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Stochastic Optimization

1. Recourse model: min £ f(x) = E{f(£, x)}
f(f,:li) =& {f01($)+Q(§,$) if.ﬁUECl

0O otherwise

@il S5 (e iie @ lc )il

2. ~ Pricing model: min Ef(z) = E{f(&, x(£)}

() = (20(&), 21(E), - .., 27(€)), (&) ~ (€ )
information field (filtration): {A = {0,Z}, Ay,..., Ap = A}

x: = — R™, A;-measurable




Unit Commitment - Short version

Minimize > 2 P(k) P i) A c;l(k) with
ke K jEJ

> p;i(k) =D(k), Vke K
> pj(k) > D(k) + R(k), Vke€K

p;(k),p;(k) €Il, Vj € J, Vk € K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.



Unit Commitment - Short version

Minimize > 2 P(k) P i) A c;l(k) with

keK ]EJ
J generating units

> p;i(k) =D(k), Vke K

> pj(k) > D(k) + R(k), Vke€K

p;(k),p;(k) €Il, Vj € J, Vk € K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.



Unit Commitment - Short version

Minimize > 2 P(k) P i) A c;l(k) with

keEK j EJ
K time periods = J generating units

> p;i(k) =D(k), Vke K

> pj(k) > D(k) + R(k), Vke€K

p;(k),p;(k) €Il, Vj € J, Vk € K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.



Unit Commitment - Short version

production cost

Minimize > \ (k) P i) A c;l(k) with

keEK j EJ
K time periods = J generating units

> p;i(k) =D(k), Vke K

> pj(k) > D(k) + R(k), Vke€K

p;(k),p;(k) €Il, Vj € J, Vk € K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.



Unit Commitment - Short version

produc{on cost startup cost
Minimize >: :cf(k) + c;”({c) + c;l(k) with

_ keK jeJ _ :
K time periods = J generating units

> p;i(k) =D(k), Vke K

=

S " pi(k) > D(k) + R(k), Vke K
IE S

p;i(k),p;(k) €I, Vi€ J VkeK

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.



Unit Commitment - Short version

produc{on cost startup cost shutdown cost
Minimize >: :cf(k) + c;‘({c) + c?(ks/ with

_ keK jeJ _ :
K time periods = J generating units

> p;i(k) =D(k), Vke K

=

S " pi(k) > D(k) + R(k), Vke K
IE S

p;i(k),p;(k) €I, Vi€ J VkeK

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.



Unit Commitment - Short version

production cost startup cost shutdown cost

Minimize >: >:\(A:f(k) o c;”({c) + c;l(ks/ with

_ keK jeJ _ :
K time periods = J generating units

demand

> p;i(k) =D(k), VkeK
> pj(k) > D(k) + R(k), Vke€K

p;(k),p;(k) €Il, Vj € J, Vk € K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.



Unit Commitment - Short version

production cost startup cost shutdown cost

Minimize >: >:\(A:f(k) o c;”({c) + c;l(ks/ with

_ keK jeJ _ :
K time periods = J generating units

demand

power outputzpj(k) — Bk e
Si=
HE S

p;(k),p;(k) €Il, Vj € J, Vk € K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.



Unit Commitment - Short version

produc\tion cost startup cost shutdown cost
Minimize >: :cf(k) + c;‘({c) + c?(ks/ with

_ keK jeJ _ :
K time periods = J generating units

demand
power outputzpj(k) — Bk e
jeJ
max power OUt’DUtZﬁj(k) > BRI WiE e i
jeJ

p;(k),p;(k) €Il, Vj € J, Vk € K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.



Unit Commitment - Short version

produc\tion cost startup cost shutdown cost
Minimize >: :cf(k) + c;‘({c) + c?(ks/ with

_ keK jeJ _ :
K time periods = J generating units

demand
power outputzpj(k) — Bk e

g= o

spinning reserve

max power OUtPUtZﬁj(k) > D(k) + R(k), Vk € K
jeJ

p;(k),p;(k) €Il, Vj € J, Vk € K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.



