A Multiobjective approach for demand side management in smart grids

Zineb Garroussi^{1,2} Rachid Ellaia^{1,2} El-Ghazali Talbi^{2,3}

¹Laboratory of Study and Research in Applied Mathematics, Mohammadia School of Engineering. BP. 765, Ibn Sina Avenue, Mohammed V University, Rabat, Morocco ²Inria Lille - Nord Europe, DOLPHIN Project-team, 59650 Villeneuve dAscq, France. ³Université Lille 1, LIFL, UMR CNRS 8022, 59655 Villeneuve dAscq cedex, France zinebgarroussi@emi.ac.ma

In collaboration with Jean-Yves Lucas (EDF)

Table of Contents

- 1. Introduction
- 2. Related works
- 3. Mathematical Model
- 4. Multi-objective Evolutionary Algorithm
- 5. Input Data & Experimental results
- 6. Conclusions and perspectives

Wholesale Electricity Market vs Retail Electricity Market

- In the wholesale electricity market, the cost of the electricity supply changes substantially depending on the season and time of day.
- In the retail electricity market, consumers usually paid their electricity consumption based on static prices.
- The electricity demand remains relatively unresponsive to the wholesale prices.
- Need massive investment of extra production capacities and distribution networks.

Emerging smart grid technologies encourage demand side management of electricity consumption

Traditional grid vs Smart grid

- One-way power flow,
- Centralized distribution,
- Simple interaction.

Source: www.epri.com

Smart grid: efficient supply of electricity, durable, economic, viable and secure.

- Distributed heterogeneous generation,
- Two-way information flow,
- Two-way power flow,
- Smart meters,
- Real-time interaction.

Source: www.epri.com

Demand side management

- Demand side management (DSM) is a key for future energy management.
- Demand side management refers to the policies that are intended to either curtail or shift energy consumption with the aim to achieve financial, societal and environmental **benefits**.

Benefits of DSM :

- Cost reduction,
- Load factor improvement,
- Managing energy demand-supply balance with the local energy generation and storage system,
- Carbon emission reduction,
- Energy efficiency.

Demand side management

Home Energy management system

- Residential sector : 14% of the total energy consumption 2040
- An automated home energy management system allow:
 - Automate the consumers' electricity use in response to the grid, weather conditions, and the desired comfort level.
 - Schedule the electricity used during on-peak periods through some demand response techniques, including peak shaving, flexible loads shifting, and valley filling.

Table of Contents

- 1. Introduction
- 2. Related works
- 3. Mathematical Model
- 4. Multiobjective Evolutionary Algorithm
- 5. Data
- 6. Results
- 7. Conclusions and perspectives

Related work I

- [Ha et al., 2006]
 - Tackles the anticipation layer of a home automation system.
 - The problem is formulated as a constraint satisfaction problem.
 - Two objectives are considered: the energy cost and the user comfort.
 - The thermal comfort criterion was defined by the threshold and treated as a constraint.
 - NP-Hard complexity of the problem \rightarrow Tabu Search (TS) is applied,
 - Hierarchical optimization: minimizing a penalty function of constraint violation in a first phase and the energy cost in the second phase once a feasible solution was found.
 - Relatively high computation time to schedule only two electricity consumption tasks and two heating systems.
 - The TS algorithm settings are problem dependent, and different strategies are proposed to deal with all situations.
 - One home

Related work II

- [Allerding et al., 2012]
 - A non linear formulation of a simple electrical load management in smart
 - homes where appliances have a non linear time varying power consumption.
 - Customized evolutionary algorithm combined with a local search technique.
 - No Thermal comfort consideration.
- [Soares et al., 2014]
 - Multiobjective genetic approach.
 - Two objectives : electricity bill and the end-user's dissatisfaction.
 - One home.
- [Zhu et al., 2015]
 - A cooperative particle swarm optimization (PSO)
 - Set of smart homes.
 - Time shiftable devices and thermal devices.
 - Coordination between homes leads to reduce the electricity cost and avoid peak rebounds.
 - Scalarization of objectives.

Table of Contents

- 1. Introduction
- 2. Related works
- 3. Mathematical Model
- 4. Multiobjective Evolutionary Algorithm
- 5. Data
- 6. Results
- 7. Conclusions and perspectives
- 8. References

Proposed Model

- Schedule the controllable appliances in **multi-home** context over one day horizon.
- The algorithm schedules the household appliances, ensures a comfort level, as well as flattens the total aggregated load curve of all houses.
- Two kinds of household appliances
 - Time shiftable appliances (TSA)
 - Thermal appliances (TA)
- Decision variables
 - Task scheduling: when to activate the electric components
 - Energy management. amount of energy that can be allocated to each electrical component or (consumer) at each time slot.

