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What is unsupervised learning?

In unsupervised learning, we are given a matrix of data points
X = [x1, . . . , xm], with xi ∈ Rn; we wish to learn some condensed
information from it.

Examples:
I Find one or several direction of maximal variance.
I Find a low-rank approximation or other structured approximation.
I Find correlations or some other statistical information (e.g.,

graphical model).
I Find clusters of data points.
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What is supervised learning?

In supervised learning, the data points are associated with “side”
information that can “guide” (supervise) the learning process.

I In linear regression, each data point xi is associated with a real
number yi (the “response”); the goal of learning is to fit the
response vector to (say, linear) function of the data points, e.g.
yi ≈ wT xi .

I In classification, the side information is a Boolean “label”
(typically yi = ±1); the goal is to find a set of coefficients such
that the sign of a linear function wT xi matches the values yi .

I In structured output models, the side information is a more
complex structure, such a tree.
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Popular loss functions
I Squared loss: (for linear least-squares regression)

L(z, y) = ‖z − y‖2
2.

I Hinge loss: (for SVMs)

L(z, y) =
m∑

i=1

max(0, 1− yizi )

I Logistic loss: (for logistic regression)

L(z, y) = −
m∑

i=1

log(1 + e−yi zi ).
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Generic sparse learning problem

Optimization problem with cardinality penalty:

min
w

L(X T w) + λ‖w‖0.

I Data: X ∈ Rn×m.
I Loss function L is convex.
I Cardinality function ‖w‖0 := |{j : wj 6= 0}| is non-convex.
I λ is a penalty parameter allowing to control sparsity.

I Arises in many applications, including (but not limited to) machine
learning.

I Computationally intractable.
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Classical approach

A now classical approach is to replace the cardinality function with an
l1-norm:

min
w

L(X T w) + λ‖w‖1.

Pros:
I Problem becomes convex, tractable.
I Often works very well in practice.
I Many “recovery” results available.

Cons: may not work!
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Recovery
A special case

Consider the sparse learning problem

min
x
‖w‖0 : X T w = y .

Assume optimal point is unique, let w (0) be the optimal point.

Now solve l1-norm approximation

w (1) := arg min
x
‖w‖1 : X T w = y .

Since w (1) is feasible, we have X T (w (1) − w (0)) = 0.

Facts: (see [?])
I Set of directions that decrease the norm from w (1) form a cone.
I If the nullspace of X T does not intersect the cone, then

w (1) = w (0).
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Mean width

Let S ⊆ Rn be a convex set, with support function

SC(d) = sup
x∈S

dT x .

Then SC(d) + SC(−d) measures “width along direction d”.

Mean Width

d0x

SC(d) = sup
x2C

d0x

�d0x

Support Function:

SC(d) + SC(�d)

measures width of C 
when projected onto 
span of d.

mean width: w(C) =

Z

Sp�1

SC(u)duMean width: with Sn−1 be the unit Euclidean ball in Rn,

ω(C) := Eu SC(u) =

∫
u∈Sn−1

SC(u)du.
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Gordon’s escape theorem

When does a random subspace A ∈ Rn intersect a convex cone C
only at the origin?

Theorem: (Gordon, 1988) If

codim(A) ≥ n · ω(C ∩ Sn−1)2,

then with high probability: A ∩ C = {0}.
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Bounding mean width
A duality approach

ω(C ∩ Sn−1) = Eu max
x∈C, ‖x‖=1

uT x

≤ Eu max
x∈C, ‖x‖≤1

uT x

= Eu min
v∈C∗

‖u − v‖,

where C∗ is the polar cone:

C∗ :=
{

v : vT u ≤ 0 for every u ∈ C
}
.

Name of the game is to choose an appropriate v .
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Recovery rates

Fact: ([?]) Assume that the solution to cardinality problem with n
variables and m constraints:

w (0) = arg min
x
‖w‖0 : X T w = y

is unique and has sparsity s. Using the l1-norm approximation

w (1) = arg min
x
‖w‖1 : X T w = y ,

the condition
m ≥ 2s log

n
s

+
5
4

s

guarantees that with high probability, w (1) = w (0).