Unit Commitment - Short version

produc\tion cost startup cost shutdown cost
Minimize >: :cf(k) + c;‘({c) + c?(ks/ with

_ keK jeJ _ :
K time periods = J generating units

demand
power outputzpj(k) — Bk e

g= o

spinning reserve

max power OUtPUtZﬁj(k) > D(k) + R(k), Vk € K
jeJ

p;(k),p;(k) €Il, Vj € J, Vk € K

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.




Unit Commitment - Short version

produc\tion cost startup cost shutdown cost
Minimize >: :cf(k) + c;‘({c) + c;l(ks/ with

_ keK jeJ _ :
K time periods = J generating units

demand
power outputzpj(k) — Bk e

jeJ e s
spinning reserve
max power OUtPUtZﬁj(k) > D(k) + R(k), Vk € K
jeJ
p;i(k),p;(k) €, VjeJ VkeK

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.

"Stochastic Version”




Unit Commitment - Short version

min. expectation
(actually: risk measure) eI
with penalties Minimize >4 e ) c;‘({c) + c?(ks/ with

)

production cost startup cost shutdown cost

keK jeJ
K time periods = J generating units
demand
ey e balance eq’ns

spinning reserve

max power OUtPUtZﬁj(k) - D(k;) o R(k), i
jeJ
p;i(k),p;(k) €, VjeJ VkeK

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.

"Stochastic Version”




Interchanging: E & min

Evident: with £ = {:1: . 2 = RY | measurable, ... }

min t{f(f,x(f)) ‘x < E} = *l{ min f(&, ) ‘CE S RN}
when Jz(-) € E such that P-a.s. x(§) € argmin f(&, -)

x 1s measurable, ...

But our problem is: min

{ f(&, x)}, equivalently,

min Ef(z) = E{f (& z(£))}

such that x(§) =

e a. s

x can not depend on ‘anticipated’ (future) information



Here-&-Now vs. Wait-&-See

e T

+ Basic Process: decision = observation = decision

2

!
* Here-&-Now problem! X not all contingencies can be
“protected” by available instruments/tools (in stage 1)

* Wait-&-See problem:

instruments are available to cover all contingencies
[Setve) .
choose(x;,x;) after observing random event



Stochastic Optimization: Fundamental Theorem

A here-&-now problem can be
transtormed 1n a wait-&-see
problem by introducing the

appropriate contingencies’ costs
(price of nonanticipativity)



Price of Nonantcipativity

min B{ f(Ex'2)]
G R
x§ EC’(E,x"),VE.
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min

Cx;. -E{x} Ve

w. L subspace of constant fcns

= E{w, } =0

4}{f(§,xé ,xé) = <W§ ,Xé>+ <W§gfj’/{xé}>}

such that x, €EC,, x. € C,(E,x;)



Recall

Nonanucipativity

min F f(x) =

*]{f(é,:t(f))} such that x(§) =

Nonanticipativity constraints:
i {:1: =2 — ]R'”’} C linear subspace of constant fcns

= = Recnuliplierst da N (=

B{f (&, 2(8)) +(w(&), («(&) ~E{2(€)))}

G anonin Fapaa—— i argmin{

P—a.s.

S

{z(&)} P-a.s.