Proposed Model

• Three objectives

- Min total electricity cost
- Min Discomfort
- Avoiding peak rebounds
 - Standard deviation of electricity consumption
- The discomfort is divided in two parts :
 - Timing discomfort : modeled by lowering the delay time in the use of time shiftable appliances due to the load shifting.
 - Thermal discomfort: attribute a penalty to deviations from the desired thermal state.

Notations

t is the time slot indice,

h is the house indice,

 ${\cal T}$ is the number of time slots representing the scheduling horizon,

H is the number of houses,

 c_t is the electricity price of the grid at time slot t

a is the appliance indice,

 ${\mathcal A}$ set of time shiftable appliances,

 $\ensuremath{\mathcal{C}}$ set of thermal appliances,

 $P_{h,t}^{a}$ is the power consumed by the appliance *a* at time slot *t* in the h - th house,

 $U_{TSA}^{h,a}$ is the delay time of the a - th TSA of the h - th house,

 $U_{TA}^{h,c}$ is the discomfort level of c - th TA of the h - th house.

Objectives functions

• The multi-objective optimization problem is formulated as follows: $F = \min \sum_{r=1}^{H} \sum_{r=1}^{T} \sum_{r=1}^{P^{2}} \sum_{r=1}^$

$$F_{cost} = \min \sum_{h=1}^{} \sum_{t=1}^{} \sum_{a \in \mathcal{A} \cup \mathcal{C}}^{} P_{h,t}^{a} \times c_{t}$$

$$F_{discomfort} = \min \frac{1}{H} \sum_{h=1}^{H} \sum_{a \in \mathcal{A}}^{} \frac{U_{TSA}^{h,a}}{a} + \frac{1}{H} \sum_{h=1}^{H} \sum_{c \in \mathcal{C}}^{} \frac{U_{TA}^{h,c}}{c}$$

$$F_{std} = \min \sqrt{\frac{\sum_{t=1}^{T} (\sum_{a \in \mathcal{A} \cup \mathcal{C}}^{} P_{h,t}^{a} - Ideal)^{2}}{T}}$$

• Where Ideal is the average load for all household appliances:

$$Ideal = \frac{\sum_{h=1}^{H} \sum_{t=1}^{T} \sum_{a \in \mathcal{A} \cup \mathcal{C}} P_{h,t}^{a}}{T}$$

Time shiftable appliances (TSA)

$$U_{TSA}^{h,a} = \begin{cases} 0 & \text{if } ST_{min}^{h,a} \leq ST_{current}^{h,a} \leq PS^{h,a} + D_{work}^{h,a} \\ \frac{ST_{current}^{h,a} - PS^{h,a}}{ET_{max}^{h,a} - D_{work}^{h,a} - PS^{h,a}} \times 100, & \text{if } PS^{h,a} + D_{work}^{h,a} < ST_{h,current}^{a} \leq ET_{max}^{h,a} - D_{work}^{h,a} \end{cases}$$

- $ST_{current}^{h,a}$ is the current starting time,
- $ST_{min}^{h,a}$ is the minimum starting time,
- *PS^{h,a}* is the preferred starting time,
- ET^{h,a}_{max} is the maximum ending time,
- D^{h,a}_{work} is the processing time duration of the a – th TSA of the h – th house.

Thermal appliances

• Indoor temperature model: at every time slot t of the household h [Althaher et al., 2015]:

$$T_{h,t+1}^{in} = \epsilon T_{h,t}^{in} + (1-\epsilon) \left(T_{h,t}^{out} \pm \frac{COP \cdot p_{h,t}^{hvac}}{A} \right)$$

- $\bullet \ \epsilon$ is the inertia factor,
- A is the thermal conductivity (kW/C),

- COP is the coefficient of performance,
- $T_{h,t}^{out}$ is the outdoor temperature at time slot t of the household h.

