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Stochastic Optimization

1. Recourse model: minEf(x) = {f(�, x)}

f(�, x) =

(
f01(x) +Q(�, x) if x ⌅ C1

⇤ otherwise

Q(�, x) = infy
�
f02(�, y)

�� y ⌅ C2(�, x)
 

2. � Pricing model: minEf(x) = {f(⇠, x(⇠)}
x(�) =

�
x0(�), x1(�), . . . , xT (�)

�
, xt(�) � xt(

!
�

t
)

information field (filtration):
�
A0 = {⇧,�},A1, . . . ,AT = A

 

xt : � ⇥ nt ,At-measurable
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adjust node 
balance eq’ns

min. expectation 
(actually: risk measure) 

with penalties



Interchanging:  & min

Evident: with E =
�
x : � � N

�� measurable, ...
 

min
�
f
�
⇠, x(⇠)

� ��x ⇥ E
 
=

�
min f(⇠, x)

��x ⇥ N
 

when ⇤x( · ) ⇥ E such that P -a.s. x(�) ⇥ argmin f(�, · )
x is measurable, ...

But our problem is: min {f(⇠, x)}, equivalently,

minEf(x) = {f
�
⇠, x(⇠)

�
}

such that x(�) = {x(⇠)} P–a.s.

x can not depend on ‘anticipated’ (future) information



Here-&-Now vs. Wait-&-See

❖ Basic Process: decision ➙ observation ➙ decision!

❖ Here-&-Now problem!        not all contingencies can be 
“protected” by available instruments/tools (in stage 1)!

❖ Wait-&-See problem:                                                 
instruments are available to cover all contingencies 
choose            after observing  random event

x1 ξ xξ
2↝ ↝

x1

(xξ
1, xξ

2 )



Stochastic Optimization: Fundamental Theorem

A here-&-now problem can be 
transformed in a wait-&-see 
problem by introducing the

appropriate `contingencies’ costs 
(price of  nonanticipativity)
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Nonanticipativity
Recall minEf(x) = {f

�
⇠, x(⇠)

�
} such that x(�) = {x(⇠)} P–a.s.

Nonanticipativity constraints:
N

a

=
�
x : � ⌅ n

 
⇤ linear subspace of constant fcns

=⇧ ⌥w : � ⌅ “multipliers” � N
a

(⇧ {w(⇠)} = 0) such that

x⇤ ⌃ argminEf =⇧ x⇤ ⌃ argmin
�

{f
�
⇠, x(⇠)

�
+ w(⇠), (x(⇠)� {x(⇠)

�
⌦}
 

=⇧ x⇤ ⌃ argmin
�

{f
�
⇠, x(⇠)

�
+  w(⇠), x(⇠)⌦}

 

P–a.s. =⇧ x⇤ ⌃ argmin
x2E

{f
�
�, x

�
+  w(�), x⌦}

 
, � ⌃ �

w(.): contingencies equilibrium prices, ⇥ ’insurance’ prices



Dynamic Information Process 
So far, x restricted to {⇧,�}-measurable, i.e., constant on �

Generally, as t%T (possibly ⇤) additional information is acquired
A0 = {⇧,�} � A1 � · · · � AT = A, a filtration

with xt decision @ time t depend on available information, i.e. At-measurable

Reformulation
Let x(�) =

�
x0(�), x1(�), . . . , xT (�)

�
: � ⇥ N , N =

PT
t=0 nt

Na =
�
x ⌅ E

��xt At-measurable, t = 0, . . . T
 

find x ⌅ Na such that Ef(x) = {f(⇠, x(⇠))} is minimized

Nonanticipativity constraints: x ⌅ Na (linear subspace)



Adjusted Here-&-Now
min E f (ξ, x1, xξ

2 ){ } such that x1 ∈C1 ⊂ !n , xξ
2 ∈C 2 (ξ, x1), ∀ξ

x1  must be G-measurable, G = σ -{∅,Ξ}
x2  is A-measurable, A ⊃G, 

in general, interchange E & ∂ is not valid
required:∀ξ, x1 ∈C1, C 2 (ξ, x1) ≠ ∅  G-measurability of constraints

