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Electrical context

Generation must be strictly equal to consumption at all times

Electricity cannot be stored on an industrial scale, and
demand fluctuates heavily.

The French Electricity Transmission System Operators (RTE)
shall ensure the balance of electricity flows on the network at
all times, and an optimum management of electricity flows
across the network.

There are lot of forecasting needs: consumption, electricity
losses, market prices, wind and solar generation, from short
(up to 7 days) to long (few years) term, at different scales.

The daily coordination is facilitated by having short term
demand-supply balance predictions on a day ahead horizon.

Vincent Lefieux Nonparametric forecasting of the French load curve



Introduction MAVE modeling IBR modeling Sparse modeling

Short term load curve forecasting

The French global electricity consumption (“load”) increases
in winter due to the electrical heating, and also in summer
due to the air-conditioning.

RTE drafts its load curve forecasting taking into account
historical consumption patterns, weather forecast and daily
pricing information.

The dispatchers make the final load balancing decisions,
taking into account the most recent information, including
unexpected modifications of consumption patterns (e.g.
strikes, national sporting events) and of generation (e.g.
thermal generation unavailabilities, wind and solar generation
variations).

Modifying forecasting (decision-support) tools for a TSO is
very sensitive and costly.
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Statistics context

Actually, RTE uses a 3 steps procedure:

Step 1 RTE “corrects” the half hourly load curve by
modeling the impact of climate (temperature and
cloud cover measured at 32 weather stations) and
prices, in order to work on a time series that doesn’t
depend on exogenous variables. This step is done by
using a regression model with dependent variables
based on climate and tariff. We denote the corrected
series by Zt .

Step 2 RTE uses a SARIMA model to forecast Zt at the
horizon H: Ẑt+H .

Step 3 RTE adds the forecasts given in Step 2 with the
estimation given by the regression model using prices
and forecasts for the temperature and cloud cover.
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Electrical and statistics challenges

Modeling problematics

Parametric paradigm: rigid and not adapted to the structure of
some time series.
Nonparametric paradigm: curse of dimensionality,
interpretability.

Big data. . . and huge variability (smart grids context)
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MAVE modeling

Xia et al. (2002) proposed the Minimum Average (conditional)
Variance Estimation:

Y = g
(
BTX

)
+ ε

where :

Y ∈ R is the response variable

X ∈ Rp are p covariates

ε is a random variable in L1 (Ω,A,P).

E (ε /X ) = 0 almost surely

g : RD → R is the unknown link function

B =
(
β1, . . . , βD

)
p×D , with D ∈ {1, . . . , p}, is an unknown

matrix such BTB = ID
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MAVE estimation

Given D, Effective Dimension Reduction (EDR) B is solution of :

min
B/BTB=ID

E
[(

Y − E
(
Y
/
BTX

))2
]

Using the conditional variance of Y given BTX , σ2
B

(
BTX

)
,

minimisation problem is equivalent to :

min
B/BTB=ID

E
[
σ2
B

(
BTX

)]
With a local linear expansion, one can obtain finally:

min
B/BTB=ID ,(aj ,bj)j∈{1,...,n}

n∑
j=1

n∑
i=1

{
Yi −

[
aj + bTj B

T (Xi − Xj)
]}2

ωij

where (ωil)i∈{1,...,n} are weights between Xi and Xl .
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MAVE conclusions

Some computational (iterative algorithm for weights) and
specification difficulties (correlated data).

Tests of a partially linear MAVE modeling.

No good enough results to continue the project.

2 alternatives: IBR & sparse regression.
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IBR modeling

Joint work with P-A. Cornillon (Rennes 2), N. Hengartner (LANL),
Eric Matzner-Løber (Rennes 2)
Suppose the data (Xi ,Yi ) ∈ Rp × R are related via the following
regression model:

Yi = m(Xi ) + εi , i = 1, . . . , n

where the errors are independent of all the covariates.
It can be rewritten in vector form:

Y = m + ε

where Y = (Y1, . . . ,Yn)t , m = (m(X1), . . . ,m(Xn))t and
ε = (ε1, . . . , εn)t
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Linear smoothers

Linear smoothers, which depend on a tuning parameter λ
(trade-off between the smoothness of the estimate and the
goodness-of-fit), can be written as:

m̂ = Sλ(X )Y ,

where Sλ(X ) is an n× n smoothing matrix and m̂ = Ŷ denotes the
fitted values.
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The IBR procedure

Step 1 The pilot smoother is applied to the data
(oversmoothing the data):

m̂1 = Sλ(X )Y .

