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The Brazilian power system generation is hydro dominated (about

75% of the installed capacity) and characterized by large reser-

voirs presenting multi-year regulation capability, arranged in com-

plex cascades over several river basins. The hydro plants use

store water in the reservoirs to produce energy in the future, re-

placing fuel costs from the thermal units. Since the water inflows

depend on rainfalls, the amount of future inflows is uncertain and

cannot be predicted with a high accuracy.

The purpose of hydrothermal system operation planning is to

define an operation strategy which, for each stage of the planning

period, given the system state at the beginning of the stage,

produces generation targets for each plant.
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The Brazilian hydro power operation planning problem is a mul-

tistage, large scale (more than 200 power plants, of which 141

are hydro plants), stochastic optimization problem. On a high

level, planning is for 5 years on monthly basis together with 5

additional years to smooth out the end of horizon effect. This

results in 120-stage stochastic programming problem. Four en-

ergy equivalent reservoirs are considered, one in each one of the

four interconnected main regions, SE, S, N and NE. The re-

sulting policy obtained with the aggregate representation can be

further refined, so as to provide decisions for each of the hydro

and thermal power plants.
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Nested formulation the linear multistage problem

Min
A1x1=b1
x1≥0

cT1x1+E

 Min
B2x1+A2x2=b2

x2≥0

cT2x2 + · · ·+ E
[

Min
BTxT−1+ATxT=bT

xT≥0

cTTxT

] .
Equivalent formulation

Min
x1,x2(·),...,xT (·)

E
[
cT1x1 + cT2x2(ξ[2])...+ cTTxT (ξ[T ])

]
s.t. A1x1 = b1, x1 ≥ 0,

Btxt−1(ξ[t−1]) +Atxt(ξ[t]) = bt,

xt(ξ[t]) ≥ 0, t = 2, ..., T.

Here ξt = (ct, Bt, At, bt), t = 2, ..., T, is considered as a ran-

dom process, ξ1 = (c1, A1, b1) is supposed to be known, ξ[t] :=

(ξ1, ..., ξt) denotes history of the data process up to time t.
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Optimization is performed over feasible policies (also called de-
cision rules). A policy is a sequence of (measurable) functions
xt = xt(ξ[t]), t = 1, ..., T . Each xt(ξ[t]) is a function of the data
process up to time t, this ensures the nonanticipative property
of a considered policy.

Policy suggests a decision rule for every possible realization of
the data process.

A policy is feasible if it satisfies the feasibility constraints w.p.1,
i.e., for almost every realization of the data process.

Ideally, the multistage problem is solved if one can construct a
feasible policy minimizing the expected value of the (total) cost.
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Three levels of approximation

“Any model is wrong but some are useful”.

From a modeling point of view it is natural to assume that the

random data process has a continuous distribution. We refer to

such model as “true” or “continuous”.

Next question is how to compute the involved expectations (mul-

tivariate integrals). A standard approach is to discretize the

random process by generating a finite number of possible real-

izations (called scenarios). These scenarios can be represented

by the corresponding scenario tree.

How to construct such scenario tree?
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Simplifying assumption: we assume that the data process is

stagewise independent. That is random vector ξt+1 is in in-

dependent of ξ[t], t = 1, ..., T − 1.

In some cases stagewise dependent problems can be reformulated

in a stagewise independent form at the price of increasing number

of state variables.
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For example, suppose that only the right hand side vectors bt
are random and can be modeled as a (first order) autoregressive

process

bt = µ+ Φbt−1 + εt,

where µ and Φ are (deterministic) vector and regression matrix,

respectively, and the error process εt, t = 1, ..., T , is stagewise

independent. The corresponding feasibility constraints can be

written in terms of xt and bt as

Btxt−1 +Atxt ≤ bt, Φbt−1 − bt + µ+ εt = 0.

That is, in terms of decision variables (xt, bt) this becomes a

linear multistage stochastic programming problem governed by

the stagewise independent random process ε1, ..., εT .
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Discretization by Monte Carlo sampling (second level of

approximation)

Independent of each other random samples ξ
j
t = (cjt , B

j
t , A

j
t , b

j
t),

j = 1, ..., Nt, of respective ξt, t = 2, ..., T , are generated and the

corresponding scenario tree is constructed by connecting every

ancestor node at stage t−1 with the same set of children nodes

ξ1
t , ..., ξ

Nt
t . In that way the stagewise independence is preserved in

the generated scenario tree. We refer to the constructed problem

as the Sample Average Approximation (SAA) problem.