Now, suppose wξ are the (optimal) non-anticipativity multipliers (prices)

min E f (ξ, xξ
1, xξ

2 ) − 〈wξ , xξ
1 〉 + 〈wξ ,E{xξ

1}〉{ }
such that xξ

1 ∈C1 ⊂ !n , xξ
2 ∈C 2 (ξ, xξ

1 ), ∀ξ

Interchange is now O.K. ,  E 〈wξ ,E{xξ
1}〉{ } = 〈E{wξ},E{xξ

1}〉 = 0,  yields

∀ξ,  solve: min f (ξ, x1, x2 ) − 〈wξ , x
1〉 s.t.   x1 ∈C1, x2 ∈C 2 (ξ, x1)

a collection of deterministic optimization problems in !n1 +n2



Finding wξ



Progressive Hedging Algorithm

0. w0 ( ·) such that E w0 (ξ ){ }= 0, ν = 0.  Pick ρ > 0

1.  for all ξ :
              (xξ

1,ν , xξ
2,ν )∈ argmin f (ξ;x1, x2 )− 〈wξ

ν , x1〉

                    x1 ∈ C1 ⊂ !n1 , x2 ∈ C 2 (ξ , x1)⊂ !n2

2. x1,ν =E xξ
1,ν{ }.  Stop if xξ

1,ν − x1,ν = 0 (approx.)

              otherwise wξ
ν+1 =wξ

ν + ρ xξ
1,ν − x1,ν&' (),  return to 1. with ν =ν +1



Progressive Hedging Algorithm

0. w0 ( ·) such that E w0 (ξ ){ }= 0, ν = 0.  Pick ρ > 0

1.  for all ξ :
              (xξ

1,ν , xξ
2,ν )∈ argmin f (ξ;x1, x2 )− 〈wξ

ν , x1〉

                    x1 ∈ C1 ⊂ !n1 , x2 ∈ C 2 (ξ , x1)⊂ !n2

2. x1,ν =E xξ
1,ν{ }.  Stop if xξ

1,ν − x1,ν = 0 (approx.)

              otherwise wξ
ν+1 =wξ

ν + ρ xξ
1,ν − x1,ν&' (),  return to 1. with ν =ν +1

Convergence:  add a proximal term

    f (ξ; x1, x2 ) − 〈wξ
ν , x1〉 −

ρ
2
x1 − x1,ν 2

linear rate in (x1,ν ,wν ) ...  eminently parallelizable



PH: Implementation
implementation: choice of ρ ... scenario (×), decision (+) dependent
(heuristic) extension to problems with integer variables
non-convexities:  e.g. ground-water remediation with non-linear PDE recourse

asynchronous

partitioning (= different information feeds)
minE f (ξ, x){ }  , f (ξ, x) = f0 (x) + ιC (ξ ,x ) (x)

S = Ξ1,Ξ2 ,…,ΞN{ }  a partitioning of Ξ, pn = µ(Ξn )

E f (ξ, x){ } = pnE f (ξ, x) Ξn{ }n∑    (Bayes)

defining g(n, x) = E f0 (ξ, x) Ξn{ } if x ∈Cn = Cξ
ξ∈Ξn

∩

solve the problem as: min png(n, x)
n=1

N
∑

Bundling



Multistage Stochastic Programs
min

x∈N a E f (ξ, x(ξ)){ }, x(ξ) = (x1(ξ),…, xT (ξ))
filtration :A 0⊂A 1⊂!⊂A T=A, A 0 trivial

x ∈N a if xt A t−1-measurable ≈ σ -field( ξ
→ν−1

)  
    (here ξ 0  deterministic, x1(ξ) ≡ x1)

under usual C.Q. (convex case): x ∈X  optimal if
∃ w ⊥N a ,w ∈X *  such that x ∈argminx∈X Ef (x) − E 〈w, x〉{ }
w ⊥N a ⇔ E w(ξ) A t−1{ } = 0,∀t = 1,…,T

w non-anticipativity prices 
    at which to buy the right to adjust decision (after observation)
    can be viewed as insurance premiums, ....