Step 2 The bias E(m̂1|X )−m = (Sλ(X )− I )m is estimated
by replacing m by a smooth linear estimate (possibly
using the same pilot smoother). The initial estimator
is then corrected by removing the estimated bias:

m̂2 = [Sλ(X ) + Sλ(X )(I − Sλ(X ))]Y .

Step k The bias estimation and bias correction steps can be
iterated to generate a sequence of bias corrected
smoothers, which gives at step k

m̂k = [I − (I − Sλ(X ))k ]Y .
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The number of iterations’ choice

The number of iterations is obtained by a Generalized Cross
Validation criterium:

GCV (k) = log σ̂k
2 − 2 log (1− tr([I − (I − Sλ(X ))k ])

n
),

where σ̂k
2 corresponds to the estimated variance of the current

residuals at step k .

Vincent Lefieux Nonparametric forecasting of the French load curve



Introduction MAVE modeling IBR modeling Sparse modeling

Practical Implementation

Based on half-hourly data (Z1, · · · ,ZT ) (T corresponds to 12am),
we use the following model to predict ZT+25, · · · ,ZT+72:

Z(T−48i)+25 = f (ZT−48i , . . . ,ZT−48i−p) + ε i > 0

where p is the memory (48 or 96).
We might consider also different models for any H ∈ [25, · · · , 72]:

Z(T−48i)+H = fH(ZT−48i , . . . ,ZT−48i−p) + εH i > 0. (1)

The IBR procedure was applied using the R package ibr (available
on CRAN).
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IBR conclusions

Some good empirical results (e.g. in 2010, the IBR MAPE is
0.98% against 1.12 % for SARIMA).

But for the moment no exogenous variable included.
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Electrical Consumption Time series

Joint work with M. Mougeot (Paris 7), D. Picard (Paris 7), K.
Tribouley (Paris 7), L. Maillard-Teyssier (RTE)
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Figure : Two weeks of electrical consumption

Vincent Lefieux Nonparametric forecasting of the French load curve



Introduction MAVE modeling IBR modeling Sparse modeling

Intraday load curves
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Figure : Functional data, Intra day load curves
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Intraday load curve
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Intra day load curve, 30’ sampling (48 pts),
Y ∈ Rn=48 (Yt , 1 ≤ t ≤ 2800)
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Intra-day load curves

0 5 10 15 20 25
3.5

4

4.5

5

5.5

6

6.5

7
x 10

4 Electrical Consumption signals

Intraday load curves for some days.

2003-10-27: dashed dot line, 2003-08-28: solid line, 2003-01-01: dot line,

2003-04-10: dashed line.
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Spot of Temperatures, Cloud Cover and Wind information

Figure : Temp., Cloud Cover spots (]39) and wind data (]293)
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Modeling each signal as a function

We investigate the problem in a supervised learning setting.

We consider each time unit signal

(Ui ,Yi ), i = 1, . . . , n

The generic consumption signal observed on the time unit:

Yi , i = 1, . . . , n

The design (here equi-distributed):

Ui =
i

n

We want to identify f (for each signal) in such a way that the
model

Yi = f (Ui ) + εi .

makes sense (has “small”errors εi ’s).
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Using a dictionary

Consider a dictionary D of functions D = {g1, . . . gp} and
Assume that f can be well fitted by this dictionary

f =

p∑
`=1

β` g` + h

where h is a “small”function (in absolute value).
The model is

Yi =

p∑
`=1

β`g`(Ui ) + h(Ui ) + ε
′
i , i = 1, . . . , n

which coincides with the linear model :

Y= Xβ + ε with X (n × p)

putting εi = h(Ui ) + ε
′
i and Gi` = g`(Ui ).

Vincent Lefieux Nonparametric forecasting of the French load curve



Introduction MAVE modeling IBR modeling Sparse modeling

High dimensional framework

Solution: β̂ = Argmin||Y − Xβ||2

- More variables than observations n << p


y1

y2

yn

 =


x11 . . . . . . x1p

xn1 . . . xnp

 ∗


β1

β2

. . .

