
Risk Neutral and Risk Averse Multistage
Stochastic Programming.

A. Shapiro

School of Industrial and Systems Engineering,

Georgia Institute of Technology,

Atlanta, Georgia 30332-0205, USA

SESO 2014 International Thematic Week

“Smart Energy and Stochastic Optimization”

Consider a multistage decision process of the from

decision (x1) observation (ξ2) decision (x2)
..... observation (ξT) decision (xT).

(1)

Here ξt ∈ Rdt, t = 1, ..., is a sequence of vectors with ξ[t] :=

(ξ1, ..., ξt) representing history of the data process up to time t.

At time period t ∈ {1, ..., T} we observe the past, ξ[t], but future

observations ξt+1, ..., are uncertain. So our decision at time t

should only depend on information available at that time, i.e.,

xt = xt(ξ[t]) should be a function of ξ[t] and should not depend

on future observations. This is the basic requirement of nonan-

ticipativity of the decision process. A sequence x1, x2(ξ[2]), ... of

such decisions is called a policy or a decision rule.

1

Nested formulation the linear multistage problem

Min
A1x1=b1
x1≥0

cT1x1+E

 Min
B2x1+A2x2=b2

x2≥0

cT2x2 + · · ·+ E
[

Min
BTxT−1+ATxT=bT

xT≥0

cTTxT

] .
Equivalent formulation

Min
x1,x2(·),...,xT (·)

E
[
cT1x1 + cT2x2(ξ[2])...+ cTTxT (ξ[T])

]
s.t. A1x1 = b1, x1 ≥ 0,

Btxt−1(ξ[t−1]) +Atxt(ξ[t]) = bt,

xt(ξ[t]) ≥ 0, t = 2, ..., T.

Here ξt = (ct, Bt, At, bt), t = 2, ..., T, is considered as a ran-

dom process, ξ1 = (c1, A1, b1) is supposed to be known, ξ[t] :=

(ξ1, ..., ξt) denotes history of the data process up to time t.

2

Optimization is performed over feasible policies (also called de-
cision rules). A policy is a sequence of (measurable) functions
xt = xt(ξ[t]), t = 1, ..., T . Each xt(ξ[t]) is a function of the data
process up to time t, this ensures the nonanticipative property
of a considered policy. The constraints should be satisfied for
almost every realization of the random data process.

The equivalence of two formulations is based on the decompo-
sition property of the expectation operator

E[·] = E|ξ[1]

[
E|ξ[2]

[
· · ·E|ξ[T]

[·]
]]

and interchangeability of the expectation and minimization op-
erators. The nested formulation can be used to derive dynamic
programming equations.

Ideally, the multistage problem is solved if one can construct a
feasible policy minimizing the expected value of the (total) cost.

3

This formulation assumes that: (i) the probability distribution
of the data process is known (specified), (ii) the optimization is
performed on average (both, with respect to different realizations
of the random process, and with respect to time).

Numerical difficulties in solving multistage problems.

From a modeling point of view typically it is natural to assume
that the random data process has a continuous distribution. This
raises the question of how to compute the involved expectations
(multivariate integrals). A standard approach is to discretize the
random process by generating a finite number of possible real-
izations (called scenarios). These scenarios can be represented
by the corresponding scenario tree.

How many scenarios are needed in order to approximate the
”true” distribution of the random data process?

4

Note that solving the deterministic equivalent for the constructed

scenario tree does not produce by itself an implementable policy

for the ”true” problem (with continuous distributions). This is

because an actual realization of the data process could, and with

probability one (w.p.1) will, be different from scenarios used in

the constructed tree. In that case policy constructed for scenar-

ios of the tree does not tell what decision to make. Of course,

one can use only the first stage solution which is determinis-

tic (does not depend on future observations) and update it as

new observations become available - this is a rolling horizon ap-

proach. Such a rolling horizon approach requires resolving the

corresponding multistage problem at every stage as new realiza-

tion of the data becomes available.

5

“Any model is wrong but some are useful”.

From a modeling point of view it is natural to assume that the

random data process has a continuous distribution. We refer to

such model as “true” or “continuous”.

Simplifying assumption: we assume that the data process is

stagewise independent. That is random vector ξt+1 is indepen-

dent of ξ[t] = (ξ1, ..., ξt), t = 1, ..., T − 1.

In some cases stagewise dependent problems can be reformulated

in a stagewise independent form at the price of increasing number

of state variables.

6

For example, suppose that only the right hand side vectors bt
are random and can be modeled as a (first order) autoregressive

process

bt = µ+ Φbt−1 + εt,

where µ and Φ are (deterministic) vector and regression matrix,

respectively, and the error process εt, t = 1, ..., T , is stagewise

independent. The corresponding feasibility constraints can be

written in terms of xt and bt as

Btxt−1 +Atxt ≤ bt, Φbt−1 − bt + µ+ εt = 0.