PH: binary variables
minhc, xi+

P
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Error Bounds
f (ξ , x)= f0 (ξ , x1, x2 )  if  x1 ∈ C1, x2 ∈ C 2 (ξ , x1); +∞ else
Stochastic Program (P): 

minx∈M E f (ξ , x){ }  such that x1 ≡E{xξ
1}

Dual Program (D)

max
w∈M* E − f *(ξ ,wξ ){ }  such that E{wξ} = 0

weak duality holds: infP ≥ sup D⇒  for any feasible ŵ

− f *(ξ , ⌢wξ )=minx f (ξ , x)+ ⌢wξ , x1 , x ∈ !n1+n2'
(

)
*

yields a lower bound for (P),  better if ⌢wξ  is near-optimal
⇒  rely on w*  of PH-algorithm to generate lower bound.
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Transmission Network
IEEE 300 bus network. 300 nodes, 411 edges.

Figure 1. Topology of the IEEE 300 node system

has 411 branches, and average degree (< k >) of 2.74.
Two of the branches are parallel lines, so the graph size
is: |G300| = {300, 409}. The Eastern Interconnect (EI)
data come from a NERC planning model for 2012. The
NERC EI planning models are known as MMWG (Multire-
gional Modeling Working Group) cases, and are classified
as “Critical Energy Infrastructure Information” by the US
Department of Energy. The authors have obtained permis-
sion to use these data for research purposes. The EI model
has 49,907 buses, though in our model 310 of these are
isolated from the larger sub-components. After removing
the isolates and parallel branches, we obtain a graph (GEI )
with 49,597 vertices, 62,985 links and an average degree
< k >= 2.54.

2.2. Synthetic networks

To show how power grids differ from other network
structures we generate three graphs with similar sizes to the
IEEE 300 and EI graphs: A small-world [3], preferential at-
tachment (PA) [2], and a random graph [1]. Each graph is
generated to have the same number of nodes and nearly the
same number of branches as the power grid.

The random graph is generated using the standard algo-
rithm [1, 4] with a fixed number of nodes and links.

To generate a preferential attachment/scale-free (PA)
graph with roughly n nodes and m links we modify the al-
gorithm described in [2] somewhat. For each new node a
we initially add one link between a and an existing node b
using the standard roulette wheel method. Specifically node
b is selected randomly from the probability distribution
Pa⇥b = kb/

⌅
c kc. After adding this initial link a second is

added with probability m/n� 1. Thus the addition of each
new node results in an average of 1 + (m/n � 1) = m/n
new links, producing a preferential attachment graph with

n nodes and roughly m links.
The small-world model is argued in [3] to bear some re-

semblance to power grids. To test this we generate a regular
lattice with n nodes and approximately m links. The initial
links in the regular lattice are created in roughly the same
way as the modified PA graph above. With each new node,
a link is created to a neighboring node (for node a, the first
link is to a � 1). A second link is then created to node
a� 2 with probability m/n� 1, thus giving approximately
m links in total. Note that a � 1 and a � 2 need to be ad-
justed for the first two nodes in the graph. After generating
the regular lattice in this manner random re-wiring proceeds
according to the method described in [3] until the diameter
is approximately the same as the corresponding power grid.

2.3. Measures of graph structure

There are many useful statistical measures for graphs.
Among the most useful are degree distribution [2], charac-
teristic path length [3], graph diameter [8], clustering co-
efficient [8], and degree assortativity [2]. These measures
provide a useful set of statistics for comparing power grids
with other graph structures.

