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What is unsupervised learning? e Cmizaton

Part Il
In unsupervised learning, we are given a matrix of data points

X = [x1,...,Xm], with x; € R"; we wish to learn some condensed
information from it Unsupervised earning
Examples:

» Find one or several direction of maximal variance.
» Find a low-rank approximation or other structured approximation.

» Find correlations or some other statistical information (e.g.,
graphical model).

» Find clusters of data points.



What is supervised learning? e Cmizaton
Part Il
In supervised learning, the data points are associated with “side”
information that can “guide” (supervise) the learning process.

Supervised learning

» In linear regression, each data point x; is associated with a real
number y; (the “response”); the goal of learning is to fit the
response vector to (say, linear) function of the data points, e.g.
yi~ w'x;.

» |n classification, the side information is a Boolean “label”
(typically y; = +1); the goal is to find a set of coefficients such
that the sign of a linear function w”x; matches the values y;.

» In structured output models, the side information is a more
complex structure, such a tree.



Popular loss functions G pimizaton

Part Il
» Squared loss: (for linear least-squares regression)

L(z,y) = |z -yl

Supervised learning

» Hinge loss: (for SVMs)

L(z,y) = max(0,1 - yz)

i=1

» Logistic loss: (for logistic regression)

m
L(z,y)=— log(1+ e ).
i=1
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Generic sparse learning problem e Cmizaton

Part Il

Optimization problem with cardinality penalty:

min L(X"w) + A||wllo.
w

Data: X € R™"™. Basies
Loss function L is convex.

Cardinality function ||w||o := |{j : w; # 0}] is non-convex.

A is a penalty parameter allowing to control sparsity.

v

v

v

v

v

Arises in many applications, including (but not limited to) machine
learning.

v

Computationally intractable.



Classical approach G pimizaton

Part Il
A now classical approach is to replace the cardinality function with an
li-norm:
min L(X"w) + A||wl|s.
w

Basics

Pros:
» Problem becomes convex, tractable.
» Often works very well in practice.
» Many “recovery” results available.
Cons: may not work!



Recove ry Large-scale Robust

Optimization
. Part Il
A special case

Consider the sparse learning problem

min [wllo : X 'w=y.
X

Assume optimal point is unique, let w(® be the optimal point.

Recovery

Now solve /;-norm approximation

w = argmin [[w]l; : X'w=y.
X

Since w(") is feasible, we have X (w!" — w(®) = 0.

Facts: (see [?])
» Set of directions that decrease the norm from w(") form a cone.

» If the nullspace of X" does not intersect the cone, then
w — (0



. Large-scale Robust
Mean Wldth Optimization
Part Il

Let S C R" be a convex set, with support function

Sc(d) = sup dTX. Unsupervised learning

xes Supervised learning

Then S¢(d) + Sc(—d) measures “width along direction d”.

Basics
Recovery
Safe Feature Elimination

Motivation
Example
SAFE
Relaxation
Algorithms
Examples

Variants

Robust low-rank LP
Low-rank LASSO

Mean width: with "~ be the unit Euclidean ball in R,

w(C) := Ey Sc(u) = / Sc(u)du.

n—1
ues Numerical Experiments



Gordon’s escape theorem e Cmizaton

Part Il
When does a random subspace A € R” intersect a convex cone C
only at the origin?

Recovery

Theorem: (Gordon, 1988) If
codim(A) > n-w(CNS" "2,
then with high probability: .A N C = {0}.



Large-scale Robust

Bounding mean width Optimization
A duality approach Part Il

E, max u'x
xeC, ||x||=1

w(Cns™)

E, max u'x
xeC, ||x]|<1 Recovery

= E, min [[u—v],
veC*

IN

where C* is the polar cone:

c* ::{v cviu<oforeveryue C}.

Name of the game is to choose an appropriate v.