That is, in terms of decision variables (xt, bt) this becomes a

linear multistage stochastic programming problem governed by

the stagewise independent random process ε1, ..., εT .

7

Discretization by Monte Carlo sampling

Independent of each other random samples ξ
j
t = (cjt , B

j
t , A

j
t , b

j
t),

j = 1, ..., Nt, of respective ξt, t = 2, ..., T , are generated and the

corresponding scenario tree is constructed by connecting every

ancestor node at stage t−1 with the same set of children nodes

ξ1
t , ..., ξ

Nt
t . In that way the stagewise independence is preserved in

the generated scenario tree. We refer to the constructed problem

as the Sample Average Approximation (SAA) problem.

The total number of scenarios of the SAA problem is given by

the product N =
∏T
t=2Nt and quickly becomes astronomically

large with increase of the number of stages even for moderate

values of sample sizes Nt.

8

If we measure computational complexity, of the ”true” problem,

in terms of the number of scenarios required to approximate true

distribution of the random data process with a reasonable accu-

racy, the conclusion is rather pessimistic. In order for the optimal

value and solutions of the SAA problem to converge to their true

counterparts all sample sizes N2, ..., NT should tend to infinity.

Furthermore, available estimates of the sample sizes required for

a first stage solution of the SAA problem to be ε-optimal for

the true problem, with a given confidence (probability), sums

up to a number of scenarios which grows as O(ε−2(T−1)) with

decrease of the error level ε > 0. This indicates that from the

point of view of the number of scenarios, complexity of multi-

stage programming problems grows exponentially with increase

of the number of stages.

9

Because of the exponential growth of the number of scenarios N
it is hopeless to try to solve multistage stochastic programs by
enumerating all scenarios. An alternative approach is suggested
by the dynamic programming.

Dynamic programming equations for the SAA problem
Going backward in time the so-called cost-to-go functions are
defined recursively for t = T, ...,2, as follows

Q
j
t

(
xt−1

)
= inf

B
j
t xt−1+A

j
txt=b

j
t

xt≥0

{
(cjt)

Txt +Qt+1 (xt)
}
,

j = 1, ..., Nt, with QT+1(·) ≡ 0 and

Qt+1 (xt) =
1

Nt+1

Nt+1∑
j=1

Q
j
t+1 (xt) .

10

At the first stage the following problem should be solved

Min
x1

cT1x1 +Q2 (x1) s.t. A1x1 = b1, x1 ≥ 0.

The optimal value of the first stage problem gives the optimal
value of the corresponding multistage problem.

A policy x̄t = x̄t(ξ[t]), t = 1, . . ., T , is optimal if x̄1 is an optimal
solution of the first stage problem and for t = 2, . . ., T , it holds
for every realization of the data process that

x̄t(ξ[t]) ∈ arg min
Btx̄t−1+Atxt=bt

xt≥0

{
cTt xt +Qt+1 (xt)

}
.

In the dynamic programming formulation the problem is reduced
to solving a sequence of finite dimensional problems, indexed
by t and depending on ξ[t]. In fact, because of the stagewise
independence, x̄t is a function of x̄t−1 and ξt.

11

For linear programs the cost-to-go (value) functions Q
j
t

(
xt−1

)
and Qt+1 (xt) are convex.

Because of the stagewise independence condition, the cost-to-
go functions Qt+1(xt) are functions of xt and do not depend on
the data process ξt.

Curse of dimensionality
One of the main difficulties in solving the dynamic programming
equations is how to represent the cost-to-go functions in a com-
putationally feasible way.

For dimension of xt say greater than 3 and large number of
stages it is practically impossible to solve the dynamic program-
ming equations with high accuracy. Several alternatives were
suggested in recent literature.

12

Approximate dynamic programming
Basic idea is to approximate the cost-to-go functions by a class of
computationally manageable functions. Since functions Qt(·) are
convex it is natural to approximate these functions by piecewise
linear functions given by maximum of cutting hyperplanes.

Stochastic Dual Dynamic Programming (SDDP) method
(Pereira and Pinto, 1991).
For trial decisions x̄t, t = 1, ..., T −1, at the backward step of the
SDDP algorithm, piecewise linear approximations Qt(·) of the
cost-to-go functions Qt(·) are constructed by solving problems

Min
xt∈Rnt

(cjt)
Txt + Qt+1(xt) s.t. Bjt x̄t−1 +A

j
txt = b

j
t , xt ≥ 0,

j = 1, ..., Nt, and their duals, going backward in time t = T, ...,1.