The total number of scenarios of the SAA problem is given by

the product N =
∏T
t=2Nt and quickly becomes astronomically

large with increase of the number of stages even for moderate

values of sample sizes Nt.
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How large should be the sample sizes N2, ..., NT in order for the

SAA problem to give a reasonable approximation of the true

problem?

Because of the exponential growth of the number of scenarios N
it is hopeless to try to solve multistage stochastic programs by

enumerating all scenarios. An alternative approach is suggested

by the dynamic programming.

Dynamic programming equations for the SAA problem

Going backward in time the so-called cost-to-go functions are

defined recursively for t = T, ...,2, as follows
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Q
j
t

(
xt−1

)
= inf

B
j
t xt−1+A

j
txt=b

j
t

xt≥0

{
(cjt)

Txt +Qt+1 (xt)
}
,

j = 1, ..., Nt, with QT+1(·) ≡ 0 and

Qt+1 (xt) =
1

Nt+1

Nt+1∑
j=1

Q
j
t+1 (xt) .

At the first stage the following problem should be solved

Min
x1

cT1x1 +Q2 (x1) s.t. A1x1 = b1, x1 ≥ 0.

The optimal value of the first stage problem gives the optimal

value of the corresponding multistage problem.
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A policy x̄t = x̄t(ξ[t]), t = 1, . . ., T , is optimal if x̄1 is an optimal
solution of the first stage problem and for t = 2, . . ., T , it holds
for every realization of the data process that

x̄t(ξ[t]) ∈ arg min
Btx̄t−1+Atxt=bt

xt≥0

{
cTt xt +Qt+1 (xt)

}
.

In the dynamic programming formulation the problem is reduced
to solving a sequence of finite dimensional problems, indexed by
t and depending on ξ[t].

For linear programs the cost-to-go (value) functions Q
j
t

(
xt−1

)
and Qt+1 (xt) are convex.

Because of the stagewise independence condition, the cost-to-
go functions Qt+1(xt) are functions of xt and do not depend on
the data process ξt.
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Curse of dimensionality
One of the main difficulties in solving the dynamic programming
equations is how to represent the cost-to-go functions in a com-
putationally feasible way.

For dimension of xt say greater than 3 and large number of
stages it is practically impossible to solve the dynamic program-
ming equations with high accuracy. Several alternatives were
suggested in recent literature.

Approximate dynamic programming (third level of approxima-
tion)
Basic idea is to approximate the cost-to-go functions by a class
of computationally manageable functions. Since functions Qt(·)
are convex it is natural to approximate these functions by piece-
wise linear functions given by maximum of cutting hyperplanes.
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Stochastic Dual Dynamic Programming (SDDP) method.

For trial decisions x̄t, t = 1, ..., T −1, at the backward step of the

SDDP algorithm, piecewise linear approximations Qt(·) of the

cost-to-go functions Qt(·) are constructed by solving problems

Min
xt∈Rnt

(cjt)
Txt + Qt+1(xt) s.t. Bjt x̄t−1 +A

j
txt = b

j
t , xt ≥ 0,

j = 1, ..., Nt, and their duals, going backward in time t = T, ...,1.

Denote by v0 and v̂N the respective optimal values of the true

and SAA problems.
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By construction

Qt(·) ≥ Qt(·), t = 2, ..., T.

Therefore the optimal value of

Min
x1∈Rn1

cT1x1 + Q2(x1) s.t. A1x1 = b1, x1 ≥ 0

gives a lower bound for the optimal value v̂N of the SAA problem.

We also have that

v0 ≥ E[v̂N ].

Therefore on average v̂N is also a lower bound for the optimal

value of the true problem.
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The approximate cost-to-go functions Q2, ...,QT and a feasible
first stage solution x̄1 define a feasible policy. That is for a real-
ization (sample path) ξ1, ..., ξT of the data process, x̄t = x̄t(ξ[t])
are computed recursively in t = 2, ..., T as a solution of

Min
xt

cTt xt + Qt+1(xt) s.t. Btx̄t−1 +Atxt ≤ bt.

In the forward step of the SDDP algorithm M sample paths
(scenarios) are generated and the corresponding x̄t, t = 2, ..., T ,
are used as trial points in the next iteration of the backward step.

It is absolutely essential for convergence of this algorithm that
at each iteration in the forward step the paths (scenarios) are re-
sampled, i.e., generated independently of the previous iteration.