Large-scale Robust

Recovery rates Optimization

Part Il
Fact: ([?]) Assume that the solution to cardinality problem with n
variables and m constraints:

w® = argmin |wlo : X'w=y
X
is unique and has sparsity s. Using the /;-norm approximation S
w" = argmin ||wll; : X w=y,
X

the condition

m223logg+%s

guarantees that with high probability, w(") = w(©.

Similar results hold for a variety of norms (not just /).



ici Large-scale Robust
Basic idea N Cptimizaton
LASSO and its dual Part Il

“Square-root” LASSO:
min IXTw — yll2 + Al|wl]1.

with X™ = [a1,...,a,) € R™", y € R”,and A > 0 are given. (Each
a; € R" corresponds to a variable in w, i.e. a “feature”.) Sae Feature Elimination

Dual:
max 0Ty - |16l2<1, lalo| <X, i=1,....n

From optimality conditions, if at optimum in the dual the i-constraint is
not active:
lal 0] < A

then w; = 0 at optimum in the primal.



Large-scale Robust

BaSIC ldea Optimization
Safe Feature Elimination (SAFE) Part Il

From optimality:
lal0] < x = w; =0.
Since the dual problem involves the constraint ||6]|2 < 1, the condition

Vo, 0]l2<1 : |al0] <

Safe Feature Elimination

ensures that w; = 0 at optimum.

SAFE condition:
||a,~|\2 < A=W, = 0.



Advanced SAFE tests S imiaton
Part Il
Test can be strenghtened:
» Exploit optimal solution to problem for a higher value of .
» Use idea within the loop of a coordinate-descent (CD) algorithm.
» Allows to eliminate variables on the go.

Safe Feature Elimination

Test is cheap:
» SAFE test costs as much as one iteration of gradient or CD
method.
» Typically involves matrix-vector multiply X" w, with w a sparse
vector.



Large-scale Robust

EXperIment Optimization

Part Il
Data: KDD 2010b, 30M features, 20M documents. Target cardinality
is 50.

Safe Feature Elimination

3000

Iterations

w0
MAas

» Applying SAFE in the loop of a coordinate-descent algorithm.

» Graph shows number of features involved to attain a given
sparsity level.
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Large-scale Robust

Principal Component Analysis Optimization

IIIW l '

Motivation

Votes of US Senators, 2002-2004. The plot is impossible to read. ..

» Can we project data on a lower dimensional subspace?
» If so, how should we choose a projection?



Large-scale Robust

Principal Component Analysis Optimization

. Part Il
Overview

Principal Component Analysis (PCA) originated in psychometrics in
the 1930’s. It is now widely used in

» Exploratory data analysis.
» Simulation.
» Visualization.

Motivation

Application fields include

v

Finance, marketing, economics.

v

Biology, medecine.

v

Engineering design, signal compression and image processing.
Search engines, data mining.

v



Solution principles G pimizaton

Part Il
PCA finds “principal components” (PCs), i.e. orthogonal directions of
maximal variance.

» PCs are computed via EVD of covariance matrix.
» Can be interpreted as a “factor model” of original data matrix.

Motivation



Variance maximization problem G pimizaton

Definition Part II

Let us normalize the direction in a way that does not favor any
direction.

Variance maximization problem: Motivtion

max var(x) : |[x|l2 =1.
X

A non-convex problem!

Solution is easy to obtain via the eigenvalue decomposition (EVD) of
S, or via the SVD of centered data matrix Ac.



Large-scale Robust

Variance maximization problem Optimization

. Part Il
Solution

Variance maximization problem:
max x'Sx : ||x|l2 = 1.
X

Assume the EVD of Sis given:
14
S= Z )\,‘U,‘U,'T, Motivation
i=1

with Ay > ... A\p,and U = [uy,.. ., Up] is orthogonal (U™ U = /). Then

arg max x'Sx=u,
x:lx[l2=1

where uy is any eigenvector of S that corresponds to the largest
eigenvalue \¢ of S.