Similar results hold for a variety of norms (not just l1).



Large-scale Robust
Optimization

Part II

Overview
Unsupervised learning

Supervised learning

Sparse supervised
learning
Basics

Recovery

Safe Feature Elimination

Sparse PCA
Motivation

Example

SAFE

Relaxation

Algorithms

Examples

Variants

Dimensionality
Reduction
Robust low-rank LP

Low-rank LASSO

Robust Resource
Allocation
Resource allocation

Likelihood uncertainty
models

Reduction to a 1D problem

Numerical Experiments

References

Basic idea
LASSO and its dual

“Square-root” LASSO:

min
w
‖X T w − y‖2 + λ‖w‖1.

with X T = [a1, . . . , an] ∈ Rm×n, y ∈ Rm, and λ > 0 are given. (Each
ai ∈ Rm corresponds to a variable in w , i.e. a “feature”.)

Dual:
max
θ

θT y : ‖θ‖2 ≤ 1, |aT
i θ| ≤ λ, i = 1, . . . , n.

From optimality conditions, if at optimum in the dual the i-constraint is
not active:

|aT
i θ| < λ

then wi = 0 at optimum in the primal.
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Basic idea
Safe Feature Elimination (SAFE)

From optimality:
|aT

i θ| < λ =⇒ wi = 0.

Since the dual problem involves the constraint ‖θ‖2 ≤ 1, the condition

∀ θ, ‖θ‖2 ≤ 1 : |aT
i θ| < λ

ensures that wi = 0 at optimum.

SAFE condition:
‖ai‖2 < λ =⇒ wi = 0.
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Advanced SAFE tests

Test can be strenghtened:
I Exploit optimal solution to problem for a higher value of λ.
I Use idea within the loop of a coordinate-descent (CD) algorithm.
I Allows to eliminate variables on the go.

Test is cheap:
I SAFE test costs as much as one iteration of gradient or CD

method.
I Typically involves matrix-vector multiply X T w , with w a sparse

vector.
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Experiment

Data: KDD 2010b, 30M features, 20M documents. Target cardinality
is 50.

CHAPTER 4. SAFE IN THE LOOP 51

(a) (b)

(c)

Figure 4.2: The LASSO (4.1) solved over a range of regularization parameters λ ∈
[λmin,λmax], using the CD-SAFE Algorithm (Algorithm 6). The plot shows the iterations
needed to solve the LASSO problem at a particular λ. Each iteration is an instant of
the problem (4.6) solved for some index of the solution wi. (a) LOG1P-2006 dataset. (b)
TFIDF-2006 dataset. (c) KDD2010b dataset.

I Applying SAFE in the loop of a coordinate-descent algorithm.
I Graph shows number of features involved to attain a given

sparsity level.
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Principal Component Analysis

Votes of US Senators, 2002-2004. The plot is impossible to read. . .

I Can we project data on a lower dimensional subspace?
I If so, how should we choose a projection?
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Principal Component Analysis
Overview

Principal Component Analysis (PCA) originated in psychometrics in
the 1930’s. It is now widely used in

I Exploratory data analysis.
I Simulation.
I Visualization.

Application fields include
I Finance, marketing, economics.
I Biology, medecine.
I Engineering design, signal compression and image processing.
I Search engines, data mining.
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Solution principles

PCA finds “principal components” (PCs), i.e. orthogonal directions of
maximal variance.

I PCs are computed via EVD of covariance matrix.
I Can be interpreted as a “factor model” of original data matrix.
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Variance maximization problem
Definition

Let us normalize the direction in a way that does not favor any
direction.

Variance maximization problem:

max
x

var(x) : ‖x‖2 = 1.

A non-convex problem!

Solution is easy to obtain via the eigenvalue decomposition (EVD) of
S, or via the SVD of centered data matrix Ac .
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Variance maximization problem
Solution

Variance maximization problem:

max
x

xT Sx : ‖x‖2 = 1.