Denote by v0 and v̂N the respective optimal values of the true
and SAA problems.

13

By construction

Qt(·) ≥ Qt(·), t = 2, ..., T.

Therefore the optimal value of

Min
x1∈Rn1

cT1x1 + Q2(x1) s.t. A1x1 = b1, x1 ≥ 0

gives a lower bound for the optimal value v̂N of the SAA problem.

We also have that

v0 ≥ E[v̂N].

Therefore on average v̂N is also a lower bound for the optimal

value of the true problem.

14

The approximate cost-to-go functions Q2, ...,QT and a feasible
first stage solution x̄1 define a feasible policy. That is for a real-
ization (sample path) ξ1, ..., ξT of the data process, x̄t = x̄t(ξ[t])
are computed recursively in t = 2, ..., T as a solution of

Min
xt

cTt xt + Qt+1(xt) s.t. Btx̄t−1 +Atxt ≤ bt.

In the forward step of the SDDP algorithm M sample paths
(scenarios) are generated and the corresponding x̄t, t = 2, ..., T ,
are used as trial points in the next iteration of the backward step.

It is essential for convergence of this algorithm that at each
iteration in the forward step the paths (scenarios) are resampled,
i.e., generated independently of the previous iteration.

Note that the functions Q2, ...,QT and x̄1 define a feasible policy
also for the true problem.

15

Convergence of the SDDP algorithm

It is possible to show that, under mild regularity conditions, the
SDDP algorithm converges as the number of iterations go to
infinity. That is, the computed optimal values and generated
policies converge w.p.1 to their counterparts of the considered
SAA problem. However, the convergence can be very slow and
one should take such mathematical proofs very cautiously.

Moreover, it should be remembered that the SAA problem is just
an approximation of the “true” problem. It is possible to show
that, in a certain probabilistic sense, the SAA problem converges
to the “true” problem as all sample sizes Nt, t = 2, ..., T , tend to
infinity. Theoretical analysis and numerical experiments indicate
that computational complexity of the SDDP algorithm grows
fast with increase of the number of state variables.

16

Typical example of behavior of the lower and upper bounds pro-

duced by the SDDP algorithm for an SAA problem

120 stages, 1 cut per iteration and 95% upper bound estimation

with 100 scenarios
17

Risk averse approach

How to control risk, i.e., to reduce chances of extreme costs, at
every stage of the time process.

Value-at-Risk of a random outcome (variable) Z at level α ∈
(0,1):

V@Rα(Z) = inf{t : FZ(t) ≥ 1− α},

where FZ(t) = Pr(Z ≤ t) is the cdf of Z. That is, V@Rα(Z) is the
(1− α)-quantile of the distribution of Z.

Note that V@Rα(Z) ≤ c is equivalent to Pr(Z > c) ≤ α. Therefore
it could be a natural approach to impose constraints (chance
constraints) of V@Rα(Z) ≤ c for Z = cost, chosen constant c and
significance level α at every stage of the process.

18

There are two problems with such approach. It is difficult to han-

dle chance constraints numerically and could lead to infeasibility

problems.

Average Value-at-Risk (also called Conditional Value-at-Risk)

AV@Rα(Z) = inf
t∈R

{
t+ α−1E[Z − t]+

}
Note that the minimum in the above is attained at

t∗ = V@Rα(Z). If the cdf FZ(z) is continuous, then

AV@Rα(Z) = E
[
Z|Z ≥ V@Rα(Z)

]
.

It follows that AV@Rα(Z) ≥ V@Rα(Z). Therefore the constraint

AV@Rα(Z) ≤ c is a conservative approximation of the chance

constraint V@Rα(Z) ≤ c.
19

In the problem of minimizing expected cost E[Z] subject to the

constraint AV@Rα(Z) ≤ c, we impose an infinite penalty for vi-

olating this constraint. This could result in infeasibility of the

obtained problem. Instead we can impose a finite penalty and

consider problem of minimization of E[Z] + κAV@Rα(Z) for some

constant κ > 0. Note that this is equivalent to minimization of

ρ(Z), where

ρ(Z) = (1− λ)E[Z] + λAV@Rα(Z)

for λ ∈ (0,1) and κ = λ
1−λ.

20

This leads to the following (nested) formulation of risk averse

multistage problem.

Min
A1x1≤b1

cT1x1 + ρ2|ξ1

[
inf

B2x1+A2x2=b2
x2≥0

cT2x2 + . . .

