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A Teaser

Let’s begin with a few computational results. I will leave out a lot of
details.
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Carrion and Arroyo

We use Carrion and Arroyo as a staring point for the formulation

No network constraints

Validated against the Alstom test models
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WECC-240 Family

We use WECC-240-r1 (85 generators) for purposes of parameter
tuning and analysis.

Then fix the PH configuration and examine performance on the
out-of-sample and more realistic WECC-240-r2 and WECC-240-r3
cases.

We analyze scalability to the larger WECC-240-r2-x2 (170
generators) and WECC-240-r2-x4 (340 generators) cases.

Using modest scale parallelism.

(These are harder to solve than ISO-NE instances of similar size.)
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Extensive form

Solution quality statistics for the extensive form of the WECC-240-r1
instance, given 2 hours of run time.

Scenarios Obj Value MIP LB Gap % Run Time (s)

3 64279.18 63708.67 0.89 7291
5 62857.52 62052.75 1.26 7309
10 61873.01 60769.78 1.77 7444
25 61496.24 59900.40 2.59 7739
50 61911.74 59432.08 4.01 8279
100 62388.85 3500.70 94.39 9379
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Larger Instances using PH

Solve time (in seconds) and solution quality statistics for PH executing
on 50-scenario instances.

Instance Convergence Obj. Value PH L.B. Time

Red Sky Results

WECC-240-r2-x2 0.0 (in 22 iters) 117794.429 116538.868 741
WECC-240-r2-x4 0.0 (in 19 iters) 232189.338 228992.984 1421
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Stages and Scenarios

Use t ∈ 1, . . . , T to index stages

Random variable, which may be vector valued, ξt,

The symbol
→
ξ
t
to refer to the realized values of all random

variables up to and including stage t.

A full realization of the uncertainty, i.e.,

→
ξ
T

=
(
ξt, t = 2, . . . , T

)
is a scenario.
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Abstract Formulations

Use xt to represent the part of the decision vector that
corresponds to stage t.

(Aside: For two-stage, many authors use x and y instead).

Use
→
x t for 1 ≤ t ≤ T to represent the decisions for all stages up

to, and including, stage t.

min
x
f1

(
x1
)

+ E
T∑
t=2

ft

(
xt;

→
x t−1,

→
ξ
t
)

(1)
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Two-stage Linear

minx cTx+ E[Q(x, ξ)]
subject to Ax = b

x ≥ 0

where Q(x, ξ) is the optimal value of the second-stage problem

miny q(ξ)T y
subject to T (ξ)x+W (ξ)y = h(ξ)

y ≥ 0

In this special two-stage case, most authors do not use a stage
superscript for ξ because it appears only in the second stage.
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Scenario Trees

ξ =
{
ξt
}T
t=1

is defined on a discrete probability space.

Scenario probability πξ.

We organize realizations, ξ, into a tree with the property that
scenarios with the same realization up to stage t share a node at

that stage. so,
→
ξ
t
refers also to a node.

Let Gt be the scenario tree nodes for stage t and let Gt(ξ) be the
node at time t for scenario ξ.

For a particular node D let D−1 be the set of scenarios that define
the node.
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Three-stage NewsVendor

Basic idea: Uncertain Supply
An order is placed (and paid for) and then some quantity is
delivered that is a fraction of the quantity ordered
At the time of delivery additional inventory can be acquired at a
cost that was not exactly known when the first-stage order was
placed.
Finally, demand is realized.