Assume the EVD of S is given:

S =

p∑
i=1

λiuiuT
i ,

with λ1 ≥ . . . λp, and U = [u1, . . . , up] is orthogonal (UT U = I). Then

arg max
x : ‖x‖2=1

xT Sx = u1,

where u1 is any eigenvector of S that corresponds to the largest
eigenvalue λ1 of S.
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Variance maximization problem
Example: US Senators voting data

Projection of US Senate voting data on random direction (left panel) and direction of maximal variance (right panel). The latter
reveals party structure (party affiliations added after the fact). Note also the much higher range of values it provides.
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Finding orthogonal directions
A deflation method

Once we’ve found a direction with high variance, can we repeat the
process and find other ones?

Deflation method:
I Project data points on the subspace orthogonal to the direction

we found.
I Fin a direction of maximal variance for projected data.

The process stops after p steps (p is the dimension of the whole
space), but can be stopped earlier (to find only k directions, with
k << p).



Large-scale Robust
Optimization

Part II

Overview
Unsupervised learning

Supervised learning

Sparse supervised
learning
Basics

Recovery

Safe Feature Elimination

Sparse PCA
Motivation

Example

SAFE

Relaxation

Algorithms

Examples

Variants

Dimensionality
Reduction
Robust low-rank LP

Low-rank LASSO

Robust Resource
Allocation
Resource allocation

Likelihood uncertainty
models

Reduction to a 1D problem

Numerical Experiments

References

Finding orthogonal directions
Result

It turns out that the direction that solves

max
x

var(x) : xT u1 = 0

is u2, an eigenvector corresponding to the second-to-largest
eigenvalue.

After k steps of the deflation process, the directions returned are
u1, . . . , uk .
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Factor models

PCA allows to build a low-rank approximation to the data matrix:

A =
k∑

i=1

σiuivT
i

Each vi is a particular factor, and ui ’s contain scalings.
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Example
PCA of market data

Data: Daily log-returns of 77 Fortune 500 companies,
1/2/2007—12/31/2008.

I Plot shows the eigenvalues of
covariance matrix in
decreasing order.

I First ten components explain
80% of the variance.

I Largest magnitude of
eigenvector for 1st component
correspond to financial sector
(FABC, FTU, MER, AIG, MS).
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Sparse PCA: motivation

One of the issues with PCA is that it does not yield principal directions
that are easily interpretable:

I The principal directions are really combinations of all the relevant
features (say, assets).

I Hence we cannot interpret them easily.
I The previous thresholding approach (select features with large

components, zero out the others) can lead to much degraded
explained variance.
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Sparse PCA
Problem definition

Modify the variance maximization problem:

max
x

xT Sx − λCard(x) : ‖x‖2 = 1,

where penalty parameter λ ≥ 0 is given, and Card(x) is the
cardinality (number of non-zero elements) in x .

The problem is hard but can be approximated via convex relaxation.
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Safe feature elimination

Express S as S = RT R, with R = [r1, . . . , rp] (each ri corresponds to
one feature).

Theorem (Safe feature elimination [?])
We have

max
x : ‖x‖2=1

xT Sx − λCard(x) = max
z : ‖z‖2=1

p∑
i=1

max(0, (rT
i z)2 − λ).
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SAFE

Corollary
If λ > ‖ri‖2

2 = Sii , we can safely remove the i-th feature (row/column of
S).

I The presence of the penalty parameter allows to prune out
dimensions in the problem.

I In practice, we want λ high as to allow better interpretability.
I Hence, interpretability requirement makes the problem easier in

some sense!
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Relaxation for sparse PCA
Step 1: l1-norm bound

Sparse PCA problem:

φ(λ) := max
x

xT Sx − λCard(x) : ‖x‖2 = 1,

First recall Cauchy-Schwartz inequality:

‖x‖1 ≤
√

Card(x)‖x‖2,

hence we have the upper bound

φ(λ) ≤ φ(λ) := max
x

xT Sx − λ‖x‖2
1 : ‖x‖2 = 1.
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Relaxation for sparse PCA
Step 2: lifting and rank relaxation

Next we rewrite problem in terms of (PSD, rank-one) X := xxT :

φ = max
X

Tr SX − λ‖X‖1 : X � 0, Tr X = 1, Rank(X ) = 1.

