ωa) > J?a(τ, δa, ω
′
a|ωa) ∀ωa ∈ Ωa,∀ω′a ∈ Ωa, ∀δa : Ua → Ua . (4.5)

Condition (4.5) asserts that honest and obedient participation in the mechanism τ must be a
Bayesian Nash equilibrium for all the agents in A. For any Bayesian equilibrium of any other co-
ordination game which the individuals might play, there exists an equivalent incentive-compatible
mechanism satisfying (4.5). This idea is called the revelation principle.

Example 43. Suppose that each agent’s set of private actions is simply Ua = {accept; reject}, and
that all utility payoffs will be zero if any agent chooses his reject option. Suppose also that there is an
enforceable action (fire everyone) that also makes all payoffs zero. Then, without loss of generality,
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we need only consider mechanism in which no agent is ever asked to reject, since the fire everyone
action may be used instead. Then the incentive constraints (4.5) reduce to

Ja(τ |ωa) >
∑

ω−a∈Ω−a

∑
u∈U

pa(ω−a|ωa)τ(u, ω−a, ω
′
a)ja(u, ω) ∀a,∀ωa ∈ Ωa, ∀ω′a ∈ Ωa , (4.6)

and
Ja(τ |ωa) > 0 ∀a, ∀ωa ∈ Ωa . (4.7)

This means that no agent should have any incentive to lie or reject in the mechanism.

If an outside agent with no private information were given the authority to control all communi-
cation between agents and to determine the enforceable actions in U0, then he could implement any
incentive-compatible mechanism satisfying constraints (4.2) and (4.5). But if one of the informed
agents in A can influence the selection of mechanism when he already knows his own type, then a
fundamental issue arises to constrain the choice of mechanism: if the selection of coordination mech-
anism depends in any way on one individual’s type, the selection of the mechanism itself will convey
information about his type to the other agents. Then a mechanism is feasible if it is incentive compat-
ible after all other agents have inferred whatever information might be implicit in the establishment
of the mechanism itself.

In this §we assume that an agent, let’s call him aP can effectively control all communications and
can dictate how the action in U0 is to be determined without any need to bargain or compromise with
any of the otherA\{aP} agents1. That is, agent aP has complete authority to select any mechanism for
coordinating the enforceable and private actions of the agents in A. Agent aP is called the principal
of the system. The other agents in A \ aP are referred to as subordinates.

We assume that the principal already knows his type at the time when he selects the mechanism,
and that this is not a repeated situation. Thus the best incentive-compatible mechanism for the prin-
cipal maximizes his conditional expected utility JaP (τ |ωaP ), then his choice will depend on his true
type ωaP , and so the subordinate agents may be able to infer (partially or completely) the principal’s
type from his choice of τ . With this new information, the subordinates may find new opportunities to
gain by dishonesty or disobedience. So a mechanism might not be incentive-compatible eventhough
Equation (41) is satisfied because the fact that τ is used allows the subordinates to learn about the
principal’s type.

Let ΩP be any non-empty subset of ΩaP . We say that a mechanism τ is incentive compatible given
ΩP if τ is incentive compatible for the principal i.e., τ satisfies (4.5) for a = aP and

∑
ω−a∈Ω−a,ωaP ∈ΩP

∑
u∈U

pa(ω−a|ωa)τ(u, ω)ja(u, ω)

>
∑

ω−a∈Ω−a,taP ∈ΩP

∑
u∈U

pa(ω−a|ωa)τ(u, ω−a, ω
′
a)ja

((
u−a, δa(ua)

)
, ω
)

∀a ∈ A \ aP , ∀ωa ∈ Ωa,∀ω′a ∈ Ω′a,∀δa : Ua → Ua . (4.8)

Condition (4.8) asserts that no subordinate a should expect to gain by reporting ω′a and by dis-
obeying his instructions according to ∆a, when he knows that ωa is his true type and the principal’s
type is in ΩP . Thus, if the subordinates expected that the principal would propose mechanism τ if his
type were in ΩP , but otherwise would propose some other mechanism, then τ could be successfully
implemented only if it were incentive compatible given ΩP .