+ρT−1|ξ[T−2]

[
inf

BT−1xT−2+AT−1xT−1=bT−1
xT−1≥0

cTT−1xT−1

+ρT |ξ[T−1]
[inf
BTxT−1+ATxT=bT

xT≥0

cTTxT]
]]
,

with

ρt|ξ[t]
(·) := (1− λ)E|ξ[t]

[·] + λAV@Rα|ξ[t]
(·)

being conditional analogue of ρ(·).

21

We can write the risk averse multistage programming problem

as

Min
x1,x2(·),...,xT (·)

ρ̄
[
F1(x1) + F2(x2(ξ[2]), ξ2) + · · ·+ FT

(
xT (ξ[T]), ξT

)]
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . . , T,

where Ft(xt, ξt) = cTt xt and

Xt(xt−1, ξt) = {xt : Btxt−1 +Atxt = bt, xt ≥ 0}.

ρ̄(Z1 + ...+ ZT) = ρ|ξ1

(
ρ|ξ[2]

(
· · · ρ|ξ[T−1]

(Z1 + ...+ ZT)
))

= Z1 + ρ|ξ1

(
Z2 + ρ|ξ[2]

(
+ · · · ρ|ξ[T−1]

(ZT)
))

is the corresponding composite risk measure. The optimization is

performed over (nonanticipative) policies x1, x2(ξ[2]), ..., xT (ξ[T])

satisfying the feasibility constraints.

22

With some modifications the SDDP algorithm can be applied to

the above multistage problem. Assuming the stagewise indepen-

dence, the dynamic programming equations for the adaptive risk

averse problem take the form

Qt
(
xt−1, ξt

)
= inf

xt∈Rnt

{
cTt xt+Qt+1(xt) : Btxt−1+Atxt = bt, xt ≥ 0

}
,

t = T, ...,2, where QT+1(·) ≡ 0 and

Qt+1 (xt) := ρt+1|ξ[t]

[
Qt+1

(
xt, ξt+1

)]
.

Since ξt+1 is independent of ξ[t], the cost-to-go functions Qt+1 (xt)

do not depend on the data process. In order to apply the back-

ward step of the SDDP algorithm we only need to know how to

compute subgradients of the cost-to-go functions.

23

The value of this problem corresponds to the total objective

ρ̄(Z1 + ...+ ZT) = ρ|ξ[1]

(
· · · ρ|ξ[T−1]

(Z1 + ...+ ZT)
)

= Z1 + ρ|ξ[1]

(
Z2 + · · ·+ ρ|ξ[T−1]

(ZT)
)

The dynamic programming equations of the risk averse formu-

lation of the SAA program take the form

Q
j
t(xt−1) = inf

xt

{
(cjt)

Txt +Qt+1(xt) : Bjtxt−1 +A
j
txt = b

j
t , xt ≥ 0

}
,

j = 1, ..., Nt, t = T, . . . ,2, and

Qt+1(xt) = ρ

(
Q1
t+1(xt), ..., Q

Nt+1
t+1 (xt)

)
,

with QT+1(·) ≡ 0 and the first stage problem

Min
A1x1≤b1

cT1x1 + ρ
(
Q1

2(x1), ..., QN2
2 (x1)

)
.

24

There are formulas for construction of cuts in the backward step
of the SDDP algorithm. In the forward step trial points are
generated in the same way as in the risk neutral case.

Remarks
Unfortunately there is no easy way for evaluating value of the
risk objective of generated policies, and hence constructing a
corresponding upper bound. Some suggestions were made in
the recent literature. However, in larger problems the optimality
gap (between the upper and lower bounds) never approaches
zero in any realistic time. Therefore stopping criteria based on
stabilization of the lower bound (and may be optimal solutions)
could be reasonable. Also it should be remembered that there
is no intuitive interpretation for the risk objective ρ̄(cost) of the
total cost. Rather the goal is to control risk at every stage of
the process.

25

Time consistency of stochastic programming problems

Consider a multiperiod stochastic program

Min
x1,x2(·),...,xT (·)

%
(
F1(x1), F2(x2(ξ[2]), ξ2), . . . , FT

(
xT (ξ[T]), ξT

))
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . . , T,

where % : Z1 ×Z2 × · · · × ZT → R is a multiperiod risk measure.

Is it time consistent? For example is

Min
x1,x2(·),...,xT (·)

AV@Rα
(
F1(x1) + · · ·+ FT

(
xT (ξ[T]), ξT

))
s.t. x1 ∈ X1, xt(ξ[t]) ∈ Xt(xt−1(ξ[t−1]), ξt), t = 2, . . . , T,

time consistent? Note that for α ∈ (0,1),

AV@Rα(·) 6= AV@Rα|ξ1

(
AV@Rα|ξ[2]

(
· · ·AV@Rα|ξ[T−1]

(·)
))
.

26