The quantity delivered in response to the first-stage order and the
second-stage order cost are revealed before the second-stage order
decision is made.
The demand quantity is revealed before the third-stage auxiliary
variable for sales quantity is computed. There are three stages of
decisions: first-stage order quantity, second-stage order quantity,
third-stage quantity sold.
The final “decision” is quite easy to make since if the price is
positive it is optimal to supply the demand if there is enough
inventory, or the entire inventory if not. 11 / 44



3-Stage Data

Suppose we use the following symbols for the data and decision
variables:

p: selling price per item (data)

c: stage one cost per item (data)

ξ2
1 : fraction of stage one order delivered (uncertain data)

ξ2
2 : cost per item ordered in the second stage (uncertain data)

ξ3: demand (uncertain data)

q1: stage one order quantity (decision variable)

q2: stage two order quantity (decision variable)

q3: quantity delivered to customer (auxiliary decision variable)
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Functions

f1

(
q1
)

:= c q1

f2

(
q2;

→
q 1,

→
ξ

2
)

:= ξ2q2

f3

(
q3;

→
q 2,

→
ξ

3
)

:= −p min
{
ξ1q1 + q2, ξ3

}
although we might prefer to write

f3(q3;
→
q 2,

→
ξ

3
) := −p q3 s.t. q3 ≤ ξ1q1 + q2 and q3 ≤ ξ3
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Data Values

Suppose, for the sake of illustration, that we have estimated the
following data:

p = 100

c = 70

ξ2 =


(1, 80) with probability 0.25
(0.6, 85) with probability 0.30
(0.6, 95) with probability 0.45

ξ3:

If ξ2 = (1, 80) then ξ3 = 250 with probability 1
Else:

ξ3 =

{
300 with probability 0.3
400 with probability 0.7
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Sample Tree
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Tree Notation examples

the set of nodes at stage two, G2, is {2, 3, 4};
the stage three node for scenario B, G3(B), is 6;

if we consider node D = 3, then the scenario set D−1 is {B,C};
the probability of scenario B, πB, is (0.3)(0.3) = 0.09;

for example.
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Scenario Tree Formulations

Non-anticipativity must be enforced at each non-leaf node:

min
x,x̂

∑
ξ∈Ξ

πξ

[
f1(x1(ξ)) +

T∑
t=2

ft

(
xt(ξ);

→
x t−1,

→
ξ
t
)]

(2)

πξx
t(ξ)− πξx̂t(D) = 0, t = 1, . . . , T − 1, D ∈ Gt, ξ ∈ D−1 (3)
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Progressive Hedging
1: Initialization: Let ν ← 0 and wν(ξ)← 0, ∀ξ ∈ Ξ, t = 1, . . . , T .

Compute for each ξ ∈ Ξ:

x(ν+1)(ξ) ∈ arg min
x

f1(x1) +

T∑
t=2

ft

(
xt;

→
x t−1(ξ),

→
ξ
t
)

2: Iteration Update: ν ← ν + 1
3: Aggregation: Compute for each t = 1, . . . , T − 1 and each D ∈ Gt:

x̄(ν)(D)←
∑
ξ∈D−1

πξx
t,(ν)(ξ)/

∑
ξ∈D−1

πξ

4: Price Update: Compute for each t = 1, . . . , T − 1 and each ξ ∈ Ξ

w(t,ν)(ξ)← w(t,ν−1)(ξ) + ρ
[
xt,(ν)(ξ)− x̄ν(Gt(ξ))

]
5: Decomposition: Compute for each ξ ∈ Ξ

x(ν+1)(ξ) ∈ arg minx f1(x1)

+
∑T
t=2 ft

(
xt;

→
x t−1(ξ),

→
ξ
t
)

+
∑T−1
t=1

[
w(t,ν)(ξ)>xt + ρ

2 ||x
t − x̄(ν)(Gt(ξ))||2

]
6: Termination: If a criterion is met, Stop. Otherwise goto step 2.
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Bounds Paper

“Obtaining Lower Bounds from the Progressive Hedging Algorithm for
Stochastic Mixed-Integer Programs”
Dinakar Gade, Gabriel Hackebeil, Sarah M. Ryan, Jean-Paul Watson,
Roger J-B Wets, and David L. Woodruff
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Two-Stage Stochastic MIP

min c>x+ E[f(x, ξ̃)] (4)

s.t. Ax ≥ b, (5)

where ξ̃ is a random vector defined on a probability space (Ξ,A,P) and for a
particular realization ξ of ξ̃, f(x, ξ) is defined as:

f(x, ξ) = min g(ξ)>y (6)