Drop the rank constraint , and get the upper bound

λ ≤ ψ(λ) := max
X

Tr SX − λ‖X‖1 : X � 0, Tr X = 1.

I Upper bound is a semidefinite program (SDP).
I In practice, X is found to be (close to) rank-one at optimum.
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Sparse PCA Algorithms
I The Sparse PCA problem remains challenging due to the huge

number of variables.
I Second-order methods become quickly impractical as a result.
I SAFE technique often allows huge reduction in problem size.
I Dual block-coordinate methods are efficient in this case [?].
I Still area of active research. (Like SVD in the 70’s-90’s. . . )
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Example 1
Sparse PCA of New York Times headlines

Data: NYTtimes text collection contains 300, 000 articles and has a
dictionary of 102, 660 unique words.

The variance of the features (words) decreases very fast:
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Sorted variances of 102,660 words in NYTimes data.

With a target number of words less than 10, SAFE allows to reduce
the number of features from n ≈ 100, 000 to n = 500.
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Example
Sparse PCA of New York Times headlines

Words associated with the top 5 sparse principal components in NYTimes

1st PC 2nd PC 3rd PC 4th PC 5th PC
(6 words) (5 words) (5 words) (4 words) (4 words)
million point official president school
percent play government campaign program
business team united states bush children
company season u s administration student
market game attack
companies

Note: the algorithm found those terms without any information on the
subject headings of the corresponding articles (unsupervised
problem).
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NYT Dataset
Comparison with thresholded PCA

Thresholded PCA involves simply thresholding the principal
components.

k = 2 k = 3 k = 9 k = 14
even even even would
like like we new

states like even
now we
this like
will now

united this
states will

if united
states
world

so
some

if

1st PC from Thresholded PCA for various cardinality k . The results contain a
lot of non-informative words.
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Robust PCA

PCA is based on the assumption that the data matrix can be
(approximately) written as a low-rank matrix:

A = LRT ,

with L ∈ Rp×k , R ∈ Rm×k , with k << m, p.

Robust PCA [?] assumes that A has a “low-rank plus sparse”
structure:

A = N + LRT

where “noise” matrix N is sparse (has many zero entries).

How do we discover N, L,R based on A?
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Robust PCA model

In robust PCA, we solve the convex problem

min
N
‖A− N‖∗ + λ‖N‖1

where ‖ · ‖∗ is the so-called nuclear norm (sum of singular values) of
its matrix argument. At optimum, A− N has usually low-rank.

Motivation: the nuclear norm is akin to the l1-norm of the vector of
singular values, and l1-norm minimization encourages sparsity of its
argument.
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CVX syntax

Here is a matlab snippet that solves a robust PCA problem via CVX,
given integers n,m, a n ×m matrix A and non-negative scalar λ exist
in the workspace:

cvx_begin
variable X(n,m);
minimize( norm_nuc(A-X)+ lambda*norm(X(:),1))
cvx_end

Not the use of norm_nuc, which stands for the nuclear norm.
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Low-rank LP

Consider a linear programming problem in n variables with m
constraints:

min
x

cT x : Ax ≤ b,

with A ∈ Rm×n, b ∈ Rm, and such that
I Many different problem instances involving the same matrix A

have to be solved.
I The matrix A is close to low-rank.

I Clearly, we can approximate A with a low-rank matrix Alr once ,
and exploit the low-rank structure to solve many instances of the
LP fast.

I In doing so, we cannot guarantee that the solutions to the
approximated LP are even feasible for the original problem.
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Approach: robust low-rank LP

For the LP
min

x
cT x : Ax ≤ b,

with many instances of b, c:
I Invest in finding a low-rank approximation Alr to the data matrix A,

and estimate ε := ‖A− Alr‖.
I Solve the robust counterpart

min
x

cT x : (Alr + ∆)x ≤ b ∀∆, ‖∆‖ ≤ ε.

