Large-scale Robust Optimization and Applications
Part II: Applications

Laurent El Ghaoui

EECS and IEOR Departments
UC Berkeley

SESO 2015 Tutorial

June 22, 2015
Outline

Overview of Machine Learning
 Unsupervised learning
 Supervised learning

Sparse supervised learning
 Basics
 Recovery
 Safe Feature Elimination

Sparse PCA
 Motivation
 Example
 SAFE
 Relaxation
 Algorithms
 Examples
 Variants

Robust Optimization for Dimensionality Reduction
 Robust low-rank LP
 Low-rank LASSO

Robust Resource Allocation
 Resource allocation
 Likelihood uncertainty models
 Reduction to a 1D problem
 Numerical Experiments

References
Outline

Overview of Machine Learning
Unsupervised learning
Supervised learning

Sparse supervised learning
Basics
Recovery
Safe Feature Elimination

Sparse PCA
Motivation
Example
SAFE
Relaxation
Algorithms
Examples
Variants

Robust Optimization for Dimensionality Reduction
Robust low-rank LP
Low-rank LASSO

Robust Resource Allocation
Resource allocation
Likelihood uncertainty models
Reduction to a 1D problem
Numerical Experiments

References
What is unsupervised learning?

In unsupervised learning, we are given a matrix of data points $X = [x_1, \ldots, x_m]$, with $x_i \in \mathbb{R}^n$; we wish to learn some condensed information from it.

Examples:

- Find one or several direction of maximal variance.
- Find a low-rank approximation or other structured approximation.
- Find correlations or some other statistical information (e.g., graphical model).
- Find clusters of data points.
What is supervised learning?

In supervised learning, the data points are associated with “side” information that can “guide” (supervise) the learning process.

- In linear regression, each data point \(x_i \) is associated with a real number \(y_i \) (the “response”); the goal of learning is to fit the response vector to (say, linear) function of the data points, \(e.g. \ y_i \approx w^T x_i \).
- In classification, the side information is a Boolean “label” (typically \(y_i = \pm 1 \)); the goal is to find a set of coefficients such that the sign of a linear function \(w^T x_i \) matches the values \(y_i \).
- In structured output models, the side information is a more complex structure, such a tree.
Popular loss functions

- Squared loss: (for linear least-squares regression)
 \[L(z, y) = \| z - y \|^2. \]

- Hinge loss: (for SVMs)
 \[L(z, y) = \sum_{i=1}^{m} \max(0, 1 - y_i z_i) \]

- Logistic loss: (for logistic regression)
 \[L(z, y) = - \sum_{i=1}^{m} \log(1 + e^{-y_i z_i}). \]
Outline

Overview of Machine Learning
 Unsupervised learning
 Supervised learning

Sparse supervised learning
 Basics
 Recovery
 Safe Feature Elimination

Sparse PCA
 Motivation
 Example
 SAFE
 Relaxation
 Algorithms
 Examples
 Variants

Robust Optimization for Dimensionality Reduction
 Robust low-rank LP
 Low-rank LASSO

Robust Resource Allocation
 Resource allocation
 Likelihood uncertainty models
 Reduction to a 1D problem
 Numerical Experiments

References
Generic sparse learning problem

Optimization problem with cardinality penalty:

$$\min_w L(X^T w) + \lambda \|w\|_0.$$

- Data: $X \in \mathbb{R}^{n \times m}$.
- Loss function L is convex.
- Cardinality function $\|w\|_0 := |\{j : w_j \neq 0\}|$ is non-convex.
- λ is a penalty parameter allowing to control sparsity.

- Arises in many applications, including (but not limited to) machine learning.
- Computationally intractable.
Classical approach

A now classical approach is to replace the cardinality function with an l_1-norm:

$$\min_w L(X^T w) + \lambda \|w\|_1.$$

Pros:
- Problem becomes convex, tractable.
- Often works very well in practice.
- Many “recovery” results available.

Cons: may not work!
Recovery

A special case

Consider the sparse learning problem

$$\min_x \|w\|_0 : X^T w = y.$$

Assume optimal point is unique, let $w^{(0)}$ be the optimal point.

Now solve l_1-norm approximation

$$w^{(1)} := \arg \min_x \|w\|_1 : X^T w = y.$$

Since $w^{(1)}$ is feasible, we have $X^T (w^{(1)} - w^{(0)}) = 0$.

Facts: (see [?])

- Set of directions that decrease the norm from $w^{(1)}$ form a cone.
- If the nullspace of X^T does not intersect the cone, then $w^{(1)} = w^{(0)}$.
Mean width

Let \(S \subseteq \mathbb{R}^n \) be a convex set, with support function

\[
S_C(d) = \sup_{x \in S} d^T x.
\]

Then \(S_C(d) + S_C(-d) \) measures “width along direction \(d \)”.