{w(&€)} = 0) such that

z* € argmin {E{f (&, z(£)) + (w(), z(§))} }

rec kb

— z* € argmin{f (&, z) + (w(é),z)}}, £€E

w(.): contingencies equilibrium prices, ~ ’insurance’ prices



Dynamic Information Process

So far, x restricted to {(), =}-measurable, i.e., constant on =
Generally, as t T (possibly co) additional information is acquired
Ao={0,2} Cc Ay C--- C Ar = A, a filtration

with x; decision @Q time t depend on available information, i.e. A;-measurable

Reformulation

Let 2(€) = (zo(&),21(8), -, ar (&) E S RY, N=5,  n
No={z€E ‘ z¢ A-measurable, t =0,...7T}

Nonanticipativity constraints: x € N, (linear subspace)




Adjusted Here-&-Now

i E{ f(g,xl,xg)} such that x' €C' CR", x? EC*(E.x"), VE
x' must be G-measurable, G = o-{J,=}

x~ is A-measurable, A D G,

in general, interchange I & d 1s not valid
required: V &,x' EC',C*(E,x') = & G-measurability of constraints

Now, suppose w. are the (optimal) non-anticipativity multipliers (prices)
min B{f(&.xL.2)~ (w,.xl) + (w, B{al})]

such that xé eC' CR", xé ECz(fj,xé), V&
Interchange is now O K. , E{(wg,E{xéH} = (E{wﬁ,E{xé}) =0, yields
(V g, solve: min f(&,x',x") - (wg,x1> S EC e () )

+1,

a collection of deterministic optimization problems in R™



Finding




Progressive Hedging Algorithm

0. w’(+) such that E{w"(§)} =0, v =0. Pick p>0
1. forall &:
(x:",xz") € argmin f(§;x',x")— (W ,x')
x' EC'CR™", x> EC*(E,x')CR"™
D g E{xé’v}. Stop if ‘xé’v S

=0 (approx.)

v+1

otherwise w:" =w; + p[xg’v -X ’V], returnto 1. with v=v+1



Progressive Hedging Algorithm

0. w’(+) such that E{w"(§)} =0, v =0. Pick p>0
1. forall &:
(x:",xz") € argmin f(§;x',x")— (W ,x')
x' EC'CR", x* EC*(E,x")CR"™
D g E{xé’v}. Stop if ‘xi&’v S

=0 (approx.)

v+1

otherwise w;" =w; + p[xél_.’v — 7 1”], return to 1. with v=v +1

Convergence: add a proximal term

fEx ,x")—(wi,x') - g\xl T

2

linear rate in (x'*,w") ... eminently parallelizable



PH: Implementation

implementation: choice of p ... scenario (x), decision (+) dependent
(heuristic) extension to problems with integer variables

non-convexities: e.g. ground-water remediation with non-linear PDE recourse
asynchronous

partitioning (= different information feeds)

minB{fEx)} , fEx)=f,(X)+toe ()

5= {El,Ez,...,EN} a partitioning of =, p, = u(x,) B WV\M

E{fE0}=3 pE{fE|E,} ®Bayes)
defining g(n,x) = B{ f,E.0)| g, } ifxC, = [ C,
se=,

solve the problem as: min Eil p,8(n,x)



Mulustage Stochastic Programs

min _ . B{f(ExE)}, x(&) =(x'@).....x" (&)
filtration: A C A C..-CA,=A, A, trivial

—v-1

xEN“ ifx' A, -measurable = o-field( § )

(here &’ deterministic, x' (§) = x')

under usual C.Q. (convex case): x €X optimal if
3w L N“,wEX such that x Eargmin o, Ef (x) - E{(w,x)}
TLN < E{WEI|A,, |=0Vr=1..T
\_

w non-anticipativity prices

at which to buy the right to adjust decision (after observation)

can be viewed as insurance premiumes, ....



PH: binary variables

min(c, z) + Yz Pe(de, ye) such that
B e O WEE OpE ) e e s

binary (integer) variables: some x’s, some y¢’s.