The probability mass function (pmf) for node connectiv-
ity, or degree distribution, describes the diversity of connec-
tivity in a graph. While the measure has a long history, re-
cent results showing that many real networks have a power-
law degree distribution (so-called scale-free networks [2])
has emphasized the value of the measure. The extent to
which the degree distribution is fat-tailed indicates the num-
ber of hubs within the network. The degree of node i in a
graph with adjacency matrix A is:

ki =
n⇧

j=1

aij (1)

and the degree distribution is Pr(k = x) = nk/n, where nk

is the number of nodes of degree k. Often it is more con-
venient to work with the complementary cumulative distri-
bution function (ccdf). For scale free networks, where the
power-law tail starts at xmin, the ccdf is:

Pr(k ⇤ x) =
x�

min

x�+1

If the degree distribution is exponential, as found in random
graphs, a minimum value Weibull distribution provides a
better fit to the data:

Pr(k ⇤ x) = e�( x�xmin
⇥ )�

Many real networks show substantial clustering among
nodes. Watts and Strogatz [3] report that the network of
collaborations among film actors and the neural structure of
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ISO:        Independent System Operator 

RTO

ISO

FERC Federal Energy Regulatory Commission

In the US is an organization that is responsible for moving 
electricity over large interstate areas; coordinates, controls 
and monitors an electricity transmission grid that is larger 
with much higher voltages than the typical power company's 
distribution grid.

Is an organization formed at the direction or recommendation 
of the FERC, in the areas where an ISO is established, it 
coordinates, controls and monitors the operation of the 
electrical power system, usually within a single US State, but 
sometimes encompassing multiple states.

ISO New England Inc. (ISO-NE) is an independent, non-profit RTO, 
serving Connecticut, Maine, Massachusetts, New Hampshire, Rhode 
Island and Vermont. Its Board of Directors and its over 400 employees 
have no financial interest or ties to any company doing business in the 
region's wholesale electricity marketplace.



Energy Sources

• nuclear energy

• hydro-power

• thermal plants (coal, oil, shale oil, bio, rubish, . . . )

• gas turbines (natural gas, from ”cracking’)

• renewables (wind, solar, ..., ocean waves)

different characteristics



Uncertainties
• WEATHER: demand & supply (especially renewables)

• industrial-commercial environment (demand)

• seasonal, day of the week, time of the day

• contingencies: transmission lines, generators
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Market time line 

Ref: A. Botterud, J. Wang, C. Monteiro, and 
V.  Miranda  “Wind  Power  Forecasting  and  
Electricity  Market  Operations,”  available  at  
www.usaee.org/usaee2009/submissions/Onl
ineProceedings/Botterud_etal_paper.pdf 

RAC process closes; 
new units notified. 

2000 

Operating day 
commences. 

0000 

2 



Short history of  
  ISO-management techniques

RT: deterministic optimization with LMP (dual 
variables associated with demand(s) constraints).!

SCUC/SCED: Lagrangian relaxation with conservative 
reliability constraints!

SCUC/SCED: deterministic MIP with conservative 
RUT!

ARPA-”E (project): “take into account uncertainty”



A collection of  
stochastic-programs

• DA-SCUC/SCED unit commitment

• DA-RAC rebidding assessment bidding

• DA-RUT - reliability commitments (spinning, N-1)

• RT - 3 min (real time adjustments) LMP’s

• SCED2 - 3 or 4 hours schedule to foresee ramp ups/down, etc.

binaries

(binaries)

DA = day ahead



Day-Ahead Market 

Ref:  Xingwang  Ma,  Haili  Song,  Mingguo  Hong,  Jie  Wan,  Yonghong  Chen,  Eugene  Zak,  “The  Security-constrained 
Commitment and Dispatch For Midwest ISO Day-ahead Co-optimized  Energy  and  Ancillary  Service  Market,”  
Proc. of the 2009 IEEE PES General Meeting. 

SCUC enforces 
limited number 
of transmission 
constraints on 
the commitment 
solution. 