1The difference between U0 and U1 is that the action in U1 is subject to moral hazard, in the incentive constraints, but
the ection in U0 is not.
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This concept of conditional incentive compatibility describes what the principal could achieve if
some information were revealed. However, as we try to construct a theory to determine which mech-
anism the principal should implement, there is no loss of generality in assuming that all types of the
principal should choose the same mechanism, so that his actual choice of mechanism will convey
no information. We may refer to this claim as the principle of inscrutability. Its essential justifica-
tion is that the principal should never need to communicate any information to the subordinates by
hys choice of mechanism, because he can always build such communication into the process of the
mechanism itself.

Formally, suppose that there are some mechanisms
(
τk
)
k=1,...,K

and sets of types
(
ΩP
k

)
k=1,...,K

forming a partition of ΩaP , such that the types in ΩP
k are expected to implement τk for every k in

{1, 2, ..., K}. Since the subordinates would rationally infer that the principal’s type is in ΩP
k when τk

is proposed, each τk must be incentive compatible given ΩP
k . Since the principal already knows his

type, he would choose to implement these mechanisms in this fashion only if they satisfy

JaP (uk|ωaP ) > JaP (uj|ωaP ) ∀j,∀k,∀ωaP ∈ ΩP . (4.9)

and are incentive compatible for him separately. But now consider the mechanism τ ? defined by

τ ?(u, ω) = τk(u, ω) if ωaP ∈ ΩP . (4.10)

This mechanism τ ? is completely equivalent to the system of mechanisms {τ1, ..., τK} on the
partition {ΩP

1 , ...,Ω
P
K}, giving the same distribution of outcomes in every state. That is, saying that

for each k, if the principal’s type is in ΩP
k then he will implement τk is empirically indistinguishable

from saying that the principal will implement τ ?, no matter what his type is. It is straightforward to
verify that τ ? is incentive compatible, using Equation (4.8) (with τ = τk and Ω = ΩP

k ) and (4.9) to
prove that 4.5 holds for τ = τ ?.

We aim to predict which mechanism a principal with private information might select. For in-
scrutability, any mechanism that we predict must be reasonable for all of his types to select. If the
principal’s different types would actually prefer different incentive-compatible mechanisms, then the
predicted mechanism must be some kind of compromise between the different goals of the principal’s
possible types.

4.2 Mechanism design presented in the intrinsic framework

4.2.1 Definitions
A mechanism is a set of rules that: (1) allows participants to communicate with a central operator, (2)
maps any sequence of messages with an outcome that affects all the participants. When a designer (a
company, an institution or a person for instance) is looking for a mechanism satisfying some criteria,
he needs to solve a mechanism design problem. This section is devoted to a formal presentation of
a generic mechanism design problem.

The actors: agents, players and Nature A situation where mechanism design theory could be
applied brings together two kinds of actors. (1) The principal (or designer) is in charge of the design
of the mechanism itself. For this reason, he will be referred to with the letter d. (2) The second
category of actors is made of players p ∈ P who interact through the mechanism chosen by the
designer. From those interactions will result an output pre-defined in the mechanism. If we take the
point of view of a player, every possible choice of mechanism by the designer constitutes a game (this
is obviously why we call them players). In most of our examples there is exactly one agent per player,
but generically (as in the previous chapter), one player may be embodied by a collection of agents
Ap.
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Information and decisions One of the most fundamental feature of a mechanism design problem
is that the agents knows things that the principal does not. These things can be either private infor-
mation (such as the willingness to pay for a good, health problems, preferences concerning either a
presidential candidate, a schedules or a university) or hidden actions (for instant, the quantity of effort
an agent invests in a job). The latter will be modeled with measurable hidden actions set (Uh

a,Dha),
while the former should be formalized with the help of a random set (Ωa,Fa) for each agent a. A
random set (Ω0,F0) aggregates the stochasticity observed by the designer. When (Uh

a,Dha) is trivial,
we say that there is no moral hazard. The random set thus writes as a product:

Ω = Ω0 ×
∏
a∈A

Ωa.

We write F its associated σ-field. Despite the fact that the designer is not per say an agent, we still
model its knowledge with an information field Id. The information available to an actor (agent or
designer) can be decomposed into two parts:

1. what is known by the direct observation of Nature I♣a (or I♣d ), for instance the private in-
formation. The designer does not have any control on this information, which corresponds to
Nature choices. Those field are subfield of F .