Mean width: with \(S^{n-1} \) be the unit Euclidean ball in \(\mathbb{R}^n \),

\[
\omega(C) := E_u S_C(u) = \int_{u \in S^{n-1}} S_C(u) du.
\]
Gordon’s escape theorem

When does a random subspace \(\mathcal{A} \in \mathbb{R}^n \) intersect a convex cone \(C \) only at the origin?

Theorem: (Gordon, 1988) If

\[
\text{codim}(\mathcal{A}) \geq n \cdot \omega(C \cap S^{n-1})^2,
\]

then with high probability: \(\mathcal{A} \cap C = \{0\} \).
Bounding mean width
A duality approach

\[\omega(C \cap S^{n-1}) = E_u \max_{x \in C, \|x\| = 1} u^T x \]
\[\leq E_u \max_{x \in C, \|x\| \leq 1} u^T x \]
\[= E_u \min_{v \in C^*} \|u - v\|, \]

where \(C^* \) is the polar cone:

\[C^* := \left\{ v : v^T u \leq 0 \text{ for every } u \in C \right\}. \]

Name of the game is to \textit{choose} an appropriate \(v \).
Recovery rates

Fact: ([?]) Assume that the solution to cardinality problem with \(n \) variables and \(m \) constraints:

\[
\mathbf{w}^{(0)} = \arg \min_{\mathbf{w}} \| \mathbf{w} \|_0 : \mathbf{X}^T \mathbf{w} = \mathbf{y}
\]

is unique and has sparsity \(s \). Using the \(l_1 \)-norm approximation

\[
\mathbf{w}^{(1)} = \arg \min_{\mathbf{w}} \| \mathbf{w} \|_1 : \mathbf{X}^T \mathbf{w} = \mathbf{y},
\]

the condition

\[
m \geq 2s \log \frac{n}{s} + \frac{5}{4} s
\]

guarantees that with high probability, \(\mathbf{w}^{(1)} = \mathbf{w}^{(0)} \).

Similar results hold for a variety of norms (not just \(l_1 \)).
Basic idea
LASSO and its dual

“Square-root” LASSO:

\[
\min_{w} \|X^T w - y\|_2 + \lambda \|w\|_1.
\]

with \(X^T = [a_1, \ldots, a_n] \in \mathbb{R}^{m \times n}, y \in \mathbb{R}^m, \) and \(\lambda > 0 \) are given. (Each \(a_i \in \mathbb{R}^m \) corresponds to a variable in \(w \), i.e. a “feature”.)

Dual:

\[
\max_{\theta} \theta^T y : \|\theta\|_2 \leq 1, \quad |a_i^T \theta| \leq \lambda, \quad i = 1, \ldots, n.
\]

From optimality conditions, if at optimum in the dual the \(i \)-constraint is not active:

\[
|a_i^T \theta| < \lambda
\]

then \(w_i = 0 \) at optimum in the primal.
Basic idea
Safe Feature Elimination (SAFE)

From optimality:

\[|a_i^T \theta| < \lambda \implies w_i = 0. \]

Since the dual problem involves the constraint \(\|\theta\|_2 \leq 1 \), the condition

\[\forall \theta, \quad \|\theta\|_2 \leq 1 : \quad |a_i^T \theta| < \lambda \]

ensures that \(w_i = 0 \) at optimum.

SAFE condition:

\[\|a_i\|_2 < \lambda \implies w_i = 0. \]
Advanced SAFE tests

Test can be strengthened:

- Exploit optimal solution to problem for a higher value of λ.
- Use idea within the loop of a coordinate-descent (CD) algorithm.
- Allows to eliminate variables on the go.

Test is cheap:

- SAFE test costs as much as one iteration of gradient or CD method.
- Typically involves matrix-vector multiply $X^T w$, with w a sparse vector.
Experiment

Data: KDD 2010b, 30M features, 20M documents. Target cardinality is 50.

- Applying SAFE in the loop of a coordinate-descent algorithm.
- Graph shows number of features involved to attain a given sparsity level.
Outline

Overview of Machine Learning
 Unsupervised learning
 Supervised learning

Sparse supervised learning
 Basics
 Recovery
 Safe Feature Elimination

Sparse PCA
 Motivation
 Example
 SAFE
 Relaxation
 Algorithms
 Examples
 Variants

Robust Optimization for Dimensionality Reduction
 Robust low-rank LP
 Low-rank LASSO

Robust Resource Allocation
 Resource allocation
 Likelihood uncertainty models
 Reduction to a 1D problem
 Numerical Experiments

References
Can we project data on a lower dimensional subspace?
If so, how should we choose a projection?
Principal Component Analysis
Overview

Principal Component Analysis (PCA) originated in psychometrics in the 1930’s. It is now widely used in

- Exploratory data analysis.
- Simulation.
- Visualization.

