Joint Optimization of Production and Demand

Cyril Masquelier, Riadh Zorgati

EDF

June 22, 2015

Cyril Masquelier, Riadh Zorgati (EDF)

イロト イロト イヨト イヨト

Table of contents

- Context, Objectives, Approach
 - Context of the study
 - Approach
 - Deterministic model
 - Production
 - Demand
 - Model
- 3 First results with the current mix (2015)

A new context: more fatal energy (2030)

<ロト < 回 > < 回 > < 回 > < 回 >

Context of the study

Production:

- 59 nuclear plants
- 50 "classical" thermal power plants (coal, fuel, gas)
- 50 hydro valleys
- Wind power (about 3%) and photovoltaic (about 1%)

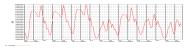
pictures from EDF documentation

イロト イヨト イヨト

Context of the study

Production:

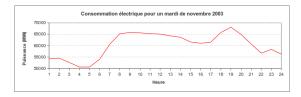
- 59 nuclear plants
- 50 "classical" thermal power plants (coal, fuel, gas)
- 50 hydro valleys
- Wind power (about 3%) and photovoltaic (about 1%)



pictures from EDF documentation

Demand:

- annual, weekly and daily cycles, coming from consumers, purchases / sales, network losses, own consumption of EDF.
- flexibility via shedding days and a peak and off-peak rates system



A B A B A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
B
A
A
A

Current Approach

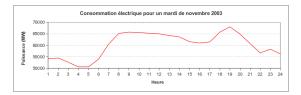
Demand is a set parameter of the problem.

Flexibility on the demand is used regardless to the production.

・ロト ・回ト ・ヨト

Current Approach

Demand is a set parameter of the problem.


Flexibility on the demand is used regardless to the production.

The resulting demand is given to the new problem:

- Objective: Minimize the global cost of production
- Constraint 1: Reach the balance between production and demand
- Constraints 2: Respect of
 - the operation of the different plants
 - the terms of transactions on the markets

Current Approach

Demand is a set parameter of the problem.

Flexibility on the demand is used regardless to the production.

The resulting demand is given to the new problem:

- Objective: Minimize the global cost of production
- Constraint 1: Reach the balance between production and demand
- Constraints 2: Respect of
 - the operation of the different plants
 - the terms of transactions on the markets

Cyril Masquelier, Riadh Zorgati (EDF) Joint Optimization of Production and Demand June 22, 2015

4 / 17

A new context for the energy management

smart grids, intermittent energy sources \rightarrow Global-local management

Legislator: regulatory constraints, rules

 \leftrightarrow

 \leftrightarrow

Producer:

Some commands on the demand are managed by the producer

\$

Clients:

Consumption, Reaction to the offers

 \uparrow

Competitors: Quality of the offers

Network managers:

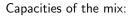
Some commands on the demand are managed by the network manager

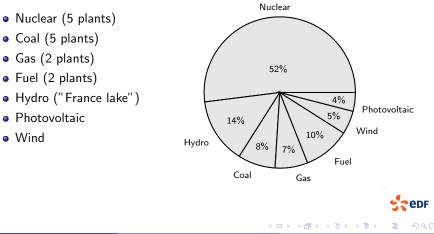
Local players: Some commands on the demand are managed by local players

イロト イヨト イヨト イヨト

Approach

• optimization of both production and demand via flexibilities: electric vehicles load, hot water and shedding




source: EDF website

• deterministic approach, over a week, with a time step of one hour

Production

Natural demand

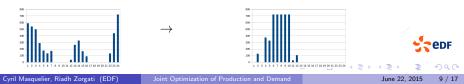
Deterministic demand given over a week:

イロト イヨト イヨト イヨ

Demand

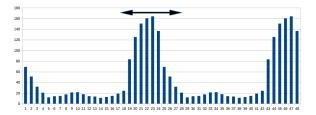
Flexibilities on hot water and electric vehicles

Flexibility on hot water (with x_t^{hw} the consumption of hot water at time step t): The "natural" consumption is known. We place the new demand respecting:


• the energy spent each day by the consumption of hot water (between 1:00 and 0:00 the next day)

$$\sum_{h=0}^{23} x_{24d+h}^{hw} = \sum_{h=0}^{23} natural_demand_{24d+h}^{hw}$$
 , $orall d = 0..6$

• the maximal power used in an hour


$$0 \le x_{24d+h}^{hw} \le \max_{h \in \{0,...,23\}} natural_demand_{24d+h}^{hw}$$
 , $orall d = 0..6$, $orall h = 0..23$

example:

Flexibilities on hot water and electric vehicles

Flexibility on electric vehicles: same principle as for hot water, but the consumption is only moved between 18:00 and 6:00 the next day.