2. what is learned through the messages permitted by the mechanism. We will clarify this second
aspect in the sequel through the definition of a mechanism.

Since the agents have access to their private information, it is true that

{Ω0, ∅} ⊗ã6=a {Ωã, ∅} ⊗ Fa ⊆ I♣a .

Since the designer does not know the private information, I♣d satisfies

I♣d = F0 ⊗a∈A {Ωa, ∅}.

Players preferences An outcome set O contains the possible issues of the interactions. It corre-
sponds to the set of possible social choice (for instance the winner of an auction or of a presidential
election), over which every player has some preferences. Since we allow monetary transfers, we
model the players preferences with quasi-linear utility functions

Up(o, t, ωp, up) := Ũp(o, ωp, up) + t

for o ∈ O, ωp ∈ Ωp :=
∏

a∈Ap Ωa and t ∈ R, where Ũp : O→ R aggregates the player non monetary
preferences. Observe that we could have aggregated the transfers in the outcomes O, but we think it
is worth distinguishing between monetary and non-monetary allocations.

Mechanism We call mechanism M := ((Um
a ,Dma )a∈A, (I

m
a )a∈A, κ) the choice of:

1. a collection of measurable message sets (Um
a ,Dma )a∈A; writing Ua := Uh

a × Um
a we define as

in the previous chapter the history set H

2. a collection of information fields (Ima ) such that setting

Ia := I♣a ⊗ Ima

yields a solvable decision problem with measurable solution map S. We set Imd := ⊗a∈ADma
and Id := I♣d ⊗ Imd .

3. a contract function κ = (κO, (κp)p∈P ) : H → O× RP , measurable with respect to Id
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Prior representations The actors - players and designer - have a prior on the state of Nature, Pp (or
Pd). It is a probability distribution over Ω.

Game of a mechanism Consider a mechanism M = ((Um
a ,Dma )a∈A, (I

m
a )a∈A, κ). We set for any

player p ∈ P , h ∈ H ,
jp(h) := Up(κO(h), κp(h), up, ωp).

We get an intrinsic game. We call it game of M and denote it by G(M).

Social choice function A social choice function is an application f from Ω×
∏

a∈AUh
a to O×RP

measurable with respect to F ⊗a∈A Dha . We denote by fO its first coordinate.

Game solution concept A game solution concept SC maps any game G with a subset (possibly
empty) of its strategy profiles SC(G).

NB: This includes (pure) Nash , Bayes-Nash, sub-game perfect and dominant strategy equilib-
ria, and exclude mixed strategy Nash equilibria.

Implementation of a social choice function Let2 SC be a solution concept, M a mechanism, f a
social choice function. We say that M SC-implementes f when there exists γ ∈ SC(G(M)) such
that for any ω ∈ Ω,

κ(Sγ(ω)) = f(π(Sγ(ω))),

where π is the projection of H on Ω×
∏

a∈AUh
a. We say that f is SC-implementable whenever such

(M,γ) exists.

Direct mechanism 3 A direct mechanism is a mechanism such that Um
a = Ωa × Uh

a.

Revelation principle A revelation principle is a claim that any SC-implementable function f can
be SC-implemented by a direct mechanism.

4.2.2 Criteria for the designer
To choose a mechanism, the designer is usually given a set of quantitative (i.e. we want to maximize
something) and qualitative criteria (i.e. we want to satisfy a constraint) on the transfers and the
individual incitations.