Application fields include

- Finance, marketing, economics.
- Biology, medicine.
- Engineering design, signal compression and image processing.
- Search engines, data mining.
Solution principles

PCA finds “principal components” (PCs), i.e. orthogonal directions of maximal variance.

- PCs are computed via EVD of covariance matrix.
- Can be interpreted as a “factor model” of original data matrix.
Variance maximization problem

Definition

Let us normalize the direction in a way that does not favor any direction.

Variance maximization problem:

\[
\max_x \text{var}(x) : \|x\|_2 = 1.
\]

A non-convex problem!

Solution is easy to obtain via the eigenvalue decomposition (EVD) of \(S\), or via the SVD of centered data matrix \(A_c\).
Variance maximization problem

Solution

Variance maximization problem:

\[
\max_x x^T S x : \|x\|_2 = 1.
\]

Assume the EVD of \(S \) is given:

\[
S = \sum_{i=1}^{p} \lambda_i u_i u_i^T,
\]

with \(\lambda_1 \geq \ldots \lambda_p \), and \(U = [u_1, \ldots, u_p] \) is orthogonal (\(U^T U = I \)). Then

\[
\arg \max_{x : \|x\|_2 = 1} x^T S x = u_1,
\]

where \(u_1 \) is any eigenvector of \(S \) that corresponds to the largest eigenvalue \(\lambda_1 \) of \(S \).
Variance maximization problem
Example: US Senators voting data

Projection of US Senate voting data on random direction (left panel) and direction of maximal variance (right panel). The latter reveals party structure (party affiliations added after the fact). Note also the much higher range of values it provides.
Finding orthogonal directions
A deflation method

Once we’ve found a direction with high variance, can we repeat the process and find other ones?

Deflation method:

- Project data points on the subspace orthogonal to the direction we found.
- Find a direction of maximal variance for projected data.

The process stops after p steps (p is the dimension of the whole space), but can be stopped earlier (to find only k directions, with $k << p$).
Finding orthogonal directions

Result

It turns out that the direction that solves

$$\max_x \text{var}(x) : x^T u_1 = 0$$

is u_2, an eigenvector corresponding to the second-to-largest eigenvalue.

After k steps of the deflation process, the directions returned are u_1, \ldots, u_k.
Factor models

PCA allows to build a low-rank approximation to the data matrix:

$$A = \sum_{i=1}^{k} \sigma_i u_i v_i^T$$

Each v_i is a particular factor, and u_i's contain scalings.
Example
PCA of market data

- Plot shows the eigenvalues of covariance matrix in decreasing order.
- First ten components explain 80% of the variance.
- Largest magnitude of eigenvector for 1st component correspond to financial sector (FABC, FTU, MER, AIG, MS).

Sparse PCA: motivation

One of the issues with PCA is that it does not yield principal directions that are easily interpretable:

- The principal directions are really combinations of all the relevant features (say, assets).
- Hence we cannot interpret them easily.
- The previous thresholding approach (select features with large components, zero out the others) can lead to much degraded explained variance.
Sparse PCA
Problem definition

Modify the variance maximization problem:

$$\max_x x^T S x - \lambda \text{Card}(x) : \|x\|_2 = 1,$$

where penalty parameter $\lambda \geq 0$ is given, and $\text{Card}(x)$ is the cardinality (number of non-zero elements) in x.

The problem is hard but can be approximated via convex relaxation.
Safe feature elimination

Express S as $S = R^T R$, with $R = [r_1, \ldots, r_p]$ (each r_i corresponds to one feature).

Theorem (Safe feature elimination [?])

We have

$$\max_{x : \|x\|_2 = 1} x^T S x - \lambda \text{Card}(x) = \max_{z : \|z\|_2 = 1} \sum_{i=1}^p \max(0, (r_i^T z)^2 - \lambda).$$
Corollary

If \(\lambda > \| r_i \|^2_2 = S_{ii} \), we can safely remove the \(i \)-th feature (row/column of \(S \)).

