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Forecasting Load & Renewables
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... to load on day D

to be delivered-load: [(¢)
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... to load on day D

to be delivered-load: I(¢)
= fcn(temp(r < t), dewpt(t =< t), clcover(t < t), wind(t < t)), t <24

BUT THAT WOULDN’T CAPTURE THE UNCERTAINTY!
ONE WOULD EXPECT:
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Troubling Issues

* weather prediction @ 11 a.m. better @ [ioa s
but too late!

“ surface wind =>? power wind

* cloud cover (no historical prediction data) -- only
actuals are available

* model to be used for the stochastic load predictions
model: SDE, time series, ??? all inappropriate
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Stochastic Load
Process Scenarios

a) segmentation: season + day characteristics
b) functional regression for given segment

c) hourly distribution of errors per segment
HOW THIS IS CARRIED OUT (next lecture)
d) conditional distribution of errors => process
e) discretization of the process => scenarios




degmentation

* ~ similars, analogs (+ standard)
to enrich data: Wednesday rule, zone rule?

* seasons: (factor analysis, ‘heuristics’)
“ + spring & fall : temperature

“ winter: temperature & cloud cover
“ sumimer: temperature & dew point

* wind power (at present): handled independently
based on 3TIER analogs
total load = load scenario - wind power scenario



Summer segment ~#1”

Predicted temperatures
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Predicted temperatures 1 e
Boston — August 14-18, 2012

Predicted humidity levels
Boston — August 14-18, 2012

from day d-1 = possible load on day d d=14, ...,18
1. regression(temp. curve, humid. curve) = 'expected' load curve

2. get distribution of the errors (hourly, .... at any time)
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T'he Regression Problem

find a function r

E days d in segment E hours h in day

that minimizes errors (with respect to ||o))

r((tmpd,h ahumd,h)) = loadd’hH

an 1nfinite dimensional problem!

Our approach: rel

y on 2-dimensional epi-splines ("innovation")

- ep1-splines ap

proximate with arbitrary accuracy 'any' function

- ep1-splines are completely determined by a finite # of parameters

- allows (via constraints) to include 'soft' (non-data) information



The Errors Distributions

Given segment # and associated r, for fixed hour &
e,,=load, , — r((tmpd,h,humd,h)), d Esegment #

=> estimate the density f, of the errors (at z in segment #)
yields an overall estimate of the 'volatility' (in fact, more)

another infinite dimensional problem & data might be scarce

Our approach: estimation via exponential epi-spline (novel):

-f, = exp(-s,), s, an epi-spline (= f, =0)
- same properties as epi-spline, could include unimodality restriction



... et voilal

regression curve & sampling from errors distribution
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... et voilal

regression curve & sampling from errors distribution

regression curve-

Load Predictions
Boston — Aug.14, 2012
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a. how many samples? 10°,10°,...2

b. conditioning: @10 o'clock above or below the regression curve
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actually: Building Scenario Trees



Conditioning & Discretization
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Load level

a.1dentity all observed load curves in each sub-segment
b. for each sub-segment: re-calculate regression and errors distribution

c. repeat for each sub-segment @ (say, 1 p.m.) = sub-sub-segment
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