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Wholesale Electricity Market vs Retail
Electricity Market

* In the wholesale electricity market, the cost of the electricity supply
changes substantially depending on the season and time of day.

* In the retail electricity market, consumers usually paid their electricity
consumption based on static prices.

* The electricity demand remains relatively unresponsive to the wholesale
prices.

* Need massive investment of extra production capacities and distribution
networks.
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Emerging smart grid technologies encourage demand side management of
electricity consumption



Traditional grid vs Smart grid

* One-way power flow,
5 * Centralized distribution,
& =) ¢ Simple interaction.

Source: www.epri.com

Smart grid: efficient supply of electricity, durable, economic, viable and secure.
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Demand side management

@ Demand side management (DSM) is a key for future energy
management.

@ Demand side management refers to the policies that are intended to
either curtail or shift energy consumption with the aim to achieve
financial, societal and environmental benefits.

@ Benefits of DSM :

o Cost reduction,

o Load factor improvement,

o Managing energy demand-supply balance with the local energy
generation and storage system,

o Carbon emission reduction,

o Energy efficiency.



Demand side management

Taxonomy of Residential DSM Optimization Modal
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Home Energy management system

e Residential sector : 14% of the total energy consumption - 2040

* An automated home energy management system allow:

— Automate the consumers’ electricity use in response to the grid,
weather conditions, and the desired comfort level.

— Schedule the electricity used during on-peak periods through some

demand response techniques, including peak shaving, flexible loads
shifting, and valley filling.

Time Time Time

Peak Clipping Load Shifting Valley Filling
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Related work |

[Ha et al., 2006]

Tackles the anticipation layer of a home automation system.
The problem is formulated as a constraint satisfaction problem.
Two objectives are considered: the energy cost and the user comfort.

The thermal comfort criterion was defined by the threshold and treated as a
constraint.

NP-Hard complexity of the problem = Tabu Search (TS) is applied,

Hierarchical optimization: minimizing a penalty function of constraint violation
in a first phase and the energy cost in the second phase once a feasible
solution was found.

Relatively high computation time to schedule only two electricity consumption
tasks and two heating systems.

The TS algorithm settings are problem dependent, and different strategies are
proposed to deal with all situations.

One home



Related work Il

* [Allerding et al., 2012]
— A non linear formulation of a simple electrical load management in smart

homes where appliances have a non linear time varying power consumption.
Customized evolutionary algorithm combined with a local search technique.

— No Thermal comfort consideration.
* [Soares et al., 2014]

Multiobjective genetic approach.
Two objectives : electricity bill and the end-user’s dissatisfaction.

— One home.
e [Zhuetal.,, 2015]

A cooperative particle swarm optimization (PSO)
Set of smart homes.
Time shiftable devices and thermal devices.

Coordination between homes leads to reduce the electricity cost and avoid peak
rebounds.

Scalarization of objectives.
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Proposed Model

Schedule the controllable appliances in multi-home context over one day
horizon.

The algorithm schedules the household appliances, ensures a comfort level,
as well as flattens the total aggregated load curve of all houses.

Two kinds of household appliances
— Time shiftable appliances (TSA)
— Thermal appliances (TA)

Decision variables
— Task scheduling: when to activate the electric components

— Energy management. amount of energy that can be allocated to each electrical component
or (consumer) at each time slot.



Proposed Model

* Three objectives
— Min total electricity cost
— Min Discomfort
— Avoiding peak rebounds

* Standard deviation of electricity consumption

 The discomfort is divided in two parts :

— Timing discomfort : modeled by lowering the delay time in the use of time
shiftable appliances due to the load shifting.

— Thermal discomfort: attribute a penalty to deviations from the desired
thermal state.



Notations

t is the time slot indice,

h is the house indice,

T is the number of time slots representing the scheduling horizon,
H is the number of houses,

¢t is the electricity price of the grid at time slot t

a is the appliance indice,

A set of time shiftable appliances,

C set of thermal appliances,

F’;t is the power consumed by the appliance a at time slot t in the h — th

house,

U?r;q is the delay time of the a — th TSA of the h — th house,

UE: is the discomfort level of ¢ — th TA of the h — th house.



