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New technologies allow us to use weather-dependent energy generation

v

Until 2035 it is estimated that 31% of generation will be from renewables (50%
hydro)

v

In addition, we are aiming at efficiency and cost-effectiveness of fossil-fueled
generation (CHP plants, heat and power)

» The current efficiency level is around 33%, can reach 40%.

Pagnoncelli et al. Microgrid energy management with renewables and storage 3/50
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...[generators] are called on for a maximum service for a short time, which
is followed by a smaller demand during the rest of the night. It is patent
that such a method of production cannot be economical, for the plant must
be idle, or working to but a fraction of its capacity, most of the time.
Science, (1889)

Storage was suggested as a solution, but the most common method to cope with peak
demand was the introduction of peak generation plants
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Challenges

» Intermittent and weather-dependent generation pose a challenge to the system’s
reliability

» The importance of energy storage systems such as batteries and water tanks

» The management and control of energy grids became more complex!
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More challenges

» Renewables are intrinsically random = need for stochastic models!

> Microgrid architecture.

> Problems are usually multistage, and complexity grows exponentially with the
number of stages.

Pagnoncelli et al. Microgrid energy management with renewables and storage 6/50
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Some unique issues

» The microgrid operation combines unit commitment with economic dispatch
(hard problems!)

> Centralization versus Decentralization (the objectives are not obvious).

> Island mode = minimize its own generation cost.

> Grid connected mode = Can have contradicting goals with the main grid.

Pagnoncelli et al. Microgrid energy management with renewables and storage 7150
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The model

» The microgrid represents energy consumption in a small town

> We assume there is a central grid (the network), external to the microgrid, from
which energy can be bought and sold

> We want to solve a unit commitment problem with dispatch decisions
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Elements of our model

>

A battery storage

> Water pump storage

v

A photovoltaic panel (PV)

> A consumer

v

An electrical network
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Elements of the model
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Storage

» The water pump storage is a massive storage element, but has slow response
time

» Batteries are for storing smaller quantities of energy, with instant response time

> In order to model those differences in a meaningful way, we need finer time
frames (more later)
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Storage technologies

ENERGY STORAGE TECHNOLOGIES

Discharge Time (H) =)

ENERGY STORAGE TECHNOLOGIES

ENERGY STORAGE | CLEAN FUEL
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Batteries

into the battery

By =B +oap (FPV—Baztery,t + FNerwork—Battery,t)

from the battery

- (F Battery—Demand,,t + F, Battery—Network,t);

with ap < 1.

Fpv_Battery,t + FNetwork—Barery,r < max charge power x AT

FBanery—Demand,t + FBanery—Network,t < max diSChal‘ge power X AT
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Water pump storage

into the storage

Sit1 =St + asB (Fpv—s,; + Fnework—s,1)

from the storage

- ,8 (stDemand,t + FS*Network,t)

with s < 1, and where S converts electrical energy into water volume.

Fpv_s,t + Fework—s,, < max pumping power X AT
Fs—pemand,i + Fs—Newwork,y < max turbine power x AT

In addition,

IS,
<l'e
or | —
_Stht + 2S; - S1+At
(At)2 S Fpumping
—Si—ar+ 2St - St+At
- < F urbine
(Ar)? =
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The PV

> We assume energy generated by the PV is random
> We use 4 years of real data from the north of Chile
» The scenarios and their probabilities are constructed via k-means

> If the amount generated is higher than expected demand, the microgrid can sell
the surplus to the network

» If it is smaller energy must come from other sources, e.g., bought from the
network of taken from batteries

ProdPV = Fpy—_s + Fpv—par + Fpv—pemana + Fpv—nework — Surplus + Shortage

Pagnoncelli et al. Microgrid energy management with renewables and storage 16/50
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Discretization

> We face the usual granularity trade-off:

» Too fine-grained and we cannot solve the problem, too coarse-grained and the
model becomes meaningless.

> We propose a compromise solution: decision are taken every 15 minutes, and
there are three radiation scenarios every day, based on real data.

Pagnoncelli et al. Microgrid energy management with renewables and storage 17750



The model
000000000080 000

Uncertainty representation

NIGHT DAY

1 scenario 3 scenarios
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Time series analysis

» We wanted to fit the data into a time series model

> Several options: AR, MA, ARMA, ARIMA, ARMAX, ...

v

Dickey-Fuller test indicated stationarity, so we decided for an ARIMA
» Parameter choice was done through RMSE, MAD and MAPE

» The winner was ARIMA(2,0,0)x(1,0, 1)x24:

Y, = 1.2131Y,—1 — 0.3389Y;—> + 0.9725Y,_24 — 0.4202&,_24 + & +497.7
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Consumer

v

It is not deterministic, but...

v

It exhibits less variability than the PV, and it is often defined by contracts (e,g,
mining companies, shopping centers, etc)

> We assume it is deterministic in our model, using on real data.

v

We stress the model and study how it reacts to demand peaks.
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The model

0000000000000 e0

Buying and selling prices

H
Some
:

[}

Pagnoncelli et al.