Large-scale Robust

Variance maximization problem Optimization

Example: US Senators voting data Partl

Overview
Unsupervised learning
T — e
1 Sparse supervised
learning
Basics

R
e e
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i —— Example
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Relaxation
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Dimensionality
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Low-rank LASSO

Robust Resource
Allocation
Resource allocation

Likelihood uncertainty
ot enranden drection [ ———— models

Reduction to a 1D problem
Numerical Experiments
References

Projection of US Senate voting data on random direction (left panel) and direction of maximal variance (right panel). The latter
reveals party structure (party affiliations added after the fact). Note also the much higher range of values it provides.

=] F = = DAE



Large-scale Robust

Finding orthogonal directions Optimization

A deflation method Part II

Once we’ve found a direction with high variance, can we repeat the
process and find other ones?

Deflation method:

» Project data points on the subspace orthogonal to the direction
we found.

» Fin a direction of maximal variance for projected data. Wovation

The process stops after p steps (p is the dimension of the whole
space), but can be stopped earlier (to find only k directions, with
k << p).



Large-scale Robust

Finding orthogonal directions Optimization

Part Il
Result

It turns out that the direction that solves
max var(x) : x"u; =0
X

is Uz, an eigenvector corresponding to the second-to-largest
eigenvalue.

Motivation

After k steps of the deflation process, the directions returned are
U, ..., Uk.



Factor models SR

Part Il

PCA allows to build a low-rank approximation to the data matrix:

k
A= Z 0','U,'V,'T
i=1
Each v; is a particular factor, and u;’s contain scalings.

Motivation



Large-scale Robust

Example Optimization
PCA of market data Part II

» Plot shows the eigenvalues of
* — covariance matrix in
decreasing order.

o » First ten components explain

& 80% of the variance.

» Largest magnitude of

o eigenvector for 1st component =™
o’ correspond to financial sector

) (FABC, FTU, MER, AIG, MS).

o 10 2 3 w0 EJ ® 7 o
e o snguar vae

Data: Daily log-returns of 77 Fortune 500 companies,
1/2/2007—12/31/2008.



Sparse PCA: motivation e imization.
Part Il

One of the issues with PCA is that it does not yield principal directions
that are easily interpretable:

» The principal directions are really combinations of all the relevant
features (say, assets).

» Hence we cannot interpret them easily.

» The previous thresholding approach (select features with large
components, zero out the others) can lead to much degraded
explained variance. Example



Sparse PCA Larg- sl s

Problem definition Part II

Modify the variance maximization problem:
max x’ Sx — ACard(x) : ||x|l2 =1,
X

where penalty parameter A > 0 is given, and Card(x) is the
cardinality (number of non-zero elements) in x.

Example

The problem is hard but can be approximated via convex relaxation.



Large-scale Robust

Safe feature elimination Optimization
Part Il

Express Sas S = R'R, with R = [, ..., r] (each r; corresponds to
one feature).

Theorem (Safe feature elimination [?])
We have

max x’ Sx — A Card(x) = , max Z max(0 - ).

X |Ixll2=1 “zllz=1

SAFE



SA F E Large-scale Robust

Optimization
Part Il

Corollary
IfX > ||ri||3 = Si, we can safely remove the i-th feature (row/column of
S).
» The presence of the penalty parameter allows to prune out
dimensions in the problem.
» In practice, we want X high as to allow better interpretability.

» Hence, interpretability requirement makes the problem easier in
SAFE
some sense!



Relaxation for sparse PCA G pimizaton

Step 1: /i-norm bound Part Il

Sparse PCA problem:
#(A) :=max x" Sx — ACard(x) : |x[}2 =1,

First recall Cauchy-Schwartz inequality:

Ix]l+ < v/Card(x)]|x]l2,

hence we have the upper bound

Relaxation

$(X) < $(X) := max x"Sx = A||x|[§ = [Ix]2 = 1.