Objectives functions

* The multi-objective optimization problem is formulated as

follows: H T
Oflows Fmrzminy:y‘J y: P, x ¢
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 Where Ideal is the average load for all household appliances:
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Time shiftable appliances (TSA)
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Thermal appliances

* Indoor temperature model: at every time slot t of the household h
[Althaher et al., 2015]:

. _ _ COP.phve
T;:?r+1 = ET,‘,‘:’t + (1 —¢)( Tf?‘; + I !
@ ¢ is the inertia factor, @ COP is the coefficient of
performance,

@ A is the thermal conductivity
(kW /C) o Tp4" is the outdoor temperature at

time slot t of the household 5.

Illustration ot thermal appliances appliances comtort level parameters :
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Discomfort level of HVAC

e The discomfort level of the HVAC
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@ T;fif is the desired temperature,

is the minimal temperature, @ ﬁT;;’__’L is the lower dead band
limits,

o AT, is the upper dead band
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is the maximal temperature,
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Pareto dominance pareto 189

* An objective vector z € Z dominates an objective vector z’ € Z
iff

— Vi€{l,..,n},z <z’

, , Non-dominated solution
— Jj€{l,..n}, Z;< (eligible, efficient, non

inferior, Pareto optimal)

objective space fi



What is a Good Approximation?

* Approximating an efficient set is itself a bi-objective problem

e Min the distance to the Pareto front

=>» well-converged efficient set approximation

e Max the diversity in the objective space (and/or decision

space)

=>» well-diversified efficient set approximation

well-converged

>

fy

well-diversified

\/

fy

f, 4 — Pareto front
e Approximation

well-converged f,
AND
well-diversified



Design issues of multi-objective metaheuristics

e Fitness assighment

— Guide the search towards Pareto optimal solutions for a
better convergence.

e Diversity preserving

— Generate a diverse set of Pareto solutions in the objective
space and/or the decision space.

e Elitism
— Preservation and use of elite solutions.

— Allows a robust, fast and a monotically improving
performance of a metaheuristic



A Model for Evolutionary Algorithms

« Problem-dependent components
Representation X = [sTevrrent pHvAC)

Initialization (Random in feasible interval), Evaluation
(3 objectives),

Variation (1-point crossover, mutation starting time and
power)

« Multi-objective specific components
Fitness assignment

initialization

evaluation

fitness

diversity

replacement

archiving

Diversity preservation
P approx. y
Archiving

* Metaheuristic specific components
Selection
Replacement
Stopping condition

n

selection

variation




Fithess assignment: Pareto ranking

e Pareto-based fitness assighment strategies

— Dominance rank (e.g. used in MOGA)
* Number of solutions which dominates the solution
— Dominance depth (e.g. used in NSGA and NSGA-II)

— Dominance count (e.g. combined with dominance rank
in SPEA and SPEA?2)

 Number of solutions dominated by the solution
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Diversity: Statistical density estimation

Kernel methods (sharing) \<

— Neighborhood of a solution in term of a o
function taking a distance as argument

kernel

Nearest neighbour techniques

— Distance of a solution to its k™ nearest o
neighbour (ex. Crowding)

Histograms

— Space divided onto neighbourhoods by an
hypergrid (ex. Sharing)

nearest neighbor

= decision / objective space

histogram



EMO Algorithms as Instances of the Model

NSGA-II SPEA2 IBEA SEEA
Components _ _ _
[Deb et al. 02] [Zitzler et al. 01] [Zitzler and Kunzli 04] | [Liefooghe et al. 10]
fitness dominance- | dom-count + quality
_ T none
assignment depth dom-rank indicator
diversity crowding kih nearest
. : : none none
preservation distance neighbor
- ' -Siz
archiving none fixed >12€ none unbounded
archive
: binary elitist binary elitist
selection : .
tournament selection tournament selection
elitist generational elitist generational
replacement

replacement

replacement

replacement

replacement

stopping
condition

number of
generations

number of
generations

number of
generations

user-defined
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Data |

e The number of householdsisH=5

* The 24 hour day-time is divided into T = 96 equal time slots, each time slot
te{l,..., T}is15 mn.