- The presence of the penalty parameter allows to prune out dimensions in the problem.
- In practice, we want \(\lambda \) high as to allow better interpretability.
- Hence, interpretability requirement makes the problem easier in some sense!
Relaxation for sparse PCA

Step 1: l_1-norm bound

Sparse PCA problem:

$$\phi(\lambda) := \max_x x^T S x - \lambda \text{Card}(x) : \|x\|_2 = 1,$$

First recall Cauchy-Schwartz inequality:

$$\|x\|_1 \leq \sqrt{\text{Card}(x)} \|x\|_2,$$

hence we have the upper bound

$$\phi(\lambda) \leq \bar{\phi}(\lambda) := \max_x x^T S x - \lambda \|x\|_1^2 : \|x\|_2 = 1.$$
Relaxation for sparse PCA

Step 2: lifting and rank relaxation

Next we rewrite problem in terms of (PSD, rank-one) $X := xx^T$:

$$\bar{\phi} = \max_X \text{Tr} SX - \lambda \|X\|_1 : X \succeq 0, \text{ Tr } X = 1, \text{ Rank}(X) = 1.$$

Drop the rank constraint, and get the upper bound

$$\bar{\lambda} \leq \psi(\lambda) := \max_X \text{Tr} SX - \lambda \|X\|_1 : X \succeq 0, \text{ Tr } X = 1.$$

- Upper bound is a semidefinite program (SDP).
- In practice, X is found to be (close to) rank-one at optimum.
Sparse PCA Algorithms

- The Sparse PCA problem remains challenging due to the huge number of variables.
- Second-order methods become quickly impractical as a result.
- SAFE technique often allows huge reduction in problem size.
- Dual block-coordinate methods are efficient in this case [?].
- Still area of active research. (Like SVD in the 70’s-90’s. . .)
Example 1
Sparse PCA of New York Times headlines

Data: NYTtimes text collection contains 300,000 articles and has a dictionary of 102,660 unique words.

The variance of the features (words) decreases very fast:

![Sorted variances of 102,660 words in NYTimes data.](image)

With a target number of words less than 10, SAFE allows to reduce the number of features from \(n \approx 100,000 \) to \(n = 500 \).
Example
Sparse PCA of New York Times headlines

<table>
<thead>
<tr>
<th>1st PC (6 words)</th>
<th>2nd PC (5 words)</th>
<th>3rd PC (5 words)</th>
<th>4th PC (4 words)</th>
<th>5th PC (4 words)</th>
</tr>
</thead>
<tbody>
<tr>
<td>million</td>
<td>point</td>
<td>official</td>
<td>president</td>
<td>school</td>
</tr>
<tr>
<td>percent</td>
<td>play</td>
<td>government</td>
<td>campaign</td>
<td>program</td>
</tr>
<tr>
<td>business</td>
<td>team</td>
<td>united_states</td>
<td>bush</td>
<td>children</td>
</tr>
<tr>
<td>company</td>
<td>season</td>
<td>u.s</td>
<td>administration</td>
<td>student</td>
</tr>
<tr>
<td>market</td>
<td>game</td>
<td>attack</td>
<td></td>
<td></td>
</tr>
<tr>
<td>companies</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: the algorithm found those terms without any information on the subject headings of the corresponding articles (unsupervised problem).
NYT Dataset
Comparison with thresholded PCA

Thresholded PCA involves simply thresholding the principal components.

\[\begin{array}{cccc}
 k = 2 & k = 3 & k = 9 & k = 14 \\
 \text{even} & \text{even} & \text{even} & \text{would} \\
 \text{like} & \text{like} & \text{we} & \text{new} \\
 \text{states} & \text{like} & \text{even} & \\
 \text{now} & \text{we} & & \\
 \text{this} & \text{like} & & \\
 \text{will} & \text{now} & & \\
 \text{united} & \text{this} & & \\
 \text{states} & \text{will} & & \\
 \text{if} & \text{united} & & \\
 \text{states} & & \text{world} & \\
 \text{if} & & \text{so} & \\
 \text{some} & & \text{if} & \\
\end{array} \]

1st PC from Thresholded PCA for various cardinality \(k \). The results contain a lot of non-informative words.
Robust PCA

PCA is based on the assumption that the data matrix can be (approximately) written as a low-rank matrix:

\[A = LR^T, \]

with \(L \in \mathbb{R}^{p \times k} \), \(R \in \mathbb{R}^{m \times k} \), with \(k << m, p \).

Robust PCA \[?] assumes that \(A \) has a “low-rank plus sparse” structure:

\[A = N + LR^T \]

where “noise” matrix \(N \) is sparse (has many zero entries).

How do we discover \(N, L, R \) based on \(A \)?
Robust PCA model

In robust PCA, we solve the convex problem

$$\min_N \| A - N \|_* + \lambda \| N \|_1$$

where $\| \cdot \|_*$ is the so-called nuclear norm (sum of singular values) of its matrix argument. At optimum, $A - N$ has usually low-rank.

