Luce Brotcorne, Sébastien Lepaul, Léonard von Niederhäusern

> INOCS Team, INRIA Lille-Nord Europe EDF R&D OSIRIS

OUTLINE

Context

Context

Demand Side Management **Energy Pricing Problem** Bilevel Programming

Deterministic Formulation

Stochastic Formulation

Numerical Results

Conclusion

MOTIVATION: PEAK LOAD

Source: Sustainable Energy Society Southern Africa, www.sessa.org.za/about-sessa/chairman-s-blog/490-getting-a-handle-on-the-cost-of-solar-pv

DSM TECHNIQUES

Source: Primer on Demand-Side Management, World Bank Document CRA No. D06090, 02/2005

► Our tool : time-of-use pricing.

Context

00000

- ► Scattered energy resources.
- ► Communication facilitated by smart meters.

ENERGY PRICING PROBLEM

BILEVEL PROGRAMMING

Decision process involving two decision-makers with a hierarchical structure:

- ► Two decision levels : a leader and a follower, controlling their decision variables, seeking to optimize their objective function.
- ► The leader sets his decision variables first. Then the follower reacts based on the choices of the leader.

Bilevel programming is strongly NP-hard.

Originated from Stackelberg games, related to principal-agent problem, mathematical programs with equilibrium constraints.

ENERGY PRICING PROBLEM

Objectives

- ► Leader maximizes (revenue buying cost on the spot market) by deciding on prices,
- ► Follower minimizes (billing cost + inconvenience cost) by deciding on the schedule of consumption.

Assumptions

- ► 24-hours cycles,
- ► Demand is fixed,
- ► Every customer has a set of appliances with preferred time windows,
- ► All appliances have power consumption limits,
- ► All appliances are preemptive.

ENERGY PRICING PROBLEM

Assumptions

The smart grid operator has four energy sources:

- Electricity bought from leader,
- Electricity bought from competitor,
- Renewable energy,
- ► Stored energy.

The renewable energy production is known in advance.

п 1.

Exogenous data

- ► *H* : Set of time slots,
- K: Energy cost for the leader for time slot h,
- \bar{p}^h : Competitor's price for time slot h,
- N : Set of customers,
- $ightharpoonup A_n$: Set of devices for customer n,
- \triangleright $\beta_{n,a}^{\max}$: Power limit of appliance *a* for customer *n*,
- $ightharpoonup E_{n,a}$: Demand of customer n for appliance a,
- $ightharpoonup T_{n,a} = \{T_{n,a}^{first}, \dots, T_{n,a}^{last}\}$: Time window for appliance a of customer n,
- $ightharpoonup C_{n,a}(h)$: Inconvenience cost for customer n if appliance a is used at time h,
- $\triangleright \lambda_{max}^{h}$: Hourly production of renewable energy,
- $ightharpoonup S^{min}$, S^{max} : Lower and upper bounds for battery capacity,
- ρ^c : Charging coefficient.

BILEVEL MODEL

Decision variables of the leader

 $ightharpoonup p^h$: Energy price for time slot h.

Decision variables of the follower

- $ightharpoonup x_{(n,a)}^h$: Energy bought from the leader,
- $ightharpoonup \bar{x}_{(n,a)}^h$: Energy bought from the competitor,
- $\blacktriangleright \ \lambda_{(n,a)}^h$: Energy taken from the renewable energy production,
- $s_{(n,a)}^h$: Energy taken from the battery,
- ► S^h : Energy storage state at time h,
- λ_s^h : Renewable energy transferred to the battery,
- $ightharpoonup x_s^h$: Energy bought from the leader and transferred to the battery,
- $ightharpoonup \bar{x}_s^h$: Energy bought from the competitor and transferred to the battery.

BILEVEL MODEL : OBJECTIVE FUNCTIONS

Leader's objective function:

$$\max_{p} \sum_{n \in N} \sum_{a \in A_{n}} \sum_{h \in T_{n,a}} p^{h} x_{(n,a)}^{h} + \sum_{h \in H} \left(p^{h} x_{s}^{h} - K \left(h, x_{s}^{h} + \sum_{n \in N} \sum_{a \in A_{n}} x_{(n,a)}^{h} \right) \right).$$