Note that the functions Q2, ...,QT and x̄1 define a feasible policy
also for the true problem.
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Convergence of the SDDP algorithm

It is possible to show that, under mild regularity conditions, the
SDDP algorithm converges as the number of iterations go to
infinity. That is, the computed optimal values and generated
policies converge w.p.1 to their counterparts of the considered
SAA problem. However, the convergence can be very slow and
one should take such mathematical proofs very cautiously.

Moreover, it should be remembered that the SAA problem is just
an approximation of the “true” problem. It is possible to show
that, in a certain probabilistic sense, the SAA problem converges
to the “true” problem as all sample sizes Nt, t = 2, ..., T , tend to
infinity.
It was found in our numerical experiments that optimal solutions
of the SAA problems started to stabilize for sample sizes of about
Nt = 100, t = 2, ..., T .
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Stopping criteria

The policy value E
[∑T

t=1 c
T
t x̄t(ξ[t])

]
can be estimated in the for-

ward step of the algorithm. That is, let ξi2, ..., ξ
i
T , i = 1, ...,M , be

sample paths (scenarios) generated at a current iteration of the

forward step, and

ϑi :=
T∑
t=1

(cit)
Tx̄it, i = 1, ...,M,

be the corresponding cost values. Then E[ϑi] = E
[∑T

t=1 c
T
t x̄t(ξ

i
[t])

]
,

and hence

ϑ̄ =
1

M

M∑
i=1

ϑi

gives an unbiased estimate of the policy value.
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Also

σ̂2 =
1

M − 1

M∑
i=1

(ϑi − ϑ̄)2

estimates variance of the sample ϑ1, ..., ϑM . Hence

ϑ̄+ zασ̂/
√
M

gives an upper bound for the policy value with confidence of
about 100(1− α)%. Here zα is the corresponding critical value.

At the same time this gives an upper bound for the optimal value
of the corresponding multistage problem, SAA or the “true”
problem depending from what data process the random scenarios
were generated.

Typical example of behavior of the lower and upper bounds pro-
duced by the SDDP algorithm for an SAA problem
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8 state variables, 120 stages, 1 cut per iteration
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Theoretical analysis and numerical experiments indicate that

computational complexity of the SDDP algorithm grows fast

with increase of the number of state variables. The optimality

gap jumped from 4% to 20% when the number of state vari-

ables was increased from 4 to 8 as a result of considering an

autoregressive model.

Sensitivity to initial conditions

Individual stage costs for the risk neutral approach in two cases:

all the reservoirs start at 25% or at 75% of the maximum ca-

pacity. The yellow curve denotes the 75% initial reservoir level

and the dark green denotes the 25% initial level.
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Variability of SAA problems
Table shows the 95% confidence interval for the lower bound and
average policy value at iteration 3000 over a sample of 20 SAA
problems. Each of the policy value observations was computed
using 2000 scenarios. The last 2 columns of the table shows
the range divided by the average of the lower bound (where
the range is the difference between the maximum and minimum
observation) and the standard deviation divided by the average
value. This problem has relatively low variability (approx. 4%)
for both of the lower bound and the average policy value.

95% C.I. left Average
95%

C.I. right
range

average
sdev.

average
(×109) (×109) (×109)

Lower bound 22.290 22.695 23.100 15.92% 4.07%
Average policy 27.333 27.836 28.339 17.05% 4.12%

SAA variability for risk neutral SDDP
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Risk averse approach

How to control risk, i.e., to reduce chances of extreme costs, at
every stage of the time process.

Value-at-Risk of a random outcome (variable) Z at level α ∈
(0,1):

V@Rα(Z) = inf{t : FZ(t) ≥ 1− α},

where FZ(t) = Pr(Z ≤ t) is the cdf of Z. That is, V@Rα(Z) is the
(1− α)-quantile of the distribution of Z.

Note that V@Rα(Z) ≤ c is equivalent to Pr(Z > c) ≤ α. Therefore
it could be a natural approach to impose constraints (chance
constraints) of V@Rα(Z) ≤ c for Z = cost, chosen constant c and
significance level α at every stage of the process.
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There are two problems with such approach. It is difficult to han-

dle chance constraints numerically and could lead to infeasibility

problems.

Average Value-at-Risk (also called Conditional Value-at-Risk)

AV@Rα(Z) = inf
t∈R

{
t+ α−1E[Z − t]+

}
Note that the minimum in the above is attained at

t∗ = V@Rα(Z). If the cdf FZ(z) is continuous, then

AV@Rα(Z) = E
[
Z|Z ≥ V@Rα(Z)

]
.