Motivation: the nuclear norm is akin to the l_1-norm of the vector of singular values, and l_1-norm minimization encourages sparsity of its argument.
CVX syntax

Here is a matlab snippet that solves a robust PCA problem via CVX, given integers n, m, a $n \times m$ matrix A and non-negative scalar λ exist in the workspace:

```matlab
cvx_begin
variable X(n,m);
minimize( norm_nuc(A-X)+ lambda*norm(X(:),1))
cvx_end
```

Not the use of `norm_nuc`, which stands for the nuclear norm.
Outline

Overview of Machine Learning
 Unsupervised learning
 Supervised learning

Sparse supervised learning
 Basics
 Recovery
 Safe Feature Elimination

Sparse PCA
 Motivation
 Example
 SAFE
 Relaxation
 Algorithms
 Examples
 Variants

Robust Optimization for Dimensionality Reduction
 Robust low-rank LP
 Low-rank LASSO

Robust Resource Allocation
 Resource allocation
 Likelihood uncertainty models
 Reduction to a 1D problem
 Numerical Experiments

References
Low-rank LP

Consider a linear programming problem in \(n \) variables with \(m \) constraints:

\[
\min_{x} c^T x : Ax \leq b,
\]

with \(A \in \mathbb{R}^{m \times n} \), \(b \in \mathbb{R}^{m} \), and such that:

- Many different problem instances involving the same matrix \(A \) have to be solved.
- The matrix \(A \) is close to low-rank.

- Clearly, we can approximate \(A \) with a low-rank matrix \(A_{lr} \) once, and exploit the low-rank structure to solve many instances of the LP fast.
- In doing so, we cannot guarantee that the solutions to the approximated LP are even feasible for the original problem.
Approach: robust low-rank LP

For the LP

$$\min_{x} \ c^T x : \ Ax \leq b,$$

with many instances of b, c:

- Invest in finding a low-rank approximation A_{lr} to the data matrix A, and estimate $\epsilon := \|A - A_{lr}\|$.
- Solve the robust counterpart

$$\min_{x} \ c^T x : (A_{lr} + \Delta)x \leq b \ \forall \Delta, \ \|\Delta\| \leq \epsilon.$$

- Robust counterpart can be written as SOCP

$$\min_{x, t} \ c^T x : A_{lr}x + t1 \leq b, \ t \geq \|x\|_2.$$

- We can exploit the low-rank structure of A_{lr} and solve the above problem in time linear in $m + n$, for fixed rank.
A motivation: topic imaging

Task: find a short list of words that summarizes a topic in a large corpus. (StatNews project; see Miratrix et al, 2014)

Image of topic “Climate change” over time. Each square encodes the size of regression coefficient in LASSO. **Source:** People’s Daily, 2000-2011.

Interactive plot at

http://statnews.eecs.berkeley.edu/showcase/staircase_economy/stair.html
Low-rank LASSO

In many learning problems, we need to solve many instances of the LASSO problem

$$\min_w \|X^T w - y\|_2 + \lambda \|w\|_1.$$

where

▶ For all the instances, the matrix X is a rank-one modification of the same matrix \tilde{X}.
▶ Matrix \tilde{X} is close to low-rank (hence, X is).

In the topic imaging problem:

▶ \tilde{X} is a term-by-document matrix that represents the whole corpus.
▶ y is one row of \tilde{X} that encodes presence or absence of the topic in documents.
▶ X contains all remaining rows.
Robust low-rank LASSO

The robust low-rank LASSO

\[
\min_w \max_{\|\Delta\| \leq \epsilon} \|(X_{lr} + \Delta)^T w - y\|_2 + \lambda \|w\|_1
\]

is expressed as a variant of “elastic net”:

\[
\min_w \|X_{lr}^T w - y\|_2 + \lambda \|w\|_1 + \epsilon \|w\|_2.
\]

- Solution can be found in time linear in \(m + n\), for fixed rank.
- Solution has much better properties than low-rank LASSO, e.g. we can control the amount of sparsity.
Example

![Graphs showing LASSO and Robust LASSO solutions](image)

Rank-1 LASSO (left) and Robust Rank-1 LASSO (right) with random data. The plot shows the elements of the solution as a function of the l_1-norm penalty parameter.

- Without robustness ($\epsilon = 0$), the cardinality is 1 for $0 < \lambda < \lambda_{\text{max}}$, where λ_{max} is a function of data. For $\lambda \geq \lambda_{\text{max}}$, $w = 0$ at optimum. Hence the l_1-norm fails to control the solution.

- With robustness ($\epsilon = 0.01$), increasing λ allows to gracefully control the number of non-zeros in the solution.
Numerical experiments: low-rank approximation

Are real-world datasets approximately low-rank?