Budget balance This is a qualitative criteria on the transfers. Generically, it means that the designer
will not need to bring money from outside. We assume that the mechanism M SG-implements a
social choice function f with equilibrium strategy γ∗. There are four versions of this criteria:

1. weak ex post budget balance:
∑

p∈P kp(Sγ∗(ω)) ≥ 0 for all ω ∈ Ω

2. weak ex ante budget balance: E
∑

p∈P kp(Sγ∗(ω)) ≥ 0

3. strong ex post budget balance:
∑

p∈P kp(Sγ∗(ω)) = 0

4. strong ex ante budget balance:E
∑

p∈P kp(Sγ∗(ω)) = 0.
2tentative definition
3revoir partie Moral hazard
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Profit This is a quantitative criteria on the transfers. The designer want to maximize the (expected)
quantity of money he can get out of the system (think of an auction for instance), which is

E
∑
p∈P

kp(Sγ∗(ω))

No side payments This is a qualitative criteria on the transfers, it means that

kp = 0

Efficiency This is a quantitative criteria. Assume
∏

a∈AUh
a is trivial. A social choice function f is

said to be efficient when it maximizes ∑
p∈P

up(fO(ω, u), ωp),

for any (ω, u) ∈ Ω×
∏

a∈AUh
a. A mechanism is said efficient when it implements an efficient social

choice function.

Individual Rationality This a qualitative criteria, also called participation constraint. When the
players have outside opportunities, the designer may want to ensure that they do not have any bet-
ter option. If we denote by vp(ωp) the best payoff the player can get from not participating in the
mechanism, then we can define three increasingly strong notions of IR:

1. ex ante individual rationality:

2. interim individual rationality:

3. ex post individual rationality:

Truth revealing
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Chapter 5

Some Local Agents Problems
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de l’électricité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Optimal control of a Microgrid with Combined Heat and
Power Generator

François Pacaud, Efficacity and École des Ponts.
Most of European countries must produce more than 20 % of their electrical energy with renewable
energies by 2020, and smart and micro-grids are more and more put forward to achieve this goal.
These new technologies allow utility managers to control in real time the consumption of consumers
and the production of different power plants.

Deterministic controls, such as Model Predictive Control (MPC), are the most used methods to
manage a micro-grid. But consumptions and renewable energy productions are hardly foreseeable,
and it is often difficult to satisfy the adequation between demand and production in deterministic
framework. That is why we focus on stochastic optimal management to control a micro-grid.

We consider here a domestic micro-grid, composed of a smart home equipped with smart devices
(thermostat, controller) and whose energy is produced by renewable sources (micro-cogeneration,
solar panels). This system is modelled with two state variables, and we will consider thermal and
electrical demands as stochastic variables. Stochastic optimal control will be used to manage the
energy in this system, and the control will be tested upon a realistic numerical model. We will
put emphasis on the algorithms used (stochastic dynamic programming and stochastic dual dynamic
programming) and the numerical results obtained. A benchmark with other methods, such as MPC
and heurisitics, will be presented.

This work is part of a larger program, aiming to control a micro-grid where several houses and
decentralized power sources are connected together through the local network. As the size of the
problem increases, other methods must be investigated to tackle the curse of dimensionality. De-
composition and coordination schemes have proved their effectiveness in deterministic settings, and
DADP (Dual Approximate Dynamic Programming) offers promising results in the stochastic frame-
work. We will sketch some perspectives to apply such algorithms to large-scale smart-grid problems.

5.1.1 Problem statement and mathematical formulation
We give in Figure 5.1 a schematic representation of a house equipped with a CHP:
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Figure 5.1: A house equiped with a CHP.

We give below the electrical equations:

• Dynamic constraints Bt+1 = αBBt − βBFB,t

• Capacity constraints B[ ≤ Bt ≤ B]

• Max charge/discharge constraint

∆B[ ≤ Bt+1 −Bt ≤ ∆B]

⇐⇒ ∆B[ + (1− αB)Bt

βB
≤ FB,t ≤

∆B] + (1− αB)Bt

βB

Offer=Demand FGE,t︸ ︷︷ ︸
CHP

+ FB,t︸︷︷︸
Battery

+FNE,t+1︸ ︷︷ ︸
Network

= DE
t+1︸︷︷︸

Demand

• Dynamic constraints: Ht+1 = αHHt + βH
[
FA,t + FGH,t − FH,t+1

]
where: FH,t+1 = min

(
DT
t+1,

αHHt −H[

βH
+
[
FA,t + FGH,t

])
• Capacity constraints H[ ≤ Ht ≤ H]

We give the optimization criterion:

• Two instantaneous linear costs:

– Using gas for auxiliary burner: πgasFA,t
– Using the CHP generator: πgasPGYt

• Two instantaneous convex costs:
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– selling/buying electricity from/to the network: − bE max{0,−FNE,t+1}︸ ︷︷ ︸
selling