* Time-varying prices

1] a 16 a4 az 40 il 50 Gl ?'-2 oo [iTi} i
t

Electricity price

e Outdoor temperature curve.

Cuidoor lep erature(C )

(2] -] 16 24 32 A4 448 58 (=2 ra B8O =1 k=11
Tima alot

Outdoor temperature



Data ||

Parameter settings of TSA (Time Shiftable Appliances)

Time slot
Time parameter STh2 | ETha DL‘LE PSh2 | Power load profiles
shiftalbe appliance
Electric clothes washer (ECW) | 20 96 3 24 [0.52,0.65, 0.52]
Electric clothes dryer (ECD) 20 96 4 24 [2.95,2.91,2.90.0.19]
Electric dishwasher(EDW) 20 96 7 24 [1.2,1.2,0.2,1.1,0.68,0.8,0.6]

The HVAC settings data are taken from [Althaher et al., 2015]

(PH WAL

h.max — BEEWH COP =25, =0.98, .-'El. = U.45.|'{ng C:l, T;rr_‘]mfm T;_?'esi

Tim o AT and AT[?, are 15°C,20°C,24°C, 2, and 3 respectively.

RACE tool for tuning EA parameters: Population size is 100, Number of iterations is
100, Crossover probability is 0.25, Mutation probability is 0.35.

All the simulations are carried out with

— ParadisEO 2.0.1 metaheuristic framework [Talbi, 2009] http://paradiseo.gforge.inria.fr
— Executed on Intel Core i3 380M 2.53 GHz personal computer with 4.0 gigabyte of RAM



http://paradise.gforge.inria.fr/
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Fdlsm mifiart (%)

Simulation results

The pareto optimal front in the two (Feosr and Faiscomfore) and (Feost,
Faiscomfort and Fq) objective spaces.
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Solutions | Cost (Cents) | Discomfort (%) | STD (kW) | Mean Power (kW) | Maximum peak (kW) | Runtime (s)
Case | (Two objectives)
Solution A | 513.412 41.9427 3.00948 8.5504 22.4679 6.33
Solution B | 569.159 10.1546 3.07063 0.1471 21.4435 '
Case Il (Three objectives)

Solution C | 528.72 48.15560 3.036960 8.9053 18.5217

Solution D | 603.545 7.321010 2.506480 0.7048 16.3013 9.12

Solution E | 561.982 31.7631 1.95812 0.0863 15.0263




Results

The power transmitted from the grid to the TSA
e  The total power demand,
e The mean indoor temperature of all houses.
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The solution (A) is the most favorable economically.
The maximum power peak was at its highest level

Mean indoor temperature is below the dead band lower limit for most of the time slots.



Experimental results
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Solutions (B) and (D) are the most favorable for timing and thermal comfort.

The mean indoor temperature is between the dead band lower limit and the desired
temperature for most of the time slots to guarantee the preferred thermal comfort
Scheduling of TSA current starting times isznear to the preferred starting times
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* Solution (E) is the most favorable from the point of view of the grid with the lowest
maximum peak and minimal standard deviation
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Conclusions

* A multi-objective optimization model to schedule the

controllable appliances in multi-home context.
— Electricity cost
— Discomfort

— Peak rebounds

* Time shiftable appliances (TSA) and thermal appliances (TA)

 Multi-objective evolutionary algorithms to generate the
Pareto front



Perspectives

Application to large scale problems (thousands of homes)

Extending mathematical models

— Local energy production (ex. Photovoltaic)
— Storing devices (battery)

Hybrid optimization algorithm — Matheuristic

— Evolutionary algorithm (discrete) + mathematical programming (continuous)

Multi-criteria decision making: A-posteriori decision making

Uncertainty management: price, production, ...