Follower's objective function:

$$\begin{split} \min_{x,\bar{x},\lambda,s,S} \quad & \sum_{n \in N} \sum_{a \in A_n} \sum_{h \in T_{n,a}} \left(p^h x^h_{(n,a)} + \bar{p}^h \bar{x}^h_{(n,a)} + C^h_{(n,a)} \left(x^h_{(n,a)} + \bar{x}^h_{(n,a)} + \lambda^h_{(n,a)} + s^h_{(n,a)} \right) \right) \\ & + \sum_{h \in H} \left(p^h x^h_s + \bar{p}^h \bar{x}^h_s \right). \end{split}$$

$$\sum \left(x_{(n,a)}^h + \bar{x}_{(n,a)}^h + \lambda_{(n,a)}^h + s_{(n,a)}^h \right) \ge E_{(n,a)} \quad \forall n \in \mathbb{N}, a \in A_n$$

$$\chi_{(n,q)}^{h} + \bar{\chi}_{(n,q)}^{h} + \lambda_{(n,q)}^{h} + s_{(n,q)}^{h} \leq \beta_{(n,q)}^{max}$$

$$\forall n \in N, a \in A_n, h \in T_{n,a}$$

$$\lambda_s^h + \sum_{n \in \mathbb{N}} \sum_{a \in A} \lambda_{(n,a)}^h \leq \lambda_{max}^h$$

$$\forall h \in H$$

$$S^{h+1} = S^h - \sum_{n \in \mathbb{N}} \sum_{a \in A_n} s_{(n,a)}^h + \rho^c (\lambda_s^h + x_s^h + \bar{x}_s^h) \quad \forall h \in H$$

$$\sum_{n \in N} \sum_{a \in A_n} s_{(n,a)}^h \le S^h$$

$$\forall h \in H$$

$$S^{min} < S^h < S^{max}$$

$$\forall h \in H$$
.

STOCHASTIC APPROACH

Motivation

Renewable energy production is by nature unpredictable $\rightarrow \lambda_{max}^h$ not known in advance.

Properties

Scenario tree-based approach,

- ► Every leaf is a scenario,
- ► Every scenario happens with given probability.

SCENARIO TREES

Impact on the model

- ► Time separated in time periods (around 3 hours),
- ▶ One set of variables per scenario,
- Nonanticipativity constraints,
- ► Expected values of the objective functions.

EXACT SOLUTION METHOD

Single Level formulation

- ► Optimality conditions (primal,dual and complementarity constraints) of the follower,
- ► Complementary slackness constraints → linearized using binary variables,
- ► Objective function is linearized using the follower's dual objective function,
- ► Single level MIP.

Context

Four appliances $\{1, 2, 3, 4\}$:

our appliances $\{1, 2, 3, 4\}$:

- Appliance 1, $\beta_1^{max} = 1$, $E_1 = 1.5$,
- Appliance 2, $\beta_2^{max} = 1$, $E_2 = 2$,
- Appliance 3, $\beta_3^{max} = 1$, $E_3 = 2.5$,
- Appliance 4, $\beta_4^{max} = 1$, $E_4 = 3$.

BASE EXAMPLE

Two scenarios, similar up to h = 7.

Energy storage capacity : $S^h \in [0, 1]$, $\rho^c = 0.9$.

BASE EXAMPLE

Energy supply costs for the leader, one competitor.

Context

BASE EXAMPLE

Leader's optimal prices, competitor's prices and energy supply costs.

BASE EXAMPLE

What we thought:

Context

What we thought:

What happened:

PARAMETERS OF THE TEST INSTANCES

- ▶ 1 customer owning 5, 10 or 20 appliances (500-3000W each),
- ▶ 1 to 4 time periods on 6 or 12 hours,
- ► Energy costs based on SPOT market prices : 40-70€/MWh,
- ► Competitor's prices from 0.1 to 0.2 €/kWh,
- Renewable energy production: smartflowerTM POP+,
 2.31 kWp → 2-3 MWh/year,
 Storage size: 2,3 kWh,
 3 sizes, 3 starting states

▶ 5 instances for each parameter setting \rightarrow 1080 instances.

Two usual bounds in stochastic programming.

VSS

- ► Value of stochastic solution.
- Optimal solution on an average scenario.
- ► 1. Optimal prices on the average scenario.
 - Follower's optimal reaction to these prices
 → EEV.
 - 3. VSS = STO EEV.

EVPI

- ► Expected value of perfect information.
- ► The decision-makers know which scenario will occur.
- ► 1. Optimal solution for each scenario.
 - 2. Expected value on all scenarios $\rightarrow WS$.
 - 3. EVPI = WS STO.

Usually, $EEV \leq STO \leq WS$.

STO-VSS-EVPI

Context

Conclusion

Context

Counter-intuitive, but normal in a bilevel context.

COMPUTATION TIME

Time limit: 1000 s. Larger times on larger instances: 12 hours, 4 time periods (16 scenarios), 20 appliances.

PROSPECTS

What we did

- ► Innovative approach for DSM,
- Explicit integration of the customer response into the optimization process of the supplier,
- Integration of storage capacities, renewable energy and the related uncertainty,

What we intend to do

- ► Stochastic approach,
 - ► More tests,
 - ► Development of heuristics,
- ► Multi-leader approach.

Context

BASE EXAMPLE

Energy consumption of appliances 3 and 4 in scenarios 1 and 2.

0.8

Energy consumption of device 3 in scenario 2

■ Storage

■ Leader

Renewable

■ Competitor

STO-VSS-EVPI

GAPS

BATTERY PARAMETERS