. . .

βp

+ ε

”Fat matrix”
→ Infinity of β̂ solutions.
→ Need more assumptions on β to solve the problem
→ e.g. Lasso, Ridge
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Alternative procedure

I Learning Out of Leaders*: based on 2 Thresholding steps,

I weak complexity, sparse solution,

I Algorithm in 3 steps (normalized X column):

step compute size

1. SELECTION Find b Leaders Xb (n, b)
(threshold) b < n << p

2. REGRESSION on Leaders β̃ = (XT
b Xb)−1XT

b Y (1, b)

3. THRESHOLD the coefficients β̂ (1, Ŝ)
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Generic Dictionary

For daily load curves, a good choice happened finally to be a
mixture of the Fourier basis and the Haar basis (p = 62):

1 (1:1) constant function (1)

2 (2:24) cosine functions (with increasing frequencies) (23)

3 (25:47) sine functions (with increasing frequencies)(23)

4 (48:62) Haar functions (with increasing frequencies)(15)
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November 18th 2007

S = 12, MAPE = 0.0057 = 0, 57%.
MAPE = 1

n

∑n=48
i |Yi − Ŷi |/Yi
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Figure : 2007 11 18

left: observed signal - red line, approximated signal -blue line

right: S coefficients on the dictionary
Vincent Lefieux Nonparametric forecasting of the French load curve



Introduction MAVE modeling IBR modeling Sparse modeling

June 17th, 2009

S = 5, MAPE = 0.0147
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Figure : 2003 04 30

left: observed signal - red line, approximated signal -blue line

right: S coefficients on the dictionary
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Segmentation of the intra-day load curves
using Sparse Approximation on a Generic Dictionary

8 years of data: T = 2800 intra day load curves (n = 48)

Using the sparse approximation (same support, S = 8)

Using a clustering algorithm in 2 steps (k-means algorithm)

Segmentation of the daily signals in clusters

. . .

From Cluster to groups using calendar interpretation
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Two step Clustering results
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Figure : T = 2800 intra day load curves of size n = 48 (clustering using
S = 7 approximated coefficients)
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From clusters to groups

From clusters:
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To groups: calendar interpretation of the clusters

Months
Days 1 2 3 4 5 6 7 8 9 10 11 12

1 7 8 5 3 3 3 3 1 3 3 5 7
2 7 8 5 3 3 3 3 1 3 3 5 7
3 7 8 5 3 3 3 3 1 3 3 5 7
4 7 8 5 3 3 3 3 1 3 3 5 7
5 7 8 5 3 3 3 3 1 3 3 5 7
6 6 8 4 4 2 2 2 2 2 2 4 6
7 6 6 4 4 2 2 2 2 2 2 4 6
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Intraday Specific Dictionary

Each day t,

Yt = Xtβt + εt

With Dictionary of p functions Dt = {g t
1 , . . . g

t
p}

Final model, p = 10 (p = 14)
1 2, Shape fonctions (group centroid, previous week day Yt−7)
2 8, Climate fonctions (Temperature and Cloud Cover Indicators

computed over the 39 meteorological spots. (and Wind...(+4))

Forecast: Plug in estimated coefficients M(t), with M expert
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Conclusion

Universal approach for functional data (with ”intra day”
pattern)

Sparse approximation using

A Generic dictionary for compression and pattern extraction
Intra day specific dictionaries for approximation and prediction

Forecasting

Various experts for prediction
Agregation using exponential weights

Competitive approach compared to usual time serie analysis
with much less parameters.
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Specialized Experts focus on

1 (2) Time depending (t-1, t-7)

2 (2) climatic configuration of the day (Temperature)

3 (2) constrained climatic configuration of the day (Temperature/Cloud Covering)

4 group constraint climatic configuration of the day (Temperature/group)

5 climatic configuration of the day constrained by the type of the day (Temperature/day)

6 climatic configuration of the day constrained by a calendar group (Temperature/calendar)

7 climatic configuration of the day (Nebulosity)

8 group constraint climatic configuration of the day (Cloud Covering/group)

9 climatic configuration of the day constrained by the type of the day (Cloud Covering/day)

10 climatic configuration of the day constrained by a calendar group (Cloud Covering/calendar)
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