PH: binary variables

min(c, z) + Yz Pe(de, ye) such that
B e G WEE Dy w e EE

binarv (integer) variables: some 2’s. some y¢’s.
) §

Choice of p — p; depending on cj,|z;|,... and augmentation

Variable Fixing, in particular binaries, z;(s) = constant (k iterations)
Variable Slamming: aggressive variable fixing x;(s) ~ constant (& c;x;(s))
“Sufficient” variable convergence ~ for small values of c;x;(s)

Termination criterion: variable slamming when z%(§) — 7 T1(¢) small

Detecting cycling behavior: (simple) hashing scheme



PH: binary variables

min(c, z) + Yz Pe(de, ye) such that
B e G WEE Dy w e EE

binarv (integer) variables: some 2’s. some y¢’s.
) §

Choice of p — p; depending on cj,|z;|,... and augmentation

Variable Fixing, in particular binaries, z;(s) = constant (k iterations)
Variable Slamming: aggressive variable fixing x;(s) ~ constant (& c;x;(s))
“Sufficient” variable convergence ~ for small values of c;x;(s)

Termination criterion: variable slamming when z%(§) — 7 T1(¢) small

Detecting cycling behavior: (simple) hashing scheme



Augmentation function

A
A e / G = SIS NS S d ser o = (e o
0
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Error Bounds

fEx)=f(E&x',x*) if x €C',x* EC*(E,x); += else
Stochastic Program (P):

min, _,, 434{ TS ,x)} such that x' = <}{xé}
Dual Program (D)
max _, . 4}{— J (&, W, )} such that E{w, } =0

weak duality holds: inf P = sup D = for any feasible w

—f*(5,wg) =min, :f(5,x)+<ﬂ/§,xl>,x = R”l*”z:

yields a lower bound for (P), better if w, 1s near-optimal

= rely on w* of PH-algorithm to generate lower bound.



Unit Commitment SCUC
(PH with binary variables)

ARPA-e Project
Sandia National Labs, lowa State Univ.,
Univ. of California-Davis, Alstom, New-England ISO



Transmission Network

Figure 1. Topology of the IEEE 300 node system



Transmission Network

NE-ISO net
~ 30,000 BUS

VERMONT {



ISO: Independent System Operator

FERC Federal Energy Regulatory Commission

@ In the US is an organization that is responsible for moving

electricity over large interstate areas; coordinates, controls
RTO and monitors an electricity transmission grid that is larger

with much higher voltages than the typical power company's

@ distribution grid.

Is an organization formed at the direction or recommendation

of the FERC, in the areas where an SO is established, it
ISO coordinates, controls and monitors the operation of the

electrical power system, usually within a single US State, but
sometimes encompassing multiple states.

ISO New England Inc. (ISO-NE) is an independent, non-profit RT0,
serving Connecticut, Maine, Massachusetts, New Hampshire, Rhode
Island and Vermont. Its Board of Directors and its over 400 employees
have no financial interest or ties to any company doing business in the
region's wholesale electricity marketplace.



nuclear

el

v —— '\\

Energy Sources

energy

hydro-power

thermal plants (coal, oil, shale oil, bio, rubish, ...)

gas tur

bines (natural gas, from ”cracking’)

renewa

bles (wind, solar, ..., ocean waves)

different characteristics



Uncertainties

e WEATHER: demand & supply (especially renewables)

e industrial-commercial environment (demand)
e seasonal, day of the week, time of the day

e contingencies: transmission lines, generators

El Cerrito, California (94530) Conditions & Forecast http://www.wunderground.com/cgi-bin/findweather/getForecast...

Forecast Winds.
210-20 M 20-30 M 30+ (mph) Saturday Night, Jun 30

30 Jun 2012 07:40 GMT / 30 Jun 2012 03:40 AM EDT

Conditions


file://localhost/Users/rjbw/Desktop/CADAR6
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MarkEt time Iine Operating day

Day ahead:

Post operating
reserve requirements

Prepare and
submit DA bids

Operating day:

commences.
Re- RAC process closes;
bidding new units notified.
for
Clear DA market RAC Post-DA RAC
using SCUCSCED using SCUC v
| | | | | e O I b
2000 0000
110340 1500 1700 DA —dayahead
RT —realtime
Fost results SCUC — securnty consir.
(DA energy umnit commitmemnt
and rezerves) SCED - security constr.