Large-scale Robust

Relaxation for sparse PCA Optimization

Step 2: lifting and rank relaxation Partl

Next we rewrite problem in terms of (PSD, rank-one) X := xx:

6=max TrSX — A X[ : X =0, TrX =1, Rank(X)=1.

Drop the rank constraint , and get the upper bound

X< H(N) = max T SX = A|X[ly : X =0, Trx=1.

» Upper bound is a semidefinite program (SDP). Reaxaion
» In practice, X is found to be (close to) rank-one at optimum.



Sparse PCA Algorithms e imization.
Part Il

» The Sparse PCA problem remains challenging due to the huge
number of variables.

Second-order methods become quickly impractical as a result.
SAFE technique often allows huge reduction in problem size.
Dual block-coordinate methods are efficient in this case [?].
Still area of active research. (Like SVD in the 70’s-90’s. . .)

v

v

v

v

Algorithms



Large-scale Robust

Example 1 Optimization

Sparse PCA of New York Times headlines Partl

Data: NYTtimes text collection contains 300, 000 articles and has a
dictionary of 102, 660 unique words.

The variance of the features (words) decreases very fast:

10" Examples

Sorted variances of 102,660 words in NYTimes data.

With a target number of words less than 10, SAFE allows to reduce
the number of features from n ~ 100, 000 to n = 500.



Large-scale Robust

Example Optimization

Sparse PCA of New York Times headlines Partl

Words associated with the top 5 sparse principal components in NYTimes

1st PC 2nd PC 3rd PC 4th PC 5th PC

(6 words) (5 words) (5 words) (4 words) (4 words)
million point official president school
percent play government campaign program
business team united_states bush children
company season u-s administration student
market game attack

companies

Examples

Note: the algorithm found those terms without any information on the
subject headings of the corresponding articles (unsupervised
problem).



NYT Dataset G pimizaton
Comparison with thresholded PCA Partl
Thresholded PCA involves simply thresholding the principal
components.

k=2 k=3 k=9 k=14
even even even would

like like we new
states like even
now we
this like
will now
united this
states will
if united Examples
states
world
o)
some

if

1st PC from Thresholded PCA for various cardinality k. The results contain a
lot of non-informative words.



Large-scale Robust

RObUSt PCA Optimization

Part Il
PCA is based on the assumption that the data matrix can be
(approximately) written as a low-rank matrix:

A=LR",

with L € RP*% R e R™* with k << m, p.

Robust PCA [?] assumes that A has a “low-rank plus sparse”

structure:
A=N+L R’ Variants

where “noise” matrix N is sparse (has many zero entries).

How do we discover N, L, R based on A?



Robust PCA model SR

Part Il
In robust PCA, we solve the convex problem

min [[A — N[ + X[|N];

where || - ||« is the so-called nuclear norm (sum of singular values) of
its matrix argument. At optimum, A — N has usually low-rank.

Variants

Motivation: the nuclear norm is akin to the /;-norm of the vector of
singular values, and /;-norm minimization encourages sparsity of its
argument.



CVX syntax e Cmizaton
Part Il
Here is a matlab snippet that solves a robust PCA problem via CVX,
given integers n, m, a n x m matrix A and non-negative scalar \ exist

in the workspace:

cvx_begin

variable X (n,m);

minimize ( norm_nuc (A-X)+ lambda*norm(X(:),1))
cvx_end

Variants

Not the use of norm_nuc, which stands for the nuclear norm.
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Low-rank LP

Consider a linear programming problem in n variables with m
constraints:
min ¢'x : Ax < b,
X

with A € R™", b € R™, and such that

» Many different problem instances involving the same matrix A
have to be solved.

» The matrix A is close to low-rank.

» Clearly, we can approximate A with a low-rank matrix A, once,
and exploit the low-rank structure to solve many instances of the
LP fast.

» In doing so, we cannot guarantee that the solutions to the
approximated LP are even feasible for the original problem.