<table>
<thead>
<tr>
<th>Dataset</th>
<th>TMC2007</th>
<th>RCV1V2</th>
<th>NYTIMES</th>
<th>PUBMED</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>28,596</td>
<td>23,149</td>
<td>300,000</td>
<td>8,200,000</td>
</tr>
<tr>
<td>d</td>
<td>49,060</td>
<td>46,236</td>
<td>102,660</td>
<td>141,043</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>k</th>
<th>Time (s)</th>
<th>σ_{k+1}/σ_1</th>
<th>Time (s)</th>
<th>σ_{k+1}/σ_1</th>
<th>Time (s)</th>
<th>σ_{k+1}/σ_1</th>
<th>Time (s)</th>
<th>σ_{k+1}/σ_1</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>1</td>
<td>0.1539</td>
<td>1</td>
<td>0.2609</td>
<td>47</td>
<td>0.4095</td>
<td>187</td>
<td>0.4072</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td>0.1196</td>
<td>1</td>
<td>0.2100</td>
<td>50</td>
<td>0.3075</td>
<td>451</td>
<td>0.3494</td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>0.1010</td>
<td>1</td>
<td>0.1907</td>
<td>59</td>
<td>0.2709</td>
<td>520</td>
<td>0.3041</td>
</tr>
<tr>
<td>20</td>
<td>2</td>
<td>0.0958</td>
<td>1</td>
<td>0.1769</td>
<td>73</td>
<td>0.2432</td>
<td>589</td>
<td>0.2793</td>
</tr>
<tr>
<td>25</td>
<td>3</td>
<td>0.0909</td>
<td>1</td>
<td>0.1662</td>
<td>87</td>
<td>0.2312</td>
<td>687</td>
<td>0.2680</td>
</tr>
<tr>
<td>30</td>
<td>4</td>
<td>0.0880</td>
<td>1</td>
<td>0.1615</td>
<td>93</td>
<td>0.2180</td>
<td>794</td>
<td>0.2580</td>
</tr>
<tr>
<td>35</td>
<td>4</td>
<td>0.0858</td>
<td>1</td>
<td>0.1555</td>
<td>114</td>
<td>0.2098</td>
<td>932</td>
<td>0.2477</td>
</tr>
<tr>
<td>40</td>
<td>5</td>
<td>0.0836</td>
<td>1</td>
<td>0.1507</td>
<td>130</td>
<td>0.2012</td>
<td>1150</td>
<td>0.2354</td>
</tr>
<tr>
<td>45</td>
<td>6</td>
<td>0.0826</td>
<td>1</td>
<td>0.1475</td>
<td>142</td>
<td>0.1932</td>
<td>1208</td>
<td>0.2255</td>
</tr>
<tr>
<td>50</td>
<td>7</td>
<td>0.0811</td>
<td>1</td>
<td>0.1430</td>
<td>158</td>
<td>0.1850</td>
<td>1862</td>
<td>0.2209</td>
</tr>
</tbody>
</table>

Runtimes\(^1\) for computing a rank-k approximation to the whole data matrix.

\(^1\) Experiments are conducted on a personal work station: 16GB RAM, 2.6GHz quad-core Intel.
Multi-label classification

In multi-label classification, the task involves the same data matrix X, but many different response vectors y.

- Treat each label as a single classification subproblem (one-vs-all).
- Evaluation metric: Macro-F1 measure.
- Datasets:
 - RCV1-V2: 23,149 training documents; 781,265 test documents; 46,236 features; 101 labels.
 - TMC2007: 28,596 aviation safety reports; 49,060 features; 22 labels.
Multi-label classification

Plot performance vs. training times for various values of rank $k = 5, 10, \ldots, 50$.

TMC 2007 data set

RCV1V2 data set

In both cases, the low-rank robust counterpart allows to recover the performance obtained with full-rank LASSO (red dot), for a fraction of computing time.
Topic imaging

- Labels are columns of whole data matrix \tilde{X}.
- Compute low-rank approximation of \tilde{X} when a column is removed.
- Evaluation: report predictive word lists for 10 queries.
- Datasets:
 - NYTimes: 300,000 documents; 102,660 features, file size is 1GB. Queries: 10 industry sectors.
 - PUBMED: 8,200,000 documents; 141,043 features, file size is 7.8GB. Queries: 10 diseases.
- In both cases we have pre-computed a rank k ($k = 20$) approximation using power iteration.
The New York Times data: Top 10 predictive words for different queries corresponding to industry sectors.

PubMed data: Top 10 predictive words for different queries corresponding to diseases.
Outline

Overview of Machine Learning
 Unsupervised learning
 Supervised learning

Sparse supervised learning
 Basics
 Recovery
 Safe Feature Elimination

Sparse PCA
 Motivation
 Example
 SAFE
 Relaxation
 Algorithms
 Examples
 Variants

Robust Optimization for Dimensionality Reduction
 Robust low-rank LP
 Low-rank LASSO

Robust Resource Allocation
 Resource allocation
 Likelihood uncertainty models
 Reduction to a 1D problem
 Numerical Experiments

References
Resource allocation

We consider resource allocation problems, of the form

$$\max_{w \in \mathcal{W}} U(w)$$

where

$$\mathcal{W} := \left\{ w \in \mathbb{R}^n : w \geq 0, \ w^T 1 = 1 \right\},$$

and U is a concave utility function.