+hE max{0, FNE,t+1}︸ ︷︷ ︸
buying

convex because we assume that bE < hE

– Missing heat demand: bT
(
DT
t+1 − FH,t+1

)︸ ︷︷ ︸
uncomfort

5.1.2 Stochastic optimal control of the microgrid

5.1.3 Using decomposition for managing several houses
We use decomposition/coordination algorithms to control an urban neighbourhood as illustrated in
Figure 5.2. Algorithms such as SDDP, DADP will be used:

NETWORK

COORDINATOR

HOUSE 1 HOUSE 2 HOUSE N

...
SOLAR 
PANEL

Figure 5.2: Decomposition-coordination to manage an eco-neighborhood.

5.2 Energy Management in a Solar Microgrid Using Stochastic
Programming and Data Clustering

Rodrigo A. Carrasco, Slavia Vojkovic and Isabel Weber, Universidad Adolfo
Ibáñez, Chile
The increasing interest in integrating intermittent renewable energy sources into the grid, like pho-
tovoltaic (PV) or wind based generation, presents several major challenges from the viewpoint of
reliability and control. Energy storage enables large-scale integration of intermittent sources, allow-
ing the penetration of distributed generation technologies to increase at a reasonable economic and
environmental cost Kok et al. (2010). Despite its benefits, energy storage has not been fully utilized.
Among the limiting factors is, besides the cost, the lack of appropriate control and management strate-
gies, since now users need to decide when to store, consume and, if possible, inject that energy back
to the grid Olivares et al. (2014).
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In this work we present a novel approach for designing energy control policies for a PV microgrid,
based on stochastic programming and data clustering to deal with the uncertainty of the generation.
We use data clustering to determine the regimes in which the microgrid works around the year, and
also to generate the scenarios used in the stochastic program. Next, we simplify the solutions obtained
from the stochastic program to define rules that are easy to implement. The output of our procedure
is a simple control policy that can be implemented in small microcomputers to control the flow of
energy, with the objective of minimizing the total cost of consumption. Finally, our simulation based
experimental results show that the resulting policy obtains costs that are very similar, in average, to
the ones obtained by solving a multi-stage stochastic program.

5.3 A subway station with energy breaking saving

Tristan Rigaut, Efficacity and Ecole des Ponts, France
Urban railway stations are responsible for a significant amount of energy consumption of cities trans-
portation facilities. Their efficiency could be significantly improved by harnessing different unex-
ploited renewable or recoverable energy resources. Residual regenerative braking energy, geothermal
or waste heat and local renewable energies represent each a potential we shouldn’t neglect in subway
stations. However, to fully exploit these energies potential we need energetic buffers in order to han-
dle their intermittency. We present hereby a strategy relying on electrical storage systems as well as
multi-physical building inertia to tackle the variability issue of such energetic potentials. It requires a
proper electrical equipments control in a demand response fashion. At the crossroad between micro-
grids and smart buildings management, the aim of this work is to provide a methodology to control
in real time the energetic characteristics of a subway station under different comfort and service con-
straints. Optimal control policies are calculated using approximate dynamic programming methods
such as model predictive control, computational stochastic dynamic programming or stochastic dual
dynamic programming. We apply the obtained policies tonumerical simulations based on real histor-
ical sensors data and we present results to compare the quality of our methods. A discussion about
models simplifications and the use of various heuristic methods to compute near-optimal policies on-
line is carried out. The aim is to spark a debate about whether we should look for suboptimal policies
adapted to highly detailed models or conversely optimal solutions to simplified optimization models.

5.4 Urban microgrid with pumping station and batteries

Bernardo Pagoncelli, Universidad Adolfo Ibáñez, Chile
In most countries energy is generated in a centralized fashion, whether by capital-intensive companies
or controlled by governments. In most cases (Brazil for example) the dispatch decision is done by
a governmental agency that tries to minimize the overall cost of production and transmission. Con-
sumers are passive entities that simply receive the energy generated, and pay the corresponding fee,
which in the case of industrial consumers is usually done via contracts.