Illustration of thermal appliances appliances comfort level parameters :

Discomfort level of HVAC

• The discomfort level of the HVAC

$$U_{TA}^{h,HVAC} = \frac{100}{T} \sum_{t}^{T} \frac{d_{h,t}^{in}}{\Delta T_{h,max}^{in}}$$

$$\Delta T_{h,max}^{in} = max(T_{h,t}^{des} - T_{h,min}^{in}, T_{h,max}^{in} - T_{h,t}^{des})$$

$$d_{h,t}^{in} = \begin{cases} T_{h,t}^{des} - T_{h,t}^{in} & \text{if } T_{h,min}^{in} \leq T_{h,t}^{in} < T_{h,t}^{des} - \Delta T_{L}^{in} \\ 0 & \text{if } T_{h,t}^{des} - \Delta T_{h,L}^{in} \leq T_{h,t}^{in} < T_{h,t}^{des} + \Delta T_{h,U}^{in} \\ T_{h,t}^{in} - T_{h,t}^{in} & \text{if } T_{h,t}^{des} + \Delta T_{U,h}^{in} < T_{h,t}^{in} \leq T_{h,max}^{in} \\ \Delta T_{h,max}^{in}, & \text{otherwise} \end{cases}$$

- $T_{h,min}^{in}$ is the minimal temperature,
- $T_{h,max}^{in}$ is the maximal temperature,
- $T_{h,t}^{des}$ is the desired temperature,

- $\Delta T_{h,L}^{in}$ is the lower dead band limits,
- $\Delta T_{U,h}^{in}$ is the upper dead band limits.

Table of Contents

- 1. Introduction
- 2. Related works
- 3. Mathematical Model
- 4. Multi-objective Evolutionary Algorithms
- 5. Data
- 6. Results
- 7. Conclusions and perspectives
- 8. References

Pareto dominance [Pareto 1896]

- An objective vector z ∈ Z dominates an objective vector z' ∈ Z iff
 - $\forall i \in \{1,...,n\}, z_i \leq z_i'$
 - − $\exists j \in \{1,...,n\}, z_j < z_j'$

Non-dominated solution

(eligible, efficient, non inferior, Pareto optimal)

What is a Good Approximation?

- Approximating an efficient set is itself a bi-objective problem
- Min the distance to the Pareto front

→ well-converged efficient set approximation

Max the diversity in the objective space (and/or decision space)

➔ well-diversified efficient set approximation

Design issues of multi-objective metaheuristics

• Fitness assignment

Guide the search towards Pareto optimal solutions for a better convergence.

• Diversity preserving

 Generate a diverse set of Pareto solutions in the objective space and/or the decision space.

• Elitism

- Preservation and use of elite solutions.
- Allows a robust, fast and a monotically improving performance of a metaheuristic

A Model for Evolutionary Algorithms

Problem-dependent components

- Representation $X = [ST^{current}, P^{HVAC}]$
- Initialization (Random in feasible interval), Evaluation (3 objectives),
- Variation (1-point crossover, mutation starting time and power)
- Multi-objective specific components
 - Fitness assignment
 - Diversity preservation
 - Archiving

Metaheuristic specific components

- Selection
- Replacement
- Stopping condition

Fitness assignment: Pareto ranking

- Pareto-based fitness assignment strategies
 - Dominance rank
 (*e.g.* used in MOGA)
 - Number of solutions which dominates the solution
 - Dominance depth (e.g. used in NSGA and NSGA-II)
 - Dominance count (*e.g.* combined with dominance rank in SPEA and SPEA2)
 - Number of solutions dominated by the solution

Diversity: Statistical density estimation

Kernel methods (sharing)

 Neighborhood of a solution in term of a function taking a distance as argument

• Nearest neighbour techniques

Distance of a solution to its kth nearest neighbour (ex. Crowding)

• Histograms

 Space divided onto neighbourhoods by an hypergrid (ex. Sharing)

→ decision / objective space

histogram

EMO Algorithms as Instances of the Model

Components	NSGA-II	SPEA2	IBEA	SEEA	
Components	[Deb et al. 02]	[Zitzler et al. 01]	[Zitzler and Künzli 04]	[Liefooghe et al. 10]	
fitness assignment	dominance- depth	dom-count + dom-rank	quality indicator	none	
diversity preservation	crowding distance	k th nearest neighbor	none	none	
archiving	none	fixed-size archive	none	unbounded	
selection	binary tournament	elitist selection	binary tournament	elitist selection	
replacement	elitist replacement	generational replacement	elitist replacement	generational replacement	
stopping condition	number of generations	number of generations	number of generations	user-defined	

Table of Contents

- 1. Introduction
- 2. Related works
- 3. Mathematical Model
- 4. Multiobjective Evolutionary Algorithm
- 5. Data
- 6. Results
- 7. Conclusions and perspectives
- 8. References

Data I

- The number of households is H = 5
- The 24 hour day-time is divided into T = 96 equal time slots, each time slot t ∈ {1, ..., T } is 15 mn.
- Time-varying prices

• Outdoor temperature curve.