The vector w may represent

- A fraction of budget allocated across n different items;
- A proportion of time spent displaying an ad.
Robust resource allocation problem

Many resource allocation problems are of the form

$$\phi := \max_{w \in \mathcal{W}} \min_{r \in \mathcal{R}} r^T w, \quad (1)$$

where the “return vector” \(r\) is assumed to be unknown-but-bounded via a given “uncertainty set” \(\mathcal{R}\).

The corresponding utility function

$$U(w) := \min_{r \in \mathcal{R}} r^T w$$

is concave, and positively homogeneous.
Challenges

Practical challenges:

- How to choose the uncertainty set \mathcal{R}?
- Can we connect this choice to some probabilistic model of the return?
- Can we solve the problem fast, *e.g.*, in linear time?
Example: portfolio optimization

In finance, we consider \(r \) to be a “return” vector, and \(w \) represents a portfolio, with return \(r^T w \). In practice, \(r \) is never fully known.

In our model, the return vector is assumed to be uncertain, and only known to be contained in the given set \(\mathcal{R} \).

For example, we may assume that the set \(\mathcal{R} \) is an ellipsoid:

\[
\mathcal{R} = \{ \hat{r} + Ru : \|u\|_2 \leq \kappa \},
\]

with \(\hat{r} \in \mathbb{R}^n \), \(R \) a matrix, and \(\kappa \) a measure of the size of the ellipsoid.
Connection with Gaussian models

In practice the ellipsoid \mathcal{R} can be derived from a Gaussian assumption on the return.

Specifically: if we assume that the returns are Gaussian, with mean \hat{r} and covariance matrix Σ. Factor Σ as $\Sigma = RR^T$, with R a matrix. Then the set \mathcal{R} is a set of confidence for the returns, based on the normal likelihood function.

The robust portfolio optimization problem reads

$$\max_{w \in \mathcal{W}} \hat{r}^T w - \kappa \| R^T w \|_2.$$

This is closely connected to the (more standard) mean-variance model (shown here with “risk aversion parameter” σ):

$$\max_{w \in \mathcal{W}} \hat{r}^T w - \sigma \| R^T w \|_2^2.$$
Challenges

In practice, estimating Σ in high dimensions is hard. Further, solving the problem

$$\max_{w \in \mathcal{W}} \hat{\mu}^T w - \kappa \| R^T w \|_2,$$

or its more standard mean-variance version, requires $O(n^3)$, which may be prohibitive.
Motivation

We seek to derive the uncertainty set \mathcal{R} from a probabilistic model of the returns.

To this end, we assume that the set \mathcal{R} has the form

$$\mathcal{R} := \{ r : H(r) \leq \kappa \},$$

with H the negative log-likelihood, and $\kappa \geq 0$ is a measure of uncertainty.

The above uncertainty model is very natural as it corresponds to returns that are likely under the assumed probabilistic model.
Decomposable uncertainty

We assume that the function H is convex, differentiable, and decomposable:

$$\forall r \in \text{dom } h : H(r) = \sum_{i=1}^{n} h_i(r_i),$$

with h_i’s convex and differentiable. We make a few additional technical assumptions on H, seen next.

When H is a negative log-likelihood, the decomposability corresponds to assuming that the different components of the return vector r are independent.
Technical assumptions

1. The functions h_i and their gradient can be easily computed anywhere on their respective domain.

2. The quantities

$$\tau_i^\mu := \arg\min_{\tau} h_i(\tau), \quad \kappa_i := h_i(\tau_i^\mu) = \min_{\tau} h_i(\tau)$$

are finite, and available.

3. The following condition holds:

$$\kappa > \kappa_{\text{min}} := \min_r H(r) = \sum_{i=1}^{n} \kappa_i,$$

so that the equivalent problem

$$\phi = \min_{r \in \mathcal{R}(\kappa)} \max_{1 \leq i \leq n} r_i$$

is strictly feasible.

4. A lower bound on ϕ, ϕ_{min}, is available.
Example
Ellipsoidal models

The expressions

\[h_i(r_i) = \frac{1}{2\sigma_i^2} (r_i - \hat{r}_i)^2, \]

naturally arise when the returns are assumed to be Gaussian, with a diagonal covariance matrix. Here, \(\hat{r}_i \in \mathbb{R}, \sigma_i \in \mathbb{R}_{++}, i = 1, \ldots, n \) are given.