▲ 同 ▶ ▲ 三

Shedding days

The consumption can be reduced some days, with a given profile in a region r. The manager has to choose each day for each region if a shedding is decided or not. Those reductions are penalized in the objective.

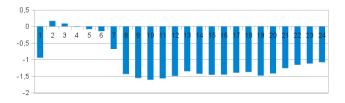


Figure: profile of the shedding

No constraint (only modification of the demand). Penalization (with x_d^{sh} a boolean, 1 if a shedding is chosen at day d in region r):

$$\sum_{d=0}^{6} x_{d}^{sh} \sum_{r=0}^{3} \sum_{h=0}^{23} use_value_{24d+h}^{cu}$$

Model

Model

 $x = x_R, x_B$: Production $y = y_R, y_B$: Demand

$$\min_{x,y} \qquad c_P^T(x_R, x_B) + c_D^T(y_R, y_B)$$

s.t.
$$\begin{cases} A(x_R, x_B) \geq d(y_R, y_B) + d_0 \ F_P(x_R, x_B) \leq f_P \ F_D(y_R, y_B) \leq f_D \ x_R, y_R \in \mathbb{R}^{N_R} \text{, } x_B, y_B \in \{0, 1\}^{N_B} \end{cases}$$

- c_P : proportional and staring production costs
- c_D : costs of the flexibilities over demand
- F_P : functionning of the plants
- F_D : functionning of the flexibilities over demand

Constraints:

- balance between production and demand
- Thermal plants:
 - min and max power
 - minimal time on
 - minimal time off
 - maximal gradient
- Hydro plants: conservation of the water volume
- flexibility over the demand

イロト イヨト イヨト イヨト

Repartition of the production (2015)

Flexibility used	Nuclear	Hydro	Coal	Fuel and gas	Wind and pho-
					tovoltaic
(capacity)	(52 %)	(14 %)	(8 %)	(17 %)	(9 %)
none	73.9 %	10.8 %	7.3 %	3.6 %	4.4 %
all together	74.4 %	10.7 %	7.6 %	2.7%	4.4 %

Figure: Repartition of the production with the current mix

Flexibility used	Global cost (index 100 without flexi- bility)	Propotional cost (idem)	Starting cost (idem)	Gain (in euro per movable MWh)
none	100	100	100	-
electric vehicles	98.90	98.78	105.38	23.06
hot water	97.11	97.16	93.89	9.81
shedding	99.99	99.99	100	
all together	96.37	96.41	93.89	

Figure: Management costs with the current mix

・ロト ・ 日 ・ ・ ヨ ト

A new context: more fatal energy (2030)

Flexibility used	Nuclear	Hydro	Coal	Fuel and gas	Wind and pho-
					tovoltaic
(capacity)	(23 %)	(13 %)	(10 %)	(7 %)	(46 %)
none	48.1 %	10.8 %	7.4 %	0.6 %	33.1 %
all together	50.0%	10.8%	5.6%	0.5%	33.1%

Figure: Repartition of the production with the forecast mix for 2030

Flexibility used	Global cost (index 100 without flexi- bility)	Propotional cost (id)	Starting cost	Gain (in euro per movable MWh)
none	100	100	100	-
electric vehicles	97.78	97.97	94.48	31.03
hot water	92.68	92.77	91.01	16.50
shedding	99.99	99.99	100	
all together	91.31	91.65	85.40	

Figure: Management costs with the forecast mix for 2030

・ロト ・回ト ・ヨト ・

Conclusion

- Global approach: Toward a global / local management
- First step: joint optimization production / demand.
- First results:
 - A gain up to 3.6% with a mix similar to the current one for the management costs.
 - $\bullet\,$ This gain reaches 8.7% with the forecast mix for 2030.
 - With a larger part of fatal energy, some instances are no more solvable without those flexibilities.

イロト イヨト イヨト イヨト

Perspectives

Second step: introduction of uncertainties on:

- weather (impact on demand, wind and photovoltaic production, hydro supply...),
- potential failures,
- shedding, electric vehicles, hot water: reaction of the clients,

Method?

- robust,
- stochastic,
- probabilistic,
- ...

<ロト <四ト < 回ト < 回 > < 回

Perspectives

Third step: global-local gestion:

- problem of balance between players?
- multi-level approach?
- Risk management?

・ロト ・回ト ・ヨト ・