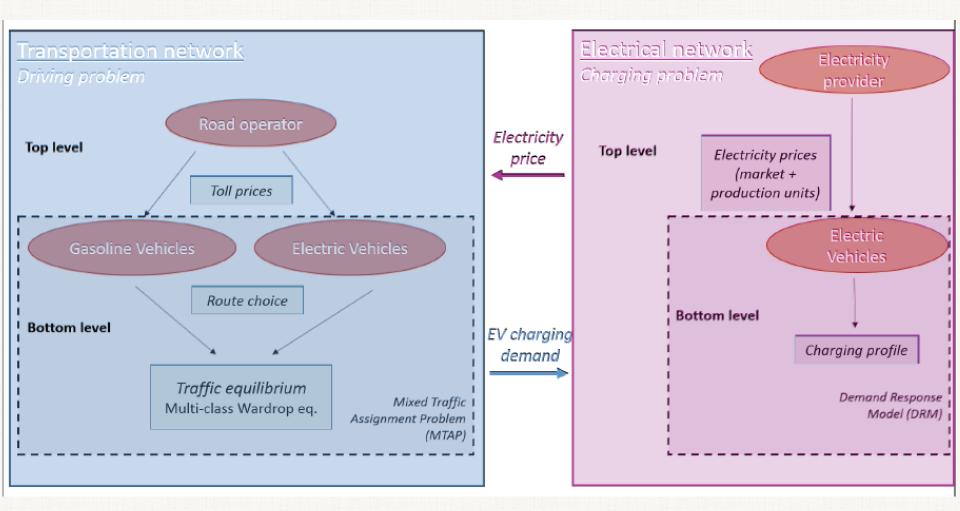
Efficient coupled Energy-Transport Management for Smart Cities

Y. Hayel^{*} (Université d'Avignon) O. Beaude⁺ (EDF R&D)

PGMO Days 2016, EDF Lab' Paris Saclay

* yezekael.hayel@univ-avignon.fr
* olivier.beaude@edf.fr


Context

- Integrated network management and energy planning
- Coupled two main actors in Smart cities: Transportation Planner and Energy Department
- **Goal**: design a model which integrates the couple decision processes of these actors, taking into account consumers (particularly EV) behaviors.

Figure: Urban transportation in London (www.c40.org)

Global problem

Mixed Traffic Assignment Problem

- Two types of cars : gasoline and electric.
- For each O-D pair k two demands: σ_g^k and σ_e^k .

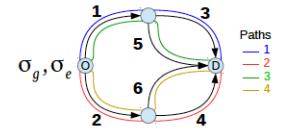


Figure: Network 1

- Travel cost function = travel time + operating cost.
- Operating cost depends on the car's type and on the link.
- Typical of operating cost: energy cost, tolls.

The generalized traffic cost function

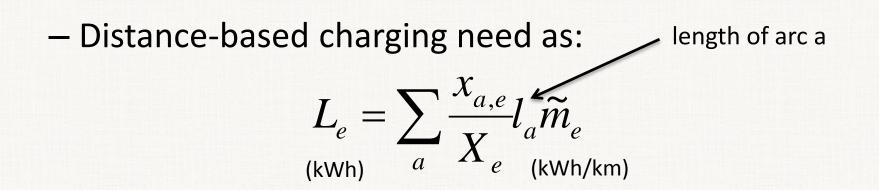
$$c_{a,i}(x,t) = t_{a,i} + \tau d_a(x_a)$$

$$f_{a,i}(f/h) * h$$

$$d_a(x_a) = d_a^0 \cdot (1 + \alpha \cdot (\frac{x_a}{C_a})^\beta), \forall a \in \mathcal{A}$$

Resolution method

- Equilibrium can be found using CCM like Frank-Wolfe method
- This method is very slow (>250 000 iterations).
- Based on the observation that many flows are null on several arcs at equilibrium, we proposed an heuristic


From Wardrop equilibrium to EV charging need

Output of the bilevel transport problem gives

- Time-based charging need as:

$$L_e = \sum_{a} \frac{X_{a,e}}{X_e} d_a(x_a) m_e$$
(kWh/h)

OR

EV electricity consumption scheduling problem

Following [Mohsenian-Rad 2010]

$$\min_{(l_{e1},\ldots,l_{eT})} \sum_{t=1}^{T} f_t(l_{e,t})$$

s.t.

(i) $\sum_{t=1}^{T} l_{e,t} = L_e$

(*ii*) $\forall t, l_e^{min} \leq l_{e,t} \leq l_e^{max}$

(iii) Other charging constraints

[Impact / cost for electricity system expressed with fare / flexibility signal f_t]

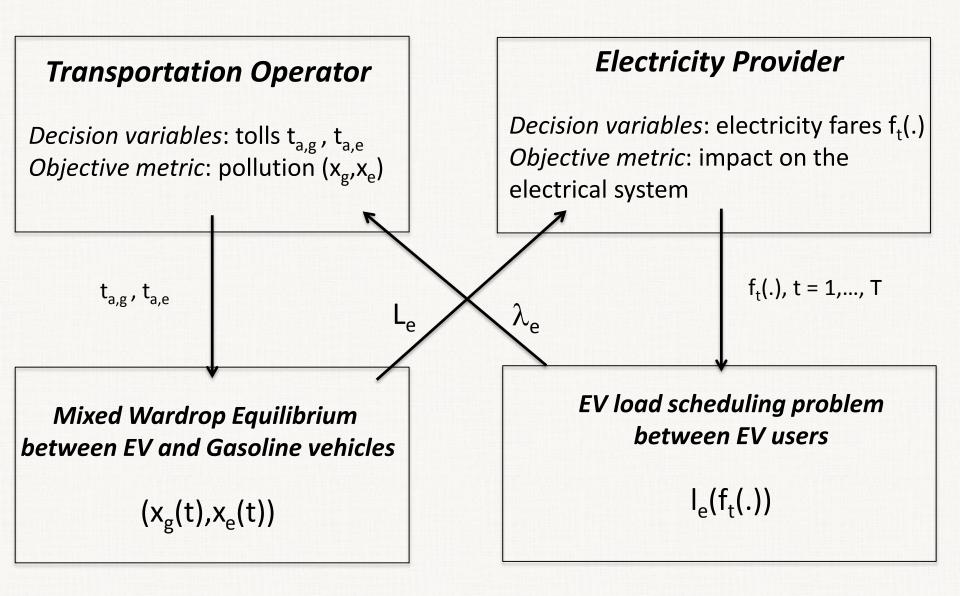
[EV energy need (next trip)]

[Charging power constraints]

[EV battery aging, ...]

[Mohsenian-Rad 2010] A.-H. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, and A. Leon-Garcia. "Autonomous Demand Side Management Based on Game-Theoretic Energy Consumption Scheduling for the Future Smart Grid". *IEEE Trans. On Smart Grid*, vol.1, no. 3, pp 320-331, 2010.

From EV charging to EV driving... again !


Price of kWh when driving...

$$\lambda_{e} = \frac{\sum_{t=1}^{T} f_t(l_{e,t})}{X_e L_e}$$

... in your driving generalized cost

$$c_{a,e}(x,t) = t_{a,e} + \tau d_a(x_a) + \lambda_e m_e d_a(x_a)$$

Coupling factors and bilevel problems

On the (research) road...

Thank you