Data II

• Parameter settings of TSA (Time Shiftable Appliances)

Time slot parameter Time shiftalbe appliance a	ST ^{h,a} _{min}	$ET_{max}^{h,a}$	$D^{h,a}_{work}$	PS ^{h,a}	Power load profiles
Electric clothes washer (ECW)	20	96	3	24	[0.52, 0.65, 0.52]
Electric clothes dryer (ECD)	20	96	4	24	[2.95, 2.91, 2.90, 0.19]
Electric dishwasher(EDW)	20	96	7	24	[1.2, 1.2, 0.2, 1.1, 0.68, 0.8, 0.6]

• The HVAC settings data are taken from [Althaher et al., 2015]

 $(P_{h,max}^{HVAC} = 3.5kW, COP = 2.5, \epsilon = 0.98, A = 0.45kW/°C), T_{h,min}^{in}, T_{h}^{des}, T_{h,max}^{in}, \Delta T_{h,L}^{in} \text{ and } \Delta T_{U,h}^{in} \text{ are } 15°C, 20°C, 24°C, 2, \text{ and } 3 \text{ respectively.}$

- RACE tool for tuning EA parameters: Population size is 100, Number of iterations is 100, Crossover probability is 0.25, Mutation probability is 0.35.
- All the simulations are carried out with
 - ParadisEO 2.0.1 metaheuristic framework [Talbi, 2009] <u>http://paradiseo.gforge.inria.fr</u>
 - Executed on Intel Core i3 380M 2.53 GHz personal computer with 4.0 gigabyte of RAM

Table of Contents

- 1. Introduction
- 2. Related works
- 3. Mathematical Model
- 4. Multiobjective Evolutionary Algorithm
- 5. Data
- 6. Experimental Results
- 7. Conclusions and perspectives
- 8. References

Simulation results

The pareto optimal front in the two (F_{cost} and $F_{discomfort}$) and (F_{cost} , $F_{discomfort}$ and F_{std}) objective spaces.

Solutions	Cost (Cents)	Discomfort (%)	STD (kW)	Mean Power (kW)	Maximum peak (kW)	Runtime (s)		
Case I (Two objectives)								
Solution A	513.412	41.9427	3.00948	8.5504	22.4679	6.22		
Solution B	569.159	10.1546	3.07063	9.1471	21.4435	0.55		
Case II (Three objectives)								
Solution C	528.72	48.15560	3.036960	8.9053	18.5217			
Solution D	603.545	7.321010	2.506480	9.7048	16.3013	9.12		
Solution E	561.982	31.7631	1.95812	9.0863	15.0263			

Results

- The power transmitted from the grid to the TSA
- The total power demand,
- The mean indoor temperature of all houses.

- The solution (A) is the most favorable economically.
- The maximum power peak was at its highest level
- Mean indoor temperature is below the dead band lower limit for most of the time slots.

Experimental results

- The mean indoor temperature is between the dead band lower limit and the desired temperature for most of the time slots to guarantee the preferred thermal comfort
- Scheduling of TSA current starting times is near to the preferred starting times

• Solution (E) is the most favorable from the point of view of the grid with the lowest maximum peak and minimal standard deviation

Table of Contents

- 1. Introduction
- 2. Related works
- 3. Mathematical Model
- 4. Multi-objective Evolutionary Algorithms
- 5. Data
- 6. Results
- 7. Conclusions and perspectives

Conclusions

- A multi-objective optimization model to schedule the controllable appliances in multi-home context.
 - Electricity cost
 - Discomfort
 - Peak rebounds
- Time shiftable appliances (TSA) and thermal appliances (TA)
- Multi-objective evolutionary algorithms to generate the Pareto front

Perspectives

- Application to large scale problems (thousands of homes)
- Extending mathematical models
 - Local energy production (ex. Photovoltaic)
 - Storing devices (battery)
- Hybrid optimization algorithm Matheuristic
 - Evolutionary algorithm (discrete) + mathematical programming (continuous)
- Multi-criteria decision making: A-posteriori decision making
- Uncertainty management: price, production, ...