There are several forces in the society that are pushing for changes in the current energy model.
First there is the issue of climate change, linked to the use of fossil fuels. Second, it has been shown
that the energy efficiency of the current forms of generation is around 12%, while the potential for
renewable energies is around 40%. Linked with the scarcity of fossil fuels, it is of utmost importance
to find alternative ways of generating energy more efficiently. Finally, in the last 20 years or so
the technology for generating energy through renewables (solar, wind, biofuels, etc) has improved
significantly.
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The emergence of renewables is creating a new paradigm, in which consumers can also generate
energy for their own consumption or sell into the grid. Therefore, traditional models that only allowed
for a centralized producer need to be revised. Households, small communities or small towns will be
regarded as a small generating unit, and the role of the central planner might change from producer
to coordinator. Big energy companies are now moving into renewables and services for the new
decentralized grids that are emerging. The giant energy company E.On broke into two, creating a new
company called Uniper to deal with microgrids.

From a modelling viewpoint, several changes need to be implemented, and we are going to high-
light two in this Section. First, decentralized models with renewables have to incorporate generation
uncertainty as an important part of the formulation. Wind and solar energy are intermittent sources
and therefore assuming that production in a given period is deterministic would be a gross simplifica-
tion. In order to obtain accurate representations for such randomness, it is necessary to have data such
as total radiation in some specific area or hourly wind availability. Having this type of data allows
for a better representation of randomness, which could be modelled as a random variable following a
specific distribution, or through some type of robust estimation when data is scarce.

Another key aspect of such models, that comes entangled with the randomness of renewables, is
storage. Due to the intrinsic variability of those sources, batteries need to be part of the system to
generate the necessary stability. Microgrids need to be able to satisfy their demand on cloudy days,
or in days with no wind. Additionally, from a financial perspective batteries can be a relevant source
of income when prices are high in the network. If the microgrid is connected to a larger grid, energy
can be sold when prices are convenient, and bought when the storage level is low or when the weather
forecast is not favorable.

Both aspects mentioned have important implications for the model of a decentralized microgrid.
Regarding the inclusion of uncertainty, the role of risk has to be addressed somehow in the model.
The simples case is to optimize the system operation on average, that is, the objective is to minimize
the expected cost of operation. However, risk-averse decision makers might want to avoid blackouts
at any cost, or want to keep the cost tat every stage below some threshold with high probability. In
summary there are different ways of including risk into the model, and specialized algorithms need
to be used for each case. Regarding storage, batteries be as small as a home appliance, or as big
as reservoirs used for pumping water (the so-called pumping stations). From a modelling viewpoint
any battery is the same: the changes are given by the total storage capacity, and the charge/discharge
speed. It is interesting to include more than one battery in a model and analyze the optimal policy
regarding the use of different batteries.

5.5 Gestion du risque de l’agrégateur d’énergie renouvelable in-
termittente sur les marchés de l’électricité

Ariel Waserhole, ENSTA ParisTech, UMA and Sun’R Smart Energy, France
Jusqu’à présent, les énergies Renouvelables intermittentes (EnR) comme le photovoltaı̈que ou l’éolien
étaient rémunérées par tarif d’achat garanti. Ces tarifs d’achat assuraient au producteur EnR une
rémunération fixe quel que soit la demande en électricité et quel que soit le prix du marché. Avec
l’augmentation de la production EnR prévue, cette décorrélation de la production ENR avec les be-
soins du système électrique et les signaux prix du marché constitue un risque de déséquilibre. C’est
pourquoi la loi de transition énergétique (en application des objectifs fixés par la commission eu-
ropéenne) met en place à partir du 1er janvier 2016 un système de rémunération des producteurs EnR
sur la base d’un complément de rémunération. Ce nouveau dispositif oblige les producteurs EnR à
vendre leur électricité sur les marchés et à recevoir le cas échéant une rémunération complémentaire
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pour couvrir si besoin leurs coûts. C’est dans le cadre de cette évolution réglementaire que se
développe le métier d’agrégateur EnR de Sun’R Smart Energy : il s’agit de vendre l’électricité is-
sue d’énergies renouvelables sur les marchés, pour le compte des producteurs.