I Robust counterpart can be written as SOCP

min
x,t

cT x : Alrx + t1 ≤ b, t ≥ ‖x‖2.

I We can exploit the low-rank structure of Alr and solve the above
problem in time linear in m + n, for fixed rank.
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A motivation: topic imaging

Task: find a short list of words that summarizes a topic in a large
corpus. (StatNews project; see Miratrix et al, 2014)
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Hover on the heatmap to read news. Copyrighted, The Regents of University of California 2012. All rights reserved.

The Image of "climate change" on People's Daily (China)

staircase http://atticus.berkeley.edu/guanchengli/pd_climate_change/

1 of 1 12/29/12 11:23 AM

Image of topic “Climate change” over time. Each square encodes the size of
regression coefficient in LASSO. Source: People’s Daily, 2000-2011.

Interactive plot at
http://statnews.eecs.berkeley.edu/showcase/staircase_economy/stair.html

http://statnews.eecs.berkeley.edu/showcase/staircase_economy/stair.html
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Low-rank LASSO

In many learning problems, we need to solve many instances of the
LASSO problem

min
w
‖X T w − y‖2 + λ‖w‖1.

where
I For all the instances, the matrix X is a rank-one modification of

the same matrix X̃ .
I Matrix X̃ is close to low-rank (hence, X is).

In the topic imaging problem:
I X̃ is a term-by-document matrix that represents the whole corpus.
I y is one row of X̃ that encodes presence or absence of the topic

in documents.
I X contains all remaining rows.
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Robust low-rank LASSO

The robust low-rank LASSO

min
w

max
‖∆‖≤ε

‖(Xlr + ∆)T w − y‖2 + λ‖w‖1

is expressed as a variant of “elastic net”:

min
w
‖X T

lr w − y‖2 + λ‖w‖1 + ε‖w‖2.

I Solution can be found in time linear in m + n, for fixed rank.
I Solution has much better properties than low-rank LASSO, e.g.

we can control the amount of sparsity.
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Example
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Rank-1 LASSO (left) and Robust Rank-1 LASSO (right) with random data. The
plot shows the elements of the solution as a function of the l1-norm penalty
parameter.

I Without robustness (ε = 0), the cardinality is 1 for 0 < λ < λmax,
where λmax is a function of data. For λ ≥ λmax, w = 0 at optimum.
Hence the l1-norm fails to control the solution.

I With robustness (ε = 0.01), increasing λ allows to gracefully
control the number of non-zeros in the solution.
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Numerical experiments: low-rank approximation

Are real-world datasets approximately low-rank?

Runtimes1 for computing a rank-k approximation to the whole data matrix.

1Experiments are conducted on a personal work station: 16GB RAM, 2.6GHz quad-core Intel.
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Multi-label classification

In multi-label classification, the task involves the same data matrix X ,
but many different response vectors y .

I Treat each label as a single classification subproblem (one-vs-all).
I Evaluation metric: Macro-F1 measure.
I Datasets:

I RCV1-V2: 23,149 training documents; 781,265 test documents;
46,236 features; 101 labels.

I TMC2007: 28,596 aviation safety reports; 49,060 features; 22
labels.
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Multi-label classification

Plot performance vs. training times for various values of rank
k = 5, 10, . . . , 50.

TMC 2007 data set RCV1V2 data set

In both cases, the low-rank robust counterpart allows to recover the
performance obtained with full-rank LASSO (red dot), for a fraction of
computing time.
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Topic imaging
I Labels are columns of whole data matrix X̃ .
I Compute low-rank approximation of X̃ when a column is

removed.
I Evaluation: report predictive word lists for 10 queries.
I Datasets:

I NYTimes: 300,000 documents; 102,660 features, file size is 1GB.
Queries: 10 industry sectors.

I PUBMED: 8,200,000 documents; 141,043 features, file size is
7.8GB. Queries: 10 diseases.