- The diagonal covariance matrix corresponds to an independence assumption.
- The constraint \(H(r) \leq \kappa \) naturally “couples” the returns.
- Compare this with an “interval model” \(r_i \in [\hat{r}_i - \kappa \sigma_i, \hat{r}_i + \kappa \sigma_i] \), which would allow returns that are jointly very unlikely.
Comments

- The model couples the different components of r, even though the random variable r has uncorrelated components. This captures the fact that jointly observing large values for independent Gaussian scalars is a rare event.

- The model puts a very low burden on statistical estimation task, as only individual variances need be estimated, and does not require the knowledge of the full covariance matrix.
Example

β distributions

The β-likelihood models arise with functions h_i with domain $[0, 1]$, of the form

$$h_i(r_i) = -\alpha_i \log(r_i) - \beta_i \log(1 - r_i), \quad r_i \in [0, 1]$$

and $+\infty$ otherwise. This corresponds to a log-likelihood function for β-distributions, with $\alpha_i \geq 1$, $\beta_i \geq 1$ corresponding to event counts.

In this case,

$$\tau^u_i = \frac{\alpha_i}{\alpha_i + \beta_i}.$$

Such models are useful in the context of sparse data, since they allow to gracefully enforce non-negativity of returns.
Main result

Theorem

With the assumptions in place, the robust allocation problem can be solved as a one-dimensional one:

$$\phi = \min_t \sum_{i=1}^{n} h_i(\min(t, \tau_i^u)) \leq \kappa. \quad (2)$$

Once the above problem is solved, the optimal weights are given as follows. Set $\tau_i^* = \min(t^*, \tau_i^u)$, $\eta_i^* = (-h'_i(\tau_i^*))_+$, $i = 1, \ldots, n$. Then, $\eta^* \neq 0$, and

$$w_i^* = \frac{\eta_i^*}{n \sum_{j=1}^{n} \eta_j^*}, \quad i = 1, \ldots, n. \quad (3)$$
Bisection algorithm

We can solve the problem with a simple bisection algorithm, provided we know upper and lower bounds on \(t, t^u, t^l \):

Input data: \(\kappa, h_i(\cdot), \) where \(i = 1, \ldots, n \); and \(\epsilon \).

1. Compute \(\tau^u, t^l, t^u \) as detailed next.
2. Set \(t = (t^u + t^l)/2 \).
 - If \(\sum_{i=1}^{n} h_i(\min(t, \tau^u_i)) \leq \kappa \), set \(t^u = t \);
 - Otherwise, set \(t^l = t \).
3. If \(t^u - t^l \leq \epsilon \), exit.
Initialization

For an upper bound, we note that the vector τ^u is feasible: $H(\tau^u) \leq \kappa$, we have then $\phi = t^* \leq t^u := \max_{1 \leq i \leq n} \tau^u_i$.

For the lower bound, we have $t^* \geq t^l := \max_i t^i$, where $t^i = \min_{r \in \mathcal{R}(\kappa)} r_i$. The constraint translates as

$$h_i(r_i) \leq \eta_i := \kappa - \sum_{i=1}^n h_i(\tau^u_i).$$

We then have to solve the problems

$$t^i = \min_{\xi} \xi : h_i(\xi) \leq \eta_i.$$

Usually these can be solved in closed-form in specific instances. If the set $\mathcal{R}(\kappa)$ is contained in the non-negative orthant, we simply set $t^l = 0$. In case the above problem is not easily solved, we can simply set $t^l = \phi_{\min}$, where ϕ_{\min} is any lower bound on ϕ (which we assumed is known).
Numerical experiment: robust bandit problem

- We have applied the decision model to a bandit problem with Bernoulli return rates uniformly sampled from the interval $[0.18, 0.2]$.
- We compared different approaches (UCB and Thomson sampling) to ours.
- We have used a simple uncorrelated Gaussian model.
- The simulations run for $T = 10^6$ rounds and the policies are only updated every 1000 rounds.
- We measure performance in terms of cumulative regret.
Mean regret for UCB, Thompson Sampling (‘Thompson’) and Robust policy with confidence levels 0.999 (‘Robust 0.999’), 0.9 (‘Robust 0.9’) and 0.5 (‘Robust 0.5’). The mean of the regret is computed with 20 repetitions.
Outline

Overview of Machine Learning
 Unsupervised learning
 Supervised learning

Sparse supervised learning
 Basics
 Recovery
 Safe Feature Elimination

Sparse PCA
 Motivation
 Example
 SAFE
 Relaxation
 Algorithms
 Examples
 Variants

Robust Optimization for Dimensionality Reduction
 Robust low-rank LP
 Low-rank LASSO

Robust Resource Allocation
 Resource allocation
 Likelihood uncertainty models
 Reduction to a 1D problem
 Numerical Experiments

References
References I