economic dispatch
RAC —reliability ass.

commitment
Intraday RAC Clear RT market using
- rh -
using SCUC SCED (every 5 min)
....................... I i | | | I .I i I I I I | ::I
Flri:I:l are EI'I-E| 3 0min GPEI:?.“ILE ]:|.|:|"|J.'|.'
L r -:I -

submit RT bids Post results

- (RT energy

and reserves)
MISO | MVISO [ PIM ERCOT | CAISO
Market timeline DA offers due: DA offers due: 5 | DA offers due: DA btids due DA offers: 10am Ref: A. Botterud, J. Wang, C. Monteiro, and
1lam am NoCn (reserves): DA results: lpm T e P ] !
DA results: 4pm | DA results: 11 DA results: 4pm | lpm/dpm BT offers: OH - V. Miranda “Wind Power Forecasting and
Fe-bidding due: | am RT offers due: DA results 75 min Electricity Market Operations,” available at
‘;&nﬁm e g;‘}ff;“ due: | 6pm DA ‘ir;‘-‘ﬂ“?ﬁ:“ www.usaee.org/usaee2009/submissions/Onl
DH?gumjﬂ ' o E;Tﬂfﬁu;ﬁpﬂﬁ ineProceedings/Botterud_etaI_paper.ﬁdf
OH -60 min




Short history of
ISO-management techniques

RT: deterministic optimization with LMP (dual

variables associated with demand(s) constraints).

SCUC/SCED: Lagrangian relaxation with conservative
reliability constraints

SCUC/SCED: deterministic MIP with conservative
RUT

ARPA-"E (project): “take into account uncertainty”



A collection of
stochastic-programs

DA-SCUC/SCED unit commitment  binaries
DA-RAC rebidding assessment bidding (binaries)

DA-RUT - reliability commitments (spinning, N-1)
RT - 3 min (real time adjustments) LMP’s

SCED2 - 3 or 4 hours schedule to foresee ramp ups/down, etc.

DA = day ahead



Day-Ahead Market

SCUC enforces
. gl 5 limited number
] of transmission
P].'E—dﬁ'tlnﬁ'd\ : . .
MIP | constraint list o }'ﬂP constraints on
SCUC H=Liaat A= L | SCUC | .
5 the commitment
solution.
Nodal Injections \
L SFT =
SCED = _ |
A= |
Constraint & loss |l OB |
Each hourly SCED sensitivities  a— | <
. : Q
performs SFT, which e J
tests all contingencies 5 N
in a list and for ;;fnlnﬂ - DARA
violations, imposes ) " DA Market Clearing |; Comumit.
appropriate constraints |
in SCED and resolves it.

Ref: Xingwang Ma, Haili Song, Mingguo Hong, Jie Wan, Yonghong Chen, Eugene Zak, “The Security-constrained
Commitment and Dispatch For Midwest ISO Day-ahead Co-optimized Energy and Ancillary Service Market,”

Proc. of the 2009 IEEE PES General Meeting.



Day-Ahead Market

P

Pl?—dffillfd\/

constraint list

Nodal Injections

Each hourly SCED
performs SFT, which
tests all contingencies
in a list and for
violations, imposes

DA market
=ontions

\ﬁ—f”"—.__—

Constraint &7 loss
sensitivities [

DA Market Clearing

it
DA Operating
Plan

. DARA

appropriate constraints
in SCED and resolves it.

SCUC enforces
limited number
5 5 of transmission
p| MIP 1 constraints on
SCUC |: .
the commitment

solution.

Commt.

..............................

Ref: Xingwang Ma, Haili Song, Mingguo Hong, Jie Wan, Yonghong Chen, Eugene Zak, “The Security-constrained
Commitment and Dispatch For Midwest ISO Day-ahead Co-optimized Energy and Ancillary Service Market,”
Proc. of the 2009 IEEE PES General Meeting.