s.t. Wy ≥ r(ξ)− T (ξ)x. (7)

x ∈ Zp1+ × Rn1−p1 First-stage variables
y(ξ) ∈ Zp2+ × Rn2−p2 Second-stage variables
c ∈ Qn1 , g(ξ) ∈ Qn2 First- and second-stage costs
A ∈ Qm1×n1 , b ∈ Qm2 First-stage constraint coefficients and right-hand-sides
W ∈ Qm2×n2 Recourse matrix
T (ξ) ∈ Qm2×n1 , r(ξ) ∈ Qm2 Technology matrix and right-hand-sides
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Scenario Formulation of Two-Stage SMIP

min
∑
ξ∈Ξ

pξ
[
c>x(ξ) + g(ξ)>y(ξ)

]
(8)

s.t. x(ξ)− x̂ = 0, ξ ∈ Ξ (9)

Ax(ξ) ≥ b, ξ ∈ Ξ (10)

Wy(ξ) ≥ r(ξ)− T (ξ)x, ξ ∈ Ξ (11)

x(ξ) ∈ Zp1+ × Rn1−p1 ξ ∈ Ξ (12)

y(ξ) ∈ Zp2+ × Rn2−p2 ξ ∈ Ξ (13)

x̂ ∈ Zp1+ × Rn1−p1 (14)

pξ Probability of scenario ξ
x̂ Variable to model non-anticipativity
(9) Non-anticipativity constraints
X(Ξ) Feasible set for scenario ξ defined by (10)-(13)
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New Lower Bound

Proposition 1: The price system w(ξ) defines implicit lower
bounds

Let z∗ be the optimal objective function value of the stochastic program.
Let w(ξ) ∈ Rn be such that

∑
ξ∈Ξ pξw(ξ) = 0 (component-wise). Let

Dξ(w(ξ)) := min
(x(ξ),y(ξ))∈X(ξ)

(
c>x(ξ) + g(ξ)>y(ξ) + w(ξ)>x(ξ)

)
.

Then D(w) :=
∑

ξ∈Ξ pξDξ(w(ξ)) ≤ z∗.

PH weights satisfy
∑

ξ∈Ξ pξw
ν(ξ) = 0 for every ν.

Every so often, use the current weights to compute D(w).

22 / 44



New Lower Bound

Proposition 1: The price system w(ξ) defines implicit lower
bounds

Let z∗ be the optimal objective function value of the stochastic program.
Let w(ξ) ∈ Rn be such that

∑
ξ∈Ξ pξw(ξ) = 0 (component-wise). Let

Dξ(w(ξ)) := min
(x(ξ),y(ξ))∈X(ξ)

(
c>x(ξ) + g(ξ)>y(ξ) + w(ξ)>x(ξ)

)
.

Then D(w) :=
∑

ξ∈Ξ pξDξ(w(ξ)) ≤ z∗.

PH weights satisfy
∑

ξ∈Ξ pξw
ν(ξ) = 0 for every ν.

Every so often, use the current weights to compute D(w).

22 / 44



New Lower Bound

Proposition 1: The price system w(ξ) defines implicit lower
bounds

Let z∗ be the optimal objective function value of the stochastic program.
Let w(ξ) ∈ Rn be such that

∑
ξ∈Ξ pξw(ξ) = 0 (component-wise). Let

Dξ(w(ξ)) := min
(x(ξ),y(ξ))∈X(ξ)

(
c>x(ξ) + g(ξ)>y(ξ) + w(ξ)>x(ξ)

)
.

Then D(w) :=
∑

ξ∈Ξ pξDξ(w(ξ)) ≤ z∗.

PH weights satisfy
∑

ξ∈Ξ pξw
ν(ξ) = 0 for every ν.

Every so often, use the current weights to compute D(w).

22 / 44



New Lower Bound

Proposition 1: The price system w(ξ) defines implicit lower
bounds

Let z∗ be the optimal objective function value of the stochastic program.
Let w(ξ) ∈ Rn be such that

∑
ξ∈Ξ pξw(ξ) = 0 (component-wise). Let

Dξ(w(ξ)) := min
(x(ξ),y(ξ))∈X(ξ)

(
c>x(ξ) + g(ξ)>y(ξ) + w(ξ)>x(ξ)

)
.