I In both cases we have pre-computed a rank k (k = 20)
approximation using power iteration.
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Topic imaging

The New York Times data: Top 10 predictive words for different queries
corresponding to industry sectors.

PubMed data: Top 10 predictive words for different queries corresponding to
diseases.
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Resource allocation

We consider resource allocation problems, of the form

max
w∈W

U(w)

where
W :=

{
w ∈ Rn : w ≥ 0, wT 1 = 1

}
,

and U is a concave utility function.

The vector w may represent
I A fraction of budget allocated across n different items;
I A proportion of time spent displaying an ad.



Large-scale Robust
Optimization

Part II

Overview
Unsupervised learning

Supervised learning

Sparse supervised
learning
Basics

Recovery

Safe Feature Elimination

Sparse PCA
Motivation

Example

SAFE

Relaxation

Algorithms

Examples

Variants

Dimensionality
Reduction
Robust low-rank LP

Low-rank LASSO

Robust Resource
Allocation
Resource allocation

Likelihood uncertainty
models

Reduction to a 1D problem

Numerical Experiments

References

Robust resource allocation problem

Many resource allocation problems are of the form

φ := max
w∈W

min
r∈R

rT w , (1)

where the “return vector” r is assumed to be unknown-but-bounded
via a given “uncertainty set” R.

The corresponding utility function

U(w) := min
r∈R

rT w

is concave, and positively homogeneous.
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Challenges

Practical challenges:
I How to choose the uncertainty set R?
I Can we connect this choice to some probabilistic model of the

return?
I Can we solve the problem fast, e.g., in linear time?
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Example: portfolio optimization

In finance, we consider r to be a “return” vector, and w represents a
portfolio, with return rT w . In practice, r is never fully known.

In our model, the return vector is assumed to be uncertain, and only
known to be contained in the given set R.

For example, we may assume that the set R is an ellipsoid:

R = {r̂ + Ru : ‖u‖2 ≤ κ} ,

with r̂ ∈ Rn, R a matrix, and κ a measure of the size of the ellipsoid.
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Connection with Gaussian models

In practice the ellipsoid R can be derived from a Gaussian
assumption on the return.

Specifically: if we assume that the returns are Gaussian, with mean r̂
and covariance matrix Σ. Factor Σ as Σ = RRT , with R a matrix.
Then the set R is a set of confidence for the returns, based on the
normal likelihood function.

The robust portfolio optimization problem reads

max
w∈W

r̂T w − κ‖RT w‖2.

This is closely connected to the (more standard) mean-variance
model (shown here with “risk aversion parameter” σ):

max
w∈W

r̂T w − σ‖RT w‖2
2.
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Challenges

In practice, estimating Σ in high dimensions is hard. Further, solving
the problem

max
w∈W

r̂T w − κ‖RT w‖2,

or its more standard mean-variance version, requires O(n3), which
may be prohibitive.
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Motivation

We seek to derive the uncertainty set R from a probabilistic model of
the returns.

To this end, we assume that the set R has the form

R := {r : H(r) ≤ κ} ,

with H the negative log-likelihood, and κ ≥ 0 is a measure of
uncertainty.

The above uncertainty model is very natural as it corresponds to
returns that are likely under the assumed probabilistic model.
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Decomposable uncertainty

We assume that the function H is convex, differentiable, and
decomposable:

∀ r ∈ dom h : H(r) =
n∑

i=1

hi (ri ),

with hi ’s convex and differentiable. We make a few additional technical
assumptions on H, seen next.

When H is a negative log-likelihood, the decomposability corresponds
to assuming that the different components of the return vector r are
independent.
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Technical assumptions

1. The functions hi and their gradient can be easily computed
anywhere on their respective domain.

2. The quantities

τ u
i := arg min

τ
hi (τ), κi := hi (τ

u
i ) = min

τ
hi (τ)

are finite, and available.

3. The following condition holds:

κ > κmin := min
r

H(r) =
n∑

i=1

κi ,

so that the equivalent problem

φ = min
r∈R(κ)

max
1≤i≤n

ri

is strictly feasible.