Large-scale Robust
Optimization
Part Il

Robust low-rank LP



Large-scale Robust

Approach: robust low-rank LP Optimization
Part Il
For the LP
min ¢'x : Ax < b,

with many instances of b, c:

» Invest in finding a low-rank approximation A, to the data matrix A,
and estimate € := ||A — Ay

» Solve the robust counterpart

min c'x : (Ar+A)x<b VA, |A<e
X

» Robust counterpart can be written as SOCP Fobust lowrank LP

min ¢’x : Aux+11<b, t> x|

X,t

» We can exploit the low-rank structure of A, and solve the above
problem in time linear in m + n, for fixed rank.



A motivation: topic imaging e Cmizaton

Part Il
Task: find a short list of words that summarizes a topic in a large
corpus. (StatNews project; see Miratrix et al, 2014)

Unsupervised learning

o e cimst crang’an Pl Dy (China) Supervised learning

Basics
Recovery

Safe Feature Elimination

Motivation
Example
SAFE
Relaxation
Algorithms
Examples

Variants

s
Image of topic “Climate change” over time. Each square encodes the size of
regression coefficient in LASSO. Source: People’s Daily, 2000-2011. v

Likelihood uncertainty
models

Reduction to a 1D problem

Numerical Experiments

Interactive plot at

http://statnews.eecs.berkeley.edu/showcase/staircase_economy/stair.html


http://statnews.eecs.berkeley.edu/showcase/staircase_economy/stair.html

Low-rank LASSO SR

Part Il
In many learning problems, we need to solve many instances of the
LASSO problem
min [|X"w = yllz + || wl]s.
where

» For all the instanc~es, the matrix X is a rank-one modification of
the same matrix X.

» Matrix X is close to low-rank (hence, X is).

In the topic imaging problem:
» Xisa term-by-document matrix that represents the whole corpus. Lowrrank LASSO

> y is one row of X that encodes presence or absence of the topic
in documents.

» X contains all remaining rows.



Robust low-rank LASSO R o
Part Il
The robust low-rank LASSO

min max (X + ) w — yll2 + Al|wl];

is expressed as a variant of “elastic net”:

min 7w — llo + A wls + ]| wll

» Solution can be found in time linear in m 4+ n, for fixed rank.

Low-rank LASSO
» Solution has much better properties than low-rank LASSO, e.g.
we can control the amount of sparsity.



Large-scale Robust
Example Optimization

Part Il

Rank-1 LASSO (left) and Robust Rank-1 LASSO (right) with random data. The
plot shows the elements of the solution as a function of the /;-norm penalty
parameter.

Low-rank LASSO

» Without robustness (e = 0), the cardinality is 1 for 0 < A < Amax,
where Ana is @ function of data. For A > Anax, w = 0 at optimum.
Hence the /i-norm fails to control the solution.

» With robustness (e = 0.01), increasing X allows to gracefully
control the number of non-zeros in the solution.



Numerical experiments: low-rank approximation

Are real-world datasets approximately low-rank?

[ Dataset TMC2007 RCV1V2 NYTIMES PUBMED

o 28,506 23,140 300,000 8,200,000
d 49,060 46,236 102,660 141,043

Time (s) | oxs1/0y | Time (s) | oxi1/0y | Time (5) [ 0xy1/0y | Time (s) | o0x41/01
k=5 1 0.1539 1 0.2609 47 0.4095 187 0.4072
k=10 1 0.1196 1 0.2100 50 0.3075 451 0.3494
k=15 1 0.1010 1 0.1907 59 0.2709 520 0.3041
k=20 2 0.0958 2 0.1769 73 0.2432 589 0.2793
k=25 3 0.0909 3 0.1662 87 0.2312 687 0.2680
k =30 4 0.0880 4 0.1615 93 0.2180 794 0.2580
k=235 4 0.0858 4 0.1555 114 0.2098 932 0.2477
k=40 5 0.0836 5 0.1507 130 0.2012 1150 0.2354
k=45 6 0.0826 5 0.1475 142 0.1932 1208 0.2255
k = 50 7 0.0811 7 0.1430 158 0.1850 1862 0.2209

Runtimes' for computing a rank-k approximation to the whole data matrix.