Then D(w) :=
∑

ξ∈Ξ pξDξ(w(ξ)) ≤ z∗.

PH weights satisfy
∑

ξ∈Ξ pξw
ν(ξ) = 0 for every ν.

Every so often, use the current weights to compute D(w).

22 / 44



How Tight is this Bound?

Ordinary Lagrangian by dualizing non-anticipativity:

L(x, λ) :=
∑
ξ∈Ξ

pξ(c
>x(ξ)+g(ξ)>y(ξ)+λ(ξ)>x(ξ)−λ(ξ)>x̂), x(ξ), y(ξ)) ∈ X(ξ), ∀ξ ∈ Ξ

Primal: F (λ) = min
x
L(x, λ) (15)

Dual: zLD := sup
λ
F (λ) (16)

Theorem: [Carøe & Schultz 99]

zLD = min
∑
ξ∈Ξ

pξ[c
>x(ξ) + g(ξ)>y(ξ)] (17)

s.t. x(ξ), y(ξ) ∈ clconv(X(ξ)), ξ ∈ Ξ

x(ξ)− x̂ = 0, ξ ∈ Ξ
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Can Be As Tight as Possible!

Proposition 2: Best PH bound equals best bound from dual
decomposition

Suppose PH is applied to (17). Then in the limit, one obtains a
solution (x̂∗, w∗(ξ)), where x̂∗ solves the primal L.R. and
{w∗(ξ), ξ ∈ Ξ} solves the dual L.R. Moreover, in the limit, the PH
lower bound is equal to zLD.

Only the duality gap remains.

PH can be interpreted as a primal-dual algorithm.

Sequences of primal solutions {x̂ν}∞ν=1 and dual solutions
{{wν(ξ)}∞ν=1, ξ ∈ Ξ} converge to a saddle point of the ordinary
Lagrangian.
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Example (5 generator UC)
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PH Implementation Issues

“Progressive hedging innovations for a class of stochastic mixed-integer
resource allocation problems,” JP Watson, DL Woodruff,
Computational Management Science 8 (4), pp. 355-370

There are some research topics?
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Termination

Look at scaled, average deviation from the average

Look at lower bound?

Backtracking?

Repair?
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Primary and Auxiliary variables

If you have variables that are strictly a function of other variables, then
do not require non-anticipativity for the auxiliary variables.
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Parallel Processing

Trivial, but not trivially scalable for MIPs

Bundling can help with variance

Asynchronous parallel has sampling issues?
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Bundling Scenarios

Combine scenarios into bundles so that every scenario is in exactly
one bundle.

In steps 1 and 5, solve the EF for each bundle.

Let B(s) represent the scenario index bundle that contains the
scenario index s.

E.g., S = {1, 2, 3, 4, 5}. One might choose to form bundles {1, 3, 4}
and {2, 5}, and B(2) = {2, 5}, etc.
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Fixing and Slamming

The following acceleration methods are designed for one-sided
constraints, such as when the problem for each scenario is to
minimize

c · x

subject to
Ax ≥ b

with x ≥ 0 where the elements of vectors c and b and the matrix A
are all non-negative.

Fix variables that seem to have converged.

Slamming — fix low cost variables that have not converged.

Slamming can be used to force termination.

31 / 44



Heuristics and Sub-problem solvers

The mipgap can be steadily decreased to a final mip gap (linearly
in the convergence metric?)

Heuristic sub-problem solvers can also be used with increasing
effort and can use x̂ for guidance?
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Setting ρ

Techniques for selecting ρ in proportion to the unit-cost of the
associated decision variable and an alternative,
mathematically-based heuristic approach.

An effective ρ value should have something to do with δf(x)/δx?

The best ρ value for a given problem need not be fixed at a
constant value i.e., the introduction of per-iteration ρi may in fact
be more appropriate for some problems?