Les figures ci-dessous illustre le rôle de l’agrégateur valorisant de l’EnR sur les marchés de
l’électricité :

1. Chaque heure, il estime tout d’abord la prévision de production EnR sur un horizon de 48
heures.

2. Ensuite il estime les prix de vente sur les différents marchés afin de faire un arbitrage entre
vendre l’énergie la veille sur le marché Day-Ahead ou, jusqu’à une heure avant livraison sur le
marché Intraday (les prévisions de prix ne sont pas représentées sur le schéma).

3. La production EnR n’étant pas prévisible, des écarts existent entre l’énergie vendue et l’énergie
produite. Ces écarts seront pénalisés à un prix variant chaque heure qu’il faut également estimer.

4. Enfin l’agrégateur doit payer les producteurs pour l’EnR produite à un prix, spécifié par contrat,
qui peut dépendre ou non des prix de marché. Le fait que le producteur soit rémunéré pour
l’énergie produite et non pour l’énergie vendue, implique un risque marché (incertitude des
prix) et un risque volume (incertitude de la production EnR) pour l’agrégateur.

En raison du caractère fortement aléatoire de la production EnR et des prix de marché, nous
modélisons le problème de l’agrégateur EnR dans une cadre stochastique. Nous discutons des hy-
pothèses de modélisation concernant les prix de marché et des limites du paradigme price taker, i.e.
il est possible d’acheter/vendre n’importe quelle quantité d’énergie sans influencer le prix de marché.
Cela nous amène à ne plus considérer comme critère d’optimisation uniquement l’espérance de gain
mais également des notions de risque. Nous comparons différentes manières de maitriser le risque :
des techniques simples, basées sur des notions de robustesse, et des techniques plus évoluées comme
la cVaR Ángeles Moreno et al. (2012).

Nous présentons un protocole expérimental pour estimer le risque marché et le risque volume.
Des expériences sur des données open data avec des prévisions reproductibles sont discutées afin
d’aider le décideur à choisir la stratégie d’optimisation la plus adaptée à ses besoins.

Figure 5.3: Production éolienne et prévisions.
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Figure 5.4: Vente d’énergie sur les marchés Day-Ahead et Intraday se basant sur les prévisions de
production.

Figure 5.5: L’énergie vendue sur les marchés est différente de l’énergie produite.
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M. Ángeles Moreno, Miriam Bueno, and Julio Usaola. Evaluating risk-constrained bidding strate-
gies in adjustment spot markets for wind power producers. International Journal of Electri-
cal Power & Energy Systems, 43(1):703 – 711, 2012. ISSN 0142-0615. doi: https://doi.
org/10.1016/j.ijepes.2012.05.059. URL http://www.sciencedirect.com/science/
article/pii/S0142061512002499.

63

http://www.sciencedirect.com/science/article/pii/S0142061512002499
http://www.sciencedirect.com/science/article/pii/S0142061512002499

	Introduction (Michel De Lara)
	Context
	The contributions from PGMO projects
	Our proposal of a PGMO/IROE umbrella project OGRE 

	Challenges for the New Energy Systems (Riadh Zorgati)
	The French electricity system: from the former fully-integrated context to a decentralized vision
	The new decentralized vision: main ingredients
	Decentralized vision: a variety of problems

	A Formal Presentation of Centralized/Decentralized Problems (Michel De Lara, Hélène Le Cadre, Benjamin Heymann)
	One agent, one criterion (optimization)
	One agent, multiple criteria (multi criteria optimization)
	An abstract model to highlight the role of information
	Multiple agents, one criterion (team optimization)
	Multiple agents, multiple criteria (non-cooperative game theory)
	Multiple agents, multiple criteria (cooperative game theory)

	Mechanism Design (Hélène Le Cadre, Benjamin Heymann)
	Mechanism design
	Mechanism design presented in the intrinsic framework

	Some Local Agents Problems
	Optimal control of a Microgrid with Combined Heat and Power Generator
	Energy Management in a Solar Microgrid Using Stochastic Programming and Data Clustering
	A subway station with energy breaking saving
	Urban microgrid with pumping station and batteries
	Gestion du risque de l'agrégateur d'énergie renouvelable intermittente sur les marchés de l'électricité


