Building the Uncertainty

Roger J-B Wets, Mathematics, University of California, Davis & David Woodruff, G.S. Management, University of California, Davis

Workshop "Statistics for Optimization", Paris, Summer 2014

Collaborators: Ignacio Rios, Univ. de Chile, Santiago Fabian Rüdel, Univ. Duisburg-Essen, Julia Peyre, Ecole Polytechnique, Paris Cesar Silva Monroy, Sandia National Labs, New Mexico Sarah Ryan, Iowa State University, Iowa Johannes Royset, Naval Post-Graduate School, California

Building the Uncertainty

Roger J-B Wets, Mathematics, University of California, Davis & David Woodruff, G.S. Management, University of California, Davis

Workshop "Statistics for Optimization", Paris, Summer 2014

Forecasting Load & Renewables

THE DATA

... to load on day D

to be delivered-load: l(t)

= $\operatorname{fcn}(\operatorname{temp}(\tau \le t), \operatorname{dewpt}(\tau \le t), \operatorname{clcover}(\tau \le t), \operatorname{wind}(\tau \le t)), t \le 24$

... to load on day D

to be delivered-load: l(t)

= $\operatorname{fcn}(\operatorname{temp}(\tau \le t), \operatorname{dewpt}(\tau \le t), \operatorname{clcover}(\tau \le t), \operatorname{wind}(\tau \le t)), t \le 24$

BUT THAT WOULDN'T CAPTURE THE UNCERTAINTY! ONE WOULD EXPECT:

"Realistic" Forecasts

"Realistic" Forecasts

weather prediction @ 11 a.m.
 but too late!

better @ 11 p.m. ...

weather prediction @ 11 a.m.
 but too late!

better @ 11 p.m. ...

* surface wind =>? power wind

- weather prediction @ 11 a.m.
 but too late!
- * surface wind =>? power wind
- cloud cover (no historical prediction data) -- only actuals are available

- weather prediction @ 11 a.m.
 but too late!
- * surface wind =>? power wind
- cloud cover (no historical prediction data) -- only actuals are available
- model to be used for the stochastic load predictions model: SDE, time series, ??? all inappropriate

a) segmentation: season + day characteristics

a) segmentation: season + day characteristicsb) functional regression for given segment

a) segmentation: season + day characteristicsb) functional regression for given segmentc) hourly distribution of errors per segment

a) segmentation: season + day characteristics
b) functional regression for given segment
c) hourly distribution of errors per segment
HOW THIS IS CARRIED OUT (next lecture)

a) segmentation: season + day characteristics
b) functional regression for given segment
c) hourly distribution of errors per segment
HOW THIS IS CARRIED OUT (next lecture)
d) conditional distribution of errors => process

a) segmentation: season + day characteristics
b) functional regression for given segment
c) hourly distribution of errors per segment
HOW THIS IS CARRIED OUT (next lecture)
d) conditional distribution of errors => process
e) discretization of the process => scenarios

Segmentation

- * ~ similars, analogs (± standard)
 to enrich data: Wednesday rule, zone rule?
- * seasons: (factor analysis, 'heuristics')
 - * ± spring & fall : temperature
 - * winter: temperature & cloud cover
 - * summer: temperature & dew point
- * wind power (at present): handled independently based on 3TIER analogs total load ≈ load scenario - wind power scenario

Summer segment "#1"

Summer segment "#1"

Summer segment "#1"

from day d-1 \Rightarrow possible load on day d d = 14, ..., 181. regression(temp. curve, humid. curve) \Rightarrow 'expected' load curve 2. get distribution of the errors (hourly, at any time)

The Regression Problem

find a function *r* that minimizes errors (with respect to $\|\Box\|$) $\sum_{\text{days d in segment}} \sum_{\text{hours h in day}} \left\| r((tmp_{d,h},hum_{d,h})) - \log_{d,h} \right\|$

an infinite dimensional problem!

Our approach: rely on 2-dimensional epi-splines ("innovation")

- epi-splines approximate with arbitrary accuracy 'any' function
- epi-splines are completely determined by a finite # of parameters
- allows (via constraints) to include 'soft' (non-data) information

The Errors Distributions

Given segment # and associated r, for fixed hour h $e_{d,h} = \text{load}_{d,h} - r((tmp_{d,h}, hum_{d,h})), d \in \text{segment } \#$ \Rightarrow estimate the density f_h of the errors (at h in segment #) yields an overall estimate of the 'volatility' (in fact, more) another infinite dimensional problem & data might be scarce

Our approach: estimation via exponential epi-spline (novel):

 $-f_h = \exp(-s_h), s_h \text{ an epi-spline } (\Rightarrow f_h \ge 0)$

- same properties as epi-spline, could include unimodality restriction

... et voilà!

regression curve & sampling from errors distribution

... et voilà!

regression curve & sampling from errors distribution

a. how many samples? 10^3 , 10^5 ,...?

b. conditioning: @10 o'clock above or below the regression curve

actually: Building Scenario Trees

Conditioning & Discretization

a. identify all observed load curves in each sub-segment *b*. for each sub-segment: re-calculate regression and errors distribution *c*. repeat for each sub-segment @ (say, 1 p.m.) \Rightarrow sub-sub-segment