Scenario or iteration dependent schemes?
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It is easy for UC

For a given thermal generator g, we compute the production cost pg
associated with the average power output level. We then introduce a
global scaling factor α, and compute generator-specific values ρg = αpg.
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General Motivation

Consider a scalar x for which non-anticipativity must be enforced.

So only a scalar w weight multiplier is required.

Suppose x is constrained to be an integer taking on small values
and that at optimality w = w∗ is quite large.

So if ρ is small, this situation will result in many iterations
required for convergence of PH because at each iteration, w can
grow only by the product of two small quantities.

Set ρ so updates move fairly quickly to a “good” value w∗ of the
weight w.

For practical reasons, we want the magnitude of w to approach
from below in order to minimize oscillation or thrashing.
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A Simple Formula

Consider a single decision variable x with corresponding cost
coefficient c (scenarios s).

After iteration zero of PH completes, we have an estimate of the
optimal value for x, which is x̄(0).

If we set a value of ρ that will result in w = c, then the proximal
term

ρ/2
∥∥∥x(k−1)

s − x̄(k−1)
∥∥∥2

will force the solution to be x̄(0) in the subsequent PH iteration.

The value of w is updated by

w(k)
s := w(k−1)

s + ρ
(
x(k−1)
s − x̄(k−1)

)
so the value of ρ for a given scenario s resulting in w = c is

ρs :=
c

|xs − x̄(0)|
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SEP

If w elements approach their ultimate value from below that
mitigates thrashing or cycling.

so we use a bound on the denominator and drop the dependence
on s. After PH iteration 0, for each variable x we define

xmax = maxs∈S x
(0)
s and xmin = mins∈S x

(0)
s . Since

(xmax − xmin + 1) > |xs − x̄| we use

ρ(i) :=
c(i)

(xmax − xmin + 1)

for integer variable i.

Continuous variables can change gradually without large discrete
jumps so instead use the following formula to determine ρ(i) for
the continuous variables:

ρ(i) :=
c(i)

max((
∑

s∈S πs|x
(0)
s − x̄(0)|), 1)

Parameter free (but therefore, beatable)
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Cost Proportional ρ

Set ρ(i) equal to a multiplier k > 0 of the element unit cost c(i).

Better: somehow estimate δf(x)/δx and make ρ a fraction of that?
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Generating Scenarios: Overview

Most forecasts are given as a single (vector) point

To generate scenarios we need either:
1 Good probabilistic forecasts, or
2 Analysis of the error distributions of point forecasts.

A little notation:
I The value (perhaps vector) of interest `
I Leading indicator (if there is one) w
I Forecast function (if there is one) `(w)
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Probabilistic Forecasts

One way: fit a function `(w), then find a way to generate w
forecasts (or values) with known probabilities

Another way: have multiple forecast functions and assign
probabilities to each.
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Analysis of Error Distributions

You need, of course, a history of forecasts (or leading indicators)
and corresponding observations.

It makes sense to group “similar conditions” thereby creating error
distributions that are conditional on the grouping.

If you are fitting your own forecast function, you can also segment
the data based on forecast error characteristics and fit forecast
that are conditional on the error category.
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Similar Conditions

E.g.,

Forecast level quantiles

Derivative patterns

Weather quantiles
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Scenarios from Error Distributions

Using cutting points of the distribution to get skeleton points for
the scenarios from the center of the error distribution between the
cutting points.

The probability of the skeleton points is trivial to compute from
the cutting points.

Scenarios are formed by connecting skeleton points, if necessary.
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Conclusion

Due to renewables, uncertainty may need to be handled explicity,
rather than via reserves.

To use Stochastic Programming, one needs algorithms and
scenario generation methods

We have proposed both

Research continues

We are estimating the potential for energy savings using ISO-NE
as a test platform

44 / 44


	Some Unit Commitment Results
	Stochastic Programming Notation
	Progressive Hedging
	Bounds from PH for SMIPs
	PH Implementation Issues
	Generating Scenarios
	Conclusion