Each hourly SCED 
performs SFT, which 
tests all contingencies 
in a list and for 
violations, imposes 
appropriate constraints 
in SCED and resolves it. 
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Abstract Unit Commitment
Minimize

X

k2K

X

j2J

cPj (k) + cuj (k) + cdj (k) with

X

j2J

pj(k) = D(k), 8k 2 K

X

j2J

p̄j(k) � D(k) +R(k), 8k 2 K

pj(k), pj(k) 2 �, 8j 2 J, 8k 2 K

� region of feasible production, all generating units, all time periods.
The specific nature of � is model-dependent.

K time periods

demand

J generating units

spinning reserve

power output

startup costproduction cost shutdown cost

max power output

“Stochastic Version”

~

~~

~

adjust node 
balance eq’ns

min. expectation 
(actually: risk measure) 

with penalties



Robust decisions in 
a stochastic environment  
demand 
a robust model 
of the uncertainty.



Solution procedures 
min

x∈N a E f (ξ, x(ξ)){ } = min
x1∈!n1

f1(x
1) + EQ1(x

1)

             EQ1(ξ; x1) = E inf
x2 ∈!n2 f2 (ξ; x1, x2 ) + EQ2 (ξ; x1, x2 ) A1{ }

             EQ2 (ξ; x1, x2 (ξ)) = E inf
x3∈!n3 f3(ξ; x1, x2 (ξ), x3) A 2{ }

deterministic optimization!  convex when f  convex random lsc function 
   in theory:   any algorithmic procedure!
hurdles: values, (sub)gradients, "Hessians" of f1(x

1) + EQ1(x
1)

             are either not acessible or at best, prohibitively EXPENSIVE
Approaches: Pν ~ P⇒ approximating stochastic process ξt , t ≤ T{ }
       sampling:  a) same as approximation except Ps  random measure

                        b) SAA-strategy for ∂ E f (ξ, x(ξ)){ } + NN a (x(ξ))( )



Deterministic Equivalent

min
x∈N a E f (ξ, x(ξ)){ } = E E! E f (ξ, x(ξ)) A T!A 1 A 0{ }{ }{ }

"time-staged objective":

= f1(x
1) + E f2 (ξ; x1, x2 (ξ) +E f3(ξ; x1, x2 (ξ), x3(ξ) A2{ }A1{ } !

= f1(x
1) + E f2 (ξ; x1, x2 (ξ)) + EQ2 (ξ; x1, x2 (ξ)) A1{ }

             EQ2 (ξ; x1, x2 (ξ)) = E inf
x3∈"n3 f3(ξ; x1, x2 (ξ), x3) A 2{ }

= f1(x
1) + E EQ1(ξ; x1, x) A1{ }

             EQ1(ξ; x1) = E inf
x2 ∈"n2 f2 (ξ; x1, x2 ) + EQ2 (ξ; x1, x2 ) A1{ }

= f1(x
1) + EQ1(x

1)



Discrete Scenario Tree

ξ0

ξ1

ξ2

ξ3



Sequential l.p. Strategy
min f0 (x), x ∈X ∈!n , f0  linear (not essential)
fi (x) ≤ 0, i = 1,…, s, fi (s) = 0, i = s +1,…,m  (affine)

in the s +1 first constraints: fi (x) = supt∈T fi,t (x), fi ≥ fi,t  affine

0. ν = 0,  pick polytope (box) K 0 ∋ xopt

1. xν ∈argmin f0  on K ν ,  set iν : fiν (xν ) = max1≤i≤s fi (x
ν )

    if fiν (xν ) ≤ 0, xν  optimal, otherwise go to 2.

2. return to 1. with K ν+1 = K ν ∩ ∇fiν (xν ), x − xν + fiν (xν ) ≤ 0{ }

when f0  is not linear (but convex): minθ  such that f0 (x) −θ ≤ 0
convergence: finite # of steps or iterates cluster to optimal sol'n



SLP for Stochastic Programs
min f1(x) + EQ1(x) s.t. Ax = b, x ≥ 0  (x = x1)