! Experiments are conducted on a personal work station:

16GB RAM, 2.6GHz quad-core Intel:

Large-scale Robust
Optimization
Part Il

very

Safe Feature Elimination

Motivation
Example
SAFE

Robust lo k LP
Low-rank LASSO




Multi-label classification R o
Part Il
In multi-label classification, the task involves the same data matrix X,

but many different response vectors y.
» Treat each label as a single classification subproblem (one-vs-all).

» Evaluation metric: Macro-F1 measure.
» Datasets:

» RCV1-V2: 23,149 training documents; 781,265 test documents;
46,236 features; 101 labels.

» TMC2007: 28,596 aviation safety reports; 49,060 features; 22
labels.

Low-rank LASSO



Large-scale Robust
Optimization

Multi-label classification
Part Il

Plot performance vs. training times for various values of rank
k=5,10,...,50.
RCV1V2 data set

TMC 2007 data set
o S
82 ; ot 63 i i e T ot T 03
p
8 625 o
80 1 52
1
o # o
8 ! Boiso . f
RN 5l
g IR
» } 605 #'
” (R LASSO i RASS0
- —e-RLALASSO ses|d —e-AtRLASSO | |
Training Time (seconds) x10°

Training Time (seconds)

Low-rank LASSO

In both cases, the low-rank robust counterpart allows to recover the
performance obtained with full-rank LASSO (red dot), for a fraction of

computing time.



Topic imaging Lo ot

Part Il
» Labels are columns of whole data matrix X.

» Compute low-rank approximation of X when a column is
removed.

» Evaluation: report predictive word lists for 10 queries.

» Datasets:
» NYTimes: 300,000 documents; 102,660 features, file size is 1GB.
Queries: 10 industry sectors.
» PUBMED: 8,200,000 documents; 141,043 features, file size is
7.8GB. Queries: 10 diseases.
» In both cases we have pre-computed a rank k (k = 20)
approximation using power iteration.

Low-rank LASSO



Topic imaging

automotive i technology | tourism | aerosp: defence financial | health )t gaming
car government company tourist boeing afghanistan | company health oil game
vehicle farm computer hotel aircraft attack million care prices gambling
auto farmer system business space forces stock cost gas casino
sales food web visitor program military market patient fuel player
model water information | economy jet gulf money corp company online
driver trade internet travel plane troop business al_gore barrel computer
ford land american tour nasa aircraft firm doctor gasoline tribe
driving crop job local flight terrorist fund drug bush money
engine economic product room airbus president | investment medical energy playstation
consumer country software plan military war economy insurance opec video

The New York Times data: Top 10 predictive words for different queries
corresponding to industry sectors.

arthritis | asthma cancer depression | diabetes | gastritis hiv leukemia igrai ki
joint bronchial tumor effect diabetic gastric aid cell headache | treatment
synovial | asthmatic treatment treatment insulin h.pylori infection acute headaches effect
infection children carcinoma disorder level chronic cell bone-marrow pain nerve
chronic | respiratory cell depressed glucose ulcer hiv-1 leukemic disorder syndrome
pain symptom | chemotherapy pressure control acid infected tumor women disorder
treatment allergic survival anxiety plasma stomach antibodies remission chronic neuron
fluid infant risk symptom diet atrophic risk t.cell duration receptor
knee inhalation dna drug liver antral positive antigen symptom alzheimer
acute airway malignant neuron renal reflux transmission | chemotherapy gene response
therapy fevl diagnosis response normal | treatment drug expression therapy brain

PubMed data: Top 10 predictive words for different queries corresponding to

diseases.
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Resource allocation SR

Part Il
We consider resource allocation problems, of the form

s U

where W::{WGR”:WZO, WT1=1},

and U is a concave utility function.