It follows that AV@Rα(Z) ≥ V@Rα(Z). Therefore the constraint

AV@Rα(Z) ≤ c is a conservative approximation of the chance

constraint V@Rα(Z) ≤ c.
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In the problem of minimizing expected cost E[Z] subject to the

constraint AV@Rα(Z) ≤ c, we impose an infinite penalty for vi-

olating this constraint. This could result in infeasibility of the

obtained problem. Instead we can impose a finite penalty and

consider problem of minimization of E[Z] + κAV@Rα(Z) for some

constant κ > 0. Note that this is equivalent to minimization of

ρ(Z), where

ρ(Z) = (1− λ)E[Z] + λAV@Rα(Z)

for λ ∈ (0,1) and κ = λ
1−λ.
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This leads to the following (nested) formulation of risk averse

multistage problem.

Min
A1x1≤b1

cT1x1 + ρ2|ξ1

[
inf

B2x1+A2x2=b2
x2≥0

cT2x2 + . . .

+ρT−1|ξ[T−2]

[
inf

BT−1xT−2+AT−1xT−1=bT−1
xT−1≥0

cTT−1xT−1

+ρT |ξ[T−1]
[ inf
BTxT−1+ATxT=bT

xT≥0

cTTxT ]
]]
,

with

ρt|ξ[t]
(·) := (1− λ)E|ξ[t]

[·] + λAV@Rα|ξ[t]
(·)

being conditional analogue of ρ(·).
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The value of this problem corresponds to the total objective

ρ̄(Z1 + ...+ ZT ) = ρ|ξ[1]

(
· · · ρ|ξ[T−1]

(Z1 + ...+ ZT )
)

= Z1 + ρ|ξ[1]

(
Z2 + · · ·+ ρ|ξ[T−1]

(ZT )
)

The dynamic programming equations of the risk averse formu-

lation of the SAA program take the form

Q
j
t(xt−1) = inf

xt

{
(cjt)

Txt +Qt+1(xt) : Bjtxt−1 +A
j
txt = b

j
t , xt ≥ 0

}
,

j = 1, ..., Nt, t = T, . . . ,2, and

Qt+1(xt) = ρ

(
Q1
t+1(xt), ..., Q

Nt+1
t+1 (xt)

)
,

with QT+1(·) ≡ 0 and the first stage problem

Min
A1x1≤b1

cT1x1 + ρ
(
Q1

2(x1), ..., QN2
2 (x1)

)
.
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For ρ(·) = (1 − λ)E[·] + λAV@Rα(·), and (Z1, ..., ZN) =(
Q1
t+1(xt), ..., QNt+1(xt)

)
we have that

Qt+1(xt) =
1− λ
Nt+1

Nt+1∑
j=1

Zj + λ

Zι +
1

αNt+1

∑
j:Zj>Zι

[
Zj − Zι

] ,
where Zι is the (1 − α)-quantile of Z1, ..., ZNt+1

. Note that if

Nt+1 < (1− α)−1, then Zι = max{Z1, ..., ZNt+1
}.

A subgradient of Qt+1(xt) is given by

∇Qt+1(xt) =
1− λ
N

Nt+1∑
j=1

∇Qjt+1(xt) +

λ

∇Qιt+1(xt) +
1

αNt+1

∑
j:Zj>Zι

[
∇Qjt+1(xt)−∇Qιt+1(xt)

] .
29



These formulas allow construction of cuts in the backward step
of the SDDP algorithm. In the forward step trial points are
generated in the same way as in the risk neutral case.

Remarks
Unfortunately there is no easy way for evaluating value of the
risk objective of generated policies, and hence constructing a
corresponding upper bound. Some suggestions were made in
the recent literature. However, in larger problems the optimality
gap (between the upper and lower bounds) never approaches
zero in any realistic time. Therefore stopping criteria based on
stabilization of the lower bound (and may be optimal solutions)
could be reasonable. Also it should be remembered that there
is no intuitive interpretation for the risk objective ρ̄(cost) of the
total cost. Rather the goal is to control risk at every stage of
the process.
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It was observed in some numerical experiments that the algo-

rithm converged faster for the risk averse optimization problems

than for their risk neutral counterparts. This could be explained

by that risk penalties make the problem somewhat better condi-

tioned.

In principle it is possible to choose the parameters λ and α dy-

namically conditional on observed data realizations. This re-

quires a further investigation.

Removal of redundant cuts can reduce computational times.

31



Individual stage costs for λ = 0.15 and α = 0.05 and α = 0.1.



Reports with numerical experiments can be downloaded from:

http://www2.isye.gatech.edu/∼ashapiro/publications.html
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