——PurthasePrice

—Seling Prce

10305 7 0 11131517 1021 23 25 27 26 31 33 35 37 38 A1 43 45 47 43 5L 53 55 57 50 61 €3 65 67 69 71 73 75 77 7O B1 H3 45 67 89 01 93 9%
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Objective function

T
m}}nIE [ Z{(FNetwork—Demand,t + FNerwork—Battery,t + FNetwork—S,t) X buylng PI‘iCCfi-
=0
shortage,
— (Fpv—nNework,i + BF Battery—Nemork,t + CtsFs—_Nemork,r) X selling price,—
surplus, }|

+Value of energy at time 7.
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Demand satisfaction - example

Flows to satisfy demand - Stagel

PV-Demand

Network-Demand

Storage-Demand
Battery-Demand

Flows

2 4 60
Period
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Flows to satisfy demand - Stagel

PV-Demand
Network-Demand
Storage-Demand
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20 40 60
Period
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Demand satisfaction

Flows to satisfy demand - Stage2-scenariol

Flows to satisfy demand - Stage2-scenario2

Flows to satisfy demand - Stage2-scenario3

== PV-Demand

== Network-Demand
== Storage-Demand
= Battery-Demand

8

Period
Pagnoncelli et al.

== Storage-Demand
w= Battery-Demand |

Period

Flows

== Py-Demand

== Network-Demand
== Storage-Demand
5 = Battery-Demand
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8

Period
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Demand satisfaction
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== PV-Demand

== Network-Demand
== Storage-Demand
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8

Period
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Period

Flows
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Demand satisfaction

Flows to satisfy demand - Stage6-scenariol

Flows to satisfy demand - Stage6-scenario2

Flows to satisfy demand - Stage6-scenario3

== PV-Demand

== Network-Demand
== Storage-Demand
= Battery-Demand

8

Period
Pagnoncelli et al.

== Storage-Demand
= Battery-Demand |

Period

Flows

== Py-Demand

== Network-Demand
== Storage-Demand
wm Battery-Demand
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PV destination - August

N

Flows generation - Stage2-scenariol

10

Flows generation - Stage2-scenario2

Flows generation - Stage2-scenario3

Flows

0
Pagnoncelli et all

PV-B
PV-S
PV-Demand
PV-Net
Deficit
Surplus

PV-Demand
PV-Net
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PV destination - Decembe

Pagnoncelli et all

Flows

Flows generation - Stage2-scenariol

1

Flows generation - Stage2-scenario2

n

Flows generation - Stage2-scenario3

0!

PV-Demand
PV-Net
Deficit
Surplus

Barind

= PV
PVS
PV-Demand
PV-Net
Deficit
Surplus

PV-B

PV-S
PV-Demand
PV-Net
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PV destination - December

u

12,

Flows generation - Stage3-scenario3

0
Pagnoncelli et al.

Flows generation - Stage3-scenariol

PV-Demand
PV-Net
Deficit
Surplus

Flows generation - Stage3-scenario2

PV-Demand
PV-Net
Deficit
Surplus

VS
PV-Demand

-
-
= PV-Net
-
-

Deficit
Surplus
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Reservoir level S = 0

Storage lavel - Stagel Storage lavel - Stage2 Storage level - Stage3 Storage level - Stage4
5

Storage lavel - Stage5

Storage lavel - Stage6
<5 <5 5

level
level
Teveal
level
level

level

0 0
0 2 4 6 & 0
Pericd Pericd
Pagnoncelli et al.

0
20 4 6@ & 0
Period
Microgrid energy management with renewables and storage

40 6 80
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Storage flows (Sp = 0)

Storage Flows - Stagel

016 T T T T
= Network-S
—PV-S

014 == S-Demand
-

S-Network

Flows

2 4 60
Period
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Storage flows (Sp = 0)

Storage Flows - Stage2-scenariol Storage Flows - Stage2-scenario2 Storage Flows - Stage2-scenario3
T T T T T T T T

016 016
== Network-5 == Network-5 == Network-5
- PV - PV - PV

== S-Demand == S-Demand == S-Demand
m— S-Network || ' m— S-Network || : m S-Network ||

000
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Battery flows (By = 0)

Battery Flows - Stagel-Scenario 1

Network-B
PV-B
B-Demand

B-Network

Flows
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Battery Flows - Stage2 Battery Flows - Stage3 Battery Flows - Stage4

7 7 T,
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3
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Battery Flows - Stage5-escenariol Battery Flows - Stage5-escenario2 Battery Flows - Stage5-escenario3

1 1
== Network-B == Network-8 == Network-B
= PVB PV  PV-B
== B-Demand == B-Demand == B-Demand
11 mm B-Netwiork 6 mm B-Network 6. w= B-Network
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4 4 4
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Battery Flows - Stage6-escenariol

000000

Battery Flowss - Stage6-escenario2

Battery Flows - Stage6-escenario3

1

Flows

0
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Network-B
PV-B

B-Demand
B-Network | 6

== Network-8
= PV-B
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= B-Network | 6

0
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Battery flows (By =max)

Battery Flows - Stage1-Scanario 1

Network-8
PVB

B-Demand
B-Network

=

Flows

0

0 60
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Battery Flows - Stage2

Battery Flows - Stage3

] ] Battery Flows - Stage4
== NetworkB == Network-8 = Network-B
w— PV.B = PV-B = PVB
== B-Demand == B-Demand m= B-Demand
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» Implement policy evaluation via simulation (important in practice)

» Incorporate risk into the objective function, and study the effect in the optimal
policy

» Combine data with forecast to make decisions

» Derive managerial insights about the microgrid operation

» Improve the model with other elements relevant to the microgrid (e.g. wind
generation, electrical vehicles, etc)
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