The vector w may represent
» A fraction of budget allocated across n different items;
» A proportion of time spent displaying an ad.

Resource allocation



Robust resource allocation problem e Cmizaton

Part Il
Many resource allocation problems are of the form

. T
:=max minr w 1
¢ WEW rerR ’ (1)

where the “return vector” r is assumed to be unknown-but-bounded
via a given “uncertainty set” R.

The corresponding utility function

U(w) :=min r'w
rer

is concave, and positively homogeneous.

Resource allocation



Large-scale Robust

Cha”enges Optimization

Part Il
Practical challenges:
» How to choose the uncertainty set R?

» Can we connect this choice to some probabilistic model of the
return?

» Can we solve the problem fast, e.g., in linear time?

Resource allocation



Example: portfolio optimization R o
ple: p p
Part Il
In finance, we consider r to be a “return” vector, and w represents a

portfolio, with return r”w. In practice, r is never fully known.

In our model, the return vector is assumed to be uncertain, and only
known to be contained in the given set R.

For example, we may assume that the set R is an ellipsoid:

R={F+Ru : ||ul2 <k},
Resource allocation

with 7 € R", R a matrix, and « a measure of the size of the ellipsoid.



Connection with Gaussian models e Cmizaton
Part Il
In practice the ellipsoid R can be derived from a Gaussian

assumption on the return.

Specifically: if we assume that the returns are Gaussian, with mean 7
and covariance matrix ¥. Factor ¥ as ¥ = RR’, with R a matrix.
Then the set R is a set of confidence for the returns, based on the
normal likelihood function.

The robust portfolio optimization problem reads
max ?'w — k||R" w2
wew
This is closely connected to the (more standard) mean-variance
model (shown here with “risk aversion parameter” o): Az A s

max ?'w — o||R w]|3.
wew



Challenges e Cmizaton
Part Il
In practice, estimating X in high dimensions is hard. Further, solving
the problem

max ?'w — k||R" w2,
wew

or its more standard mean-variance version, requires O(n®), which
may be prohibitive.

Resource allocation



Motivation

We seek to derive the uncertainty set R from a probabilistic model of
the returns.

To this end, we assume that the set R has the form
R:={r : H(r) <k},

with H the negative log-likelihood, and « > 0 is a measure of
uncertainty.

The above uncertainty model is very natural as it corresponds to
returns that are likely under the assumed probabilistic model.

Large-scale Robust
Optimization
Part Il

Likelihood uncertainty
models



Decomposable uncertainty

We assume that the function H is convex, differentiable, and
decomposable:

n
Vredomh : H(r)=>_ h(n),
i=1

with h;’s convex and differentiable. We make a few additional technical
assumptions on H, seen next.

When H is a negative log-likelihood, the decomposability corresponds
to assuming that the different components of the return vector r are
independent.

Large-scale Robust
Optimization
Part Il

Likelihood uncertainty
models



Technical assumptions

1. The functions h; and their gradient can be easily computed
anywhere on their respective domain.

2. The quantities
7= argmin hi(7), ki := hi(7) =min hi(7)

are finite, and available.
3. The following condition holds:

n
K > Kmin i= mrin H(r) = Zm,-,
i=1

so that the equivalent problem

¢= min max r
reR(x) 1<i<n

is strictly feasible.
4. A lower bound on ¢, ¢min, is available.

Large-scale Robust
Optimization
Part Il

Likelihood uncertainty
models



Large-scale Robust

Example Optimization

Ellipsoidal models Part Il

The expressions
1 512
hi(ri) = 27,2(” - 1),
naturally arise when the returns are assumed to be Gaussian, with a
diagonal covariance matrix. Here, i, € R, o; € Riy,i=1,... nare
given.

» The diagonal covariance matrix corresponds to an independence
assumptions.
» The constraint H(r) < « naturally “couples” the returns.
» Compare this with an “interval model” r; € [f; — ko, Fi 4 roi],
which would allow returns that are jointly very unlikely. Uy

models



Comments

» The model couples the different components of r, even though
the random variable r has uncorrelated components. This
captures the fact that jointly observing large values for
independent Gaussian scalars is a rare event.