4. A lower bound on φ, φmin, is available.
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Example
Ellipsoidal models

The expressions

hi (ri ) =
1

2σ2
i

(ri − r̂i )
2,

naturally arise when the returns are assumed to be Gaussian, with a
diagonal covariance matrix. Here, r̂i ∈ R, σi ∈ R++, i = 1, . . . , n are
given.

I The diagonal covariance matrix corresponds to an independence
assumptions.

I The constraint H(r) ≤ κ naturally “couples” the returns.
I Compare this with an “interval model” ri ∈ [r̂i − κσi , r̂i + κσi ],

which would allow returns that are jointly very unlikely.
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Comments
I The model couples the different components of r , even though

the random variable r has uncorrelated components. This
captures the fact that jointly observing large values for
independent Gaussian scalars is a rare event.

I The model puts a very low burden on statistical estimation task,
as only individual variances need be estimated, and does not
require the knowledge of the full covariance matrix.
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Example
β distributions

The β-likelihood models arise with functions hi with domain [0, 1], of
the form

hi (ri ) = −αi log(ri )− βi log(1− ri ), ri ∈ [0, 1]

and +∞ otherwise. This corresponds to a log-likelihood function for
β-distributions, with αi ≥ 1, βi ≥ 1 corresponding to event counts.

In this case,
τ u

i =
αi

αi + βi
.

Such models are useful in the context of sparse data, since they allow
to gracefully enforce non-negativity of returns.
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Main result

Theorem
With the assumptions in place, the robust allocation problem can be
solved as a one-dimensional one:

φ = min
t

t :
n∑

i=1

hi (min(t , τ u
i )) ≤ κ. (2)

Once the above problem is solved, the optimal weights are given as
follows. Set τ∗i = min(t∗, τ u

i ), η∗i = (−h′i (τ
∗
i ))+, i = 1, . . . , n. Then,

η∗ 6= 0, and

w∗i =
η∗i

n∑
j=1

η∗j

, i = 1, . . . , n. (3)
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Bisection algorithm

We can solve the problem with a simple bisection algorithm, provided
we know upper and lower bounds on t , tu, t l :

Input data: κ, hi (·), where i = 1, . . . , n; and ε.

1. Compute τ u , t l , tu as detailed next.

2. Set t = (tu + t l )/2.
I If

∑n
i=1 hi (min(t , τu

i )) ≤ κ, set tu = t ;
I Otherwise, set t l = t .

3. If tu − t l ≤ ε, exit.
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Initialization

For an upper bound, we note that the vector τ u is feasible: H(τ u) ≤ κ,
we have then φ = t∗ ≤ tu := max1≤i≤n τ

u
i .

For the lower bound, we have t∗ ≥ t l := maxi t i , where
t i = minr∈R(κ) ri . The constraint translates as

hi (ri ) ≤ ηi := κ−
n∑

i=1

hi (τ
u
i ).

We then have to solve the problems

t i = min
ξ

ξ : hi (ξ) ≤ ηi .

Usually these can be solved in closed-form in specific instances. If the
set R(κ) is contained in the non-negative orthant, we simply set
t l = 0. In case the above problem is not easily solved, we can simply
set t l = φmin, where φmin is any lower bound on φ (which we assumed
is known).
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Numerical experiment: robust bandit problem
I We have applied the decision model to a bandit problem with

Bernoulli return rates uniformly sampled from the interval
[0.18, 0.2].

I We compared different approaches (UCB and Thomson
sampling) to ours.

I We have used a simple uncorrelated Gaussian model.
I The simulations run for T = 106 rounds and the policies are only

updated every 1000 rounds.
I We measure performance in terms of cumulative regret.
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Results

Mean regret for UCB, Thompson Sampling (‘Thompson’) and Robust policy
with confidence levels 0.999 (‘Robust 0.999’), 0.9 (‘Robust 0.9’) and 0.5
(‘Robust 0.5’). The mean of the regret is computed with 20 repetitions.
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