Each hourly SCED
performs SFT, which
tests all contingencies
in a list and for
violations, imposes
appropriate constraints
in SCED and resolves it.

Day-Ahead Market

P

Pl‘t"—df‘fi.tlf‘d\/

\ constraint list

Nodal Injections

Constraint &7 loss
sensitivities
DA market
=ontions )
DA Market Clearing

SCUC enforces

S ; limited number
5 : of transmission
constraints on
the commitment
solution.

 DARA
;. Commnut.

..............................

Ref: Xingwang Ma, Haili Song, Mingguo Hong, Jie Wan, Yonghong Chen, Eugene Zak, “The Security-constrained
Commitment and Dispatch For Midwest ISO Day-ahead Co-optimized Energy and Ancillary Service Market,”
Proc. of the 2009 IEEE PES General Meeting.



Each hourly SCED
performs SFT, which
tests all contingencies
in a list and for
violations, imposes
appropriate constraints
in SCED and resolves it.

Day-Ahead Market

P

sto.

SCUC/ gl
SCED - Nodal IIle'CIj_Dl];-_,

Pl‘t"—df‘fi.tlf‘d\/

constraint list

Constraint &7 loss
sensitivities
DA market
=ontions )
DA Market Clearing

SCUC enforces
limited number
of transmission
constraints on
the commitment
solution.

 DARA
;. Commnut.

..............................

Ref: Xingwang Ma, Haili Song, Mingguo Hong, Jie Wan, Yonghong Chen, Eugene Zak, “The Security-constrained
Commitment and Dispatch For Midwest ISO Day-ahead Co-optimized Energy and Ancillary Service Market,”
Proc. of the 2009 IEEE PES General Meeting.



Abstract Unit Commitment

min. expectation
(actually: risk measure) et
with penalties Minimize >4 c: (k) + c?({c) & c;l(ks/ with

3]

production cost startup cost shutdown cost

keK jeJ : _
K time periods = J generating units
demand
BN OUtPUtzpj (k) = D(k)a Vk € K adjust node
ey e balance eq’ns

spinning reserve

max power OUtPUtZﬁj (k‘) - D(k) o R(k), i
jeJ
p;i(k),p;(k) €, VjeJ VkeK

II region of feasible production, all generating units, all time periods.
The specific nature of II is model-dependent.

"Stochastic Version”




Robust decisions in
a stochastic environment

<denn'1oa’\~ —

A rob TMoJd

G
5 "&v* :‘

ncer




Solution procedures

min _. B{fExE)} =min  f(x")+EQ (x")
EQ,(&x') = E{infxzewz G 8 (S ,xz)\ﬂl}
EQ, (&' (8) = Binf ,_, f(Ex 2*(E)x)| A, ]

deterministic optimization! convex when f convex random Isc function

in theory: any algorithmic procedure!

hurdles: values, (sub)gradients, "Hessians" of £ (x')+ EQ,(x")
are either not acessible or at best, prohibitively EXPENSIVE

Approaches: P* ~ P = approximating stochastic process {St = T}

sampling: a) same as approximation except P° random measure

b) SAA-strategy for 9 E{f(E.x(E)} + N,,., (x(E)



Deterministic Equivalent

min _, . B{f(E.x(&)} = E{E---{E{f@ax@)\%\"-\ﬂl\ﬂo}}}

"time-staged objective"
- O+ B &R 2@ E{ @ 2@ @A} A ]
- AOO B £ER @)+ EQEX 2 @)|A, ]
EQ,(&x' () = E{inf .., fi(Ex' 2*(®).x)| A, }
- )+ E{EQ,(Ex' 0| A, |
EQ (&) =Efinf . . f(Ex' .2+ EQ,Ex )| A |
- £+ EQ (')



Discrete Scenario 1ree




Sequential I.p. Strategy

min f,(x), x EX ER", f, linear (not essential)
f(x)=<0, i=1,...,s, f(s)=0,i=s5+1,...,m (affine)

in the s + 1 first constraints: f,(x) = sup,, f;,(x), f, = f,, affine

opt

0. v =0, pick polytope (box) K’ > x
1.x" €argmin f; on K", seti, : f, (x")=max,__ fi(x")

if f; (x")=<0,x" optimal, otherwise go to 2.