» The model puts a very low burden on statistical estimation task,
as only individual variances need be estimated, and does not
require the knowledge of the full covariance matrix.

Large-scale Robust
Optimization
Part Il

Likelihood uncertainty
models



Example

3 distributions

The S-likelihood models arise with functions h; with domain [0, 1], of
the form

hi(ri) = —ailog(r;) — Bilog(1 —r;), ri €[0,1]

and +oco otherwise. This corresponds to a log-likelihood function for
B-distributions, with «; > 1, 5; > 1 corresponding to event counts.

In this case,
u Qi

e
Such models are useful in the context of sparse data, since they allow
to gracefully enforce non-negativity of returns.

Large-scale Robust
Optimization
Part Il

Likelihood uncertainty
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Ma| n I’eSUI’[ Large-scale Robust

Optimization
Part Il

Theorem

With the assumptions in place, the robust allocation problem can be
solved as a one-dimensional one:

¢ = mtin t: ih,-(min(t,n”)) < k. )
i

Once the above problem is solved, the optimal weights are given as
follows. Set 7/ = min(t*, 7"), nf = (—hi(77))+, i =1,...,n. Then,
n* #0, and

wi=—1l_i=1,.n (3)

n ’
.
E :77/‘
j=1

Reduction to a 1D problem



Bisection algorithm e imization.

Part Il
We can solve the problem with a simple bisection algorithm, provided
we know upper and lower bounds on t, t“, ¢

Input data: &, hi(-), where i=1,...,n;ande.
1. Compute 7, t', t“ as detailed next.
2. Sett=(t*+1t)/2.
> If S hi(min(t, 7)) < K, sett! =t
» Otherwise, set t/ = t.
3. Ift — t' < e, exit.

Reduction to a 1D problem



Initialization

For an upper bound, we note that the vector 7 is feasible: H(7") < &,
we have then ¢ = t* <t := maxi<j<n 7.

For the lower bound, we have t* > t' := max; t', where
t' = min.cx(.) fi. The constraint translates as

n
hi(n) <mi=r—>Y_ h(r).
i=1

We then have to solve the problems
i = mgin £ h,(§) <.

Usually these can be solved in closed-form in specific instances. If the
set R(k) is contained in the non-negative orthant, we simply set

t' = 0. In case the above problem is not easily solved, we can simply
set t' = ¢min, Where émin is any lower bound on ¢ (which we assumed
is known).

Large-scale Robust
Optimization
Part Il

Reduction to a 1D problem



Numerical experiment: robust bandit problem e Cmizaton
Part Il
» We have applied the decision model to a bandit problem with
Bernoulli return rates uniformly sampled from the interval

[0.18,0.2).

» We compared different approaches (UCB and Thomson
sampling) to ours.

» We have used a simple uncorrelated Gaussian model.

» The simulations run for T = 10° rounds and the policies are only
updated every 1000 rounds.

» We measure performance in terms of cumulative regret.

Numerical Experiments



Results

7000, num of arms = 100
.
/
5000
uce
— Thompsan
Robust 0.999
~Robust 0.9
4000
H Robust 0.5
:
3000
2000
1000
. _——
a a2 44 a6 48 s 52 54 56 58 6
Log(T)
7000 num of arms = 200
6000
~— Thompson ,’4
5000 Robust 0.999 //
Robust 0.9
' - ~ Robust0.5
H
2000
2000
1000
°
a a2 aa a6 as s 52 s4a 56 ss 6

Log(T)

Mean regret for UCB, Thompson Sampling (‘Thompson’) and Robust policy
with confidence levels 0.999 (‘Robust 0.999’), 0.9 (‘Robust 0.9’) and 0.5
(‘Robust 0.5’). The mean of the regret is computed with 20 repetitions.
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