    EQ1(x) = plQ1(ξ
l , x)

l=1

L
∑ L  large

Q1(ξ
l , x) = inf

x2 ∈X2
f2 (ξ l ; x, x2 ) + (EQ2 (!){ }

dom EQ1 = dom
l=1

L∩  Q1(ξ
l ,⋅) = x ∃x2 ∈X2 , f2 (ξ l ; x, x2 ) < ∞{ }l=1

L∩

0.ν = r = s = 0
1.ν = ν +1,  solve:  min f1(x) +θ, Ax = b, x ≥ 0 such that
 (feasibility cuts)          Ek , x ≥ ek , k = 1→ r

 (optimality cuts)          Fk , x +θ ≥ fk , k = 1→ s
2. generate feasibility cuts: check if x ∈dom EQ1. 
     No: Ek  separates x from dom EQ1,  go to 1.  Yes, go to 3.
3. generate optimality cuts: Fk ∈∂EQ1(x

k ),  go to 1.



Generating cutting Hyperplanes



Generating cutting Hyperplanes

xν



Generating cutting Hyperplanes

IR

 < Ek,x > ≥ ek

dom EQ

< Fk,x > ≥ fk

xν



just a bit of “math”



Expectation Functionals

f : �� n ⇤ , Ef : n ⇤  {⇧}, assume Ef ⌥⇥ ⇧

• Convexity. x �⇤ f(�, x) is convex (resp. a⇥ne, sublinear), then so is Ef .

• Lower semicontinous. x �⇤ f(�, x) lsc & convex or summably bounded
below ⌅ Ef lsc.

• Subdi�erentials. Ef finite near x, for all � ⌃ �, f(�, ·) convex, then

⇥Ef(x) = {⇥f(⇠, x)} =

⇢Z

⌅
v(�)P (d�)

��� v integrable, v(�) ⌃ ⇥f(�, x)

�
.

.

Expectation of -valued functions (Fatou, monotone convergence, . . . ):

E{f(⇠)} =

R
⌅ f(�)P (d�) =

(
⇥ if P ([f(⇠) = ⇥]) > 0R
⌅ f(�)P (d�) otherwise,

or E{f(⇠)} = E{max[f(⇠), 0]}�E{max[�f(⇠), 0]}, ⇥�⇥ = ⇥ (convention).

.



Characterization of minimizers
Theorem. Ef an expectation functional with f(�, ·) convex.
Then, x0 ⇧ argminEf ⇤⌅ ⌥ v : � ⇥ , {v(⇠)} = 0, v(�) ⇧ ⇥f(�, x0), i.e.,

x0 ⇧ argmin
x2

�
f(�, x)� v(�)x

 
⌃� ⇧ �

Proof. If v(·) exists, then 0 ⇧ ⇥Ef(x0), i.e., x0 ⇧ argminEf .

On the other hand, if 0 ⇧ ⇥Ef(x0), ⌥ v such that {v(⇠)} = 0 and v(�) ⇧
⇥f(�, x0) is guaranteed by ‘Subdu⇥erential property’. The equivalence

v(�) ⇧ ⇥f(�, x0) & x0 ⇧ argmin
x

{f(�, x)� v(�)x}
is validated by Fermat’s rule.



Characterization of minimizers

Knowing v allows the interchange of minimization and expectation

Theorem. Ef an expectation functional with f(�, ·) convex.
Then, x0 ⇧ argminEf ⇤⌅ ⌥ v : � ⇥ , {v(⇠)} = 0, v(�) ⇧ ⇥f(�, x0), i.e.,

x0 ⇧ argmin
x2

�
f(�, x)� v(�)x

 
⌃� ⇧ �

Proof. If v(·) exists, then 0 ⇧ ⇥Ef(x0), i.e., x0 ⇧ argminEf .

On the other hand, if 0 ⇧ ⇥Ef(x0), ⌥ v such that {v(⇠)} = 0 and v(�) ⇧
⇥f(�, x0) is guaranteed by ‘Subdu⇥erential property’. The equivalence

v(�) ⇧ ⇥f(�, x0) & x0 ⇧ argmin
x

{f(�, x)� v(�)x}
is validated by Fermat’s rule.