2.return to 1. with K" = KV N {<Vfiv (x"),x — xv> () = O}

when f, 1s not linear (but convex): min6 such that f,(x) -6 <0

convergence: finite # of steps or iterates cluster to optimal sol'n



SLP for Stochastic Programs

min £ (x)+ EQ,(x) st. Ax=b,x=0 (x=x")
EQ,(x)= Y~ pQ(E.x) Llarge
0, x)=inf,_ {£(Ex.x7)+(EQ,(+)]
dom EQ, =/ dom 0,('.) = {x[3" €X,. £, (E1x.6%) <

W=7 5=1

l.v=v+1, solve: minf (x)+ 6, Ax =b, x =0 such that
(feasibility cuts) GBS el
(optimality cuts) <Fk ,x> +0=zf,k=1—s

2. generate feasibility cuts: check if x Edom EQ, .
No: E, separates x from dom EQ,, goto 1. Yes, go to 3.

3. generate optimality cuts: F, EJEQ, (x"), go to 1.



Generating cutting Hyperplanes



Generating cutting Hyperplanes



Generating cutting Hyperplanes

<wa>zek



just a bit of “math”



Expectation Functionals

Expectation of R-valued functions (Fatou, monotone convergence, ... ):

o0 if P([f(€) = ool) > 0
BLf(8)} = Jz £(6)PdE) = i | J= f(§)P(d§)  otherwise,
or E{f(&)} = E{max|f(& ),O]} — F{max|—f(&),0]}, oo— oo = 0o (convention).

f:ExR*—> R, Ef:R"—> RU{oco}, assume Ef # co
e Convexity. z — f(&,x) is convex (resp. affine, sublinear), then so is E'f.

e Lower semicontinous. = — f(£, x) Isc & convex or summably bounded
below = E f lsc.

e Subdifferentials. F'f finite near x, for all £ € =, f(&, ) convex, then

PEf(x) = B{Of (¢ >}—{ [ v <d§>\vintegrable,v@)eaf@,x)}.



Theorem. Ef an expectation functional with f(&, ) convex.
Then, 2° € argmin Ef < Jv:E - R, E{v(€)} =0, v(§) € 8f(§,2°), i.e.,

z¥ € argmin v SnlE e

reR

Proof. If v(-) exists, then 0 € OF f ("), i.e., ' € argmin Ef.

On the other hand, if 0 € OEf(z"), 3v such that E{v(£)} = 0 and v(§) €
Of (&, 2°) is guaranteed by ‘Subdufferential property’.  The equivalence

v(§) € 8f(§,2°) & 2° € argmin, {f({, z) — v(§)z}

is validated by Fermat’s rule.




Theorem. Ef an expectation functional with f(&, ) convex.
Then, 2° € argmin Ef < Jv:E - R, E{v(€)} =0, v(§) € 8f(§,2°), i.e.,

z¥ € argmin v SnlE e

reR

Proof. If v(-) exists, then 0 € OF f ("), i.e., ' € argmin Ef.

On the other hand, if 0 € OEf(z"), 3v such that E{v(£)} = 0 and v(§) €
Of (&, 2°) is guaranteed by ‘Subdufferential property’.  The equivalence

v(§) € 8f(§,2°) & 2° € argmin, {f({, z) — v(§)z}

is validated by Fermat’s rule.

Knowing v allows the interchange of minimization and expectation



