

## **EFFICACITY** - Energy efficiency for a sustainable city





Optimization of a subway station microgrid energy and climate management

Tristan Rigaut<sup>1</sup>

#### <sup>1</sup>Pôle Gare, Lot 1 Efficacity, Institute for the Energy Transition

June 25, 2015



Tristan Rigaut (Efficacity)

# Outline

#### A subway station microgrid

- Subway stations energy and climate characteristics
- There is room for optimization
- A subway station Microgrid prototype

## Dynamic modelling of the station

- Supply/demand balance
- Building thermal dynamics
- Battery dynamics
- Economic criterion

### Optimization of the energy and climate management

- Dynamic optimization problem
- Methods for a dynamic optimization problem
- Taking uncertainty and state feedback into consideration

# Outline

#### A subway station microgrid

- Subway stations energy and climate characteristics
- There is room for optimization
- A subway station Microgrid prototype

#### Dynamic modelling of the station

- Supply/demand balance
- Building thermal dynamics
- Battery dynamics
- Economic criterion

Optimization of the energy and climate management

- Dynamic optimization problem
- Methods for a dynamic optimization problem
- Taking uncertainty and state feedback into consideration

## Subway stations energy consumption



Tristan Rigaut (Efficacity)

Optimization of a subway station

# Daily consumption and passengers traffic are correlated



Tristan Rigaut (Efficacity)

June 25, 2015 7

efficacity

## Subway stations produce electricity

• Electrical power produced by regenerative braking of the trains : 100 - 700 kW (20 seconds of braking)





## Subway stations produce electricity



Tristan Rigaut (Efficacity)

June 25, 2015 9 / 3

efficacit

# Supply/Demand balance over a day (MWh)



Tristan Rigaut (Efficacity)

Optimization of a subway station

June 25, 2015

• A battery can store the braking power excess





## A subway station is a thermal buffer

• Aeraulics & thermal inertia



June 25, 2015

efficaci

## Subway stations produce heat

Tristan Rigaut

(Efficacity)

- Waste heat produced by the station technical facilities and by mechanical brakings of the trains
- Geothermal heat / Canadian well (or earth pipe or provence well)



## There is room for optimization

## In the new electrical grid paradigm a subway station becomes an energy deposit and an energy deposit becomes an Efficacity opportunity



efficacity

# A subway station Microgrid prototype



Tristan Rigaut (Efficacity)

# Outline

#### A subway station microgrid

- Subway stations energy and climate characteristics
- There is room for optimization
- A subway station Microgrid prototype

## Dynamic modelling of the station

- Supply/demand balance
- Building thermal dynamics
- Battery dynamics
- Economic criterion

#### Optimization of the energy and climate management

- Dynamic optimization problem
- Methods for a dynamic optimization problem
- Taking uncertainty and state feedback into consideration

Over au = 24 hours we have to ensure :





We have to ensure the occupants thermal comfort :

Knowing the temperature dynamics :



# Battery Dynamics

Tristan Rigaut

We can control the battery knowing its dynamic :



Which are valid between bounds that ensure good ageing of the battery

$$S_{OC\,min} \leq S_{OC}(t) \leq S_{OC\,max}$$



## We have three control variables

$$u(t) = \begin{pmatrix} P_V(t) \\ P_H(t) \\ P_B(t) \end{pmatrix}$$



Tristan Rigaut (Efficacity)

June 25, 2015

efficacity

## We want trajectories

$$u(t) = \begin{pmatrix} P_V(t) \\ P_H(t) \\ P_B(t) \end{pmatrix}$$



Tristan Rigaut (Efficacity)

June 25, 2015

6

efficacity

Here is the criterion :



Tristan Rigaut (Efficacity)

June 25, 2015

efficac

# Outline

#### A subway station microgrid

- Subway stations energy and climate characteristics
- There is room for optimization
- A subway station Microgrid prototype

#### Dynamic modelling of the station

- Supply/demand balance
- Building thermal dynamics
- Battery dynamics
- Economic criterion

## Optimization of the energy and climate management

- Dynamic optimization problem
- Methods for a dynamic optimization problem
- Taking uncertainty and state feedback into consideration



# Dynamic optimization problem

$$\min_{u(.)} J(u(.)) = \int_0^\tau C(t) P_G(t) dt$$

s.t

$$\begin{aligned} P_G(t) + P_{Train}(t) &= P_L(t) + P_V(t) + P_H(t) + P_B(t) \\ C_v \frac{dT}{dt}(t) &= r_v P_V(t) (T_e(t) - T(t)) + r P_H(t) \\ \frac{dS_{OC}}{dt}(t) &= \frac{\rho_B}{V_0 Q_{max}} P_B(t) \\ T_{min} &\leq T(t) \leq T_{max} \\ S_{OC min} &\leq S_{OC}(t) \leq S_{OC max} \\ P_V(t), P_H(t) \geq 0 \\ T(0) &= T_0, S_{OC}(0) = S_{OC0} \end{aligned}$$

efficacity

# No battery vs. Battery controlled

Tristan Rigaut

We could save 32% of money everyday with a battery

## **Economic Cost**



# Outline

#### A subway station microgrid

- Subway stations energy and climate characteristics
- There is room for optimization
- A subway station Microgrid prototype

## Dynamic modelling of the station

- Supply/demand balance
- Building thermal dynamics
- Battery dynamics
- Economic criterion

## Optimization of the energy and climate management

- Dynamic optimization problem
- Methods for a dynamic optimization problem
- Taking uncertainty and state feedback into consideration



# Methods for a dynamic optimization problem

For a dynamic optimization problem there are two kinds of solutions :

- Open Loop : providing a control trajectory depending on time u(t)
- Closed Loop : providing a control policy depending on the state variables feedback u(x(t))



# Methods for a dynamic optimization problem

For a deterministic dynamic optimization problem there exists methods :

- Pontryagin Maximum Principle (open loop)
- Dynamic Programming (closed loop)





## And there are several uncertainties

 $T_e(t)$ ,  $P_L(t)$ ,  $P_{Train}(t)$ , C(t)





Tristan Rigaut (Efficacity)

June 25, 2015

## And there are several uncertainties

$$\min_{u(.)} J(u) = \int_0^\tau C(t) P_G(t) dt$$

s.t

$$\begin{aligned} P_G(t) + P_{Train}(t) &= P_L(t) + P_V(t) + P_H(t) + P_B(t) \\ C_v \frac{dT}{dt}(t) &= r_v P_V(t) (T_e(t) - T(t)) + r P_H(t) \\ \frac{dS_{OC}}{dt}(t) &= \frac{\rho_B}{V_0 Q_{max}} P_B(t) \\ T_{min} &\leq T(t) \leq T_{max} \\ S_{OC min} &\leq S_{OC}(t) \leq S_{OC max} \\ P_V(t), P_H(t) \geq 0 \\ T(0) &= T_0, S_{OC}(0) = S_{OC0} \end{aligned}$$

efficacity

# Outline

#### A subway station microgrid

- Subway stations energy and climate characteristics
- There is room for optimization
- A subway station Microgrid prototype

## Dynamic modelling of the station

- Supply/demand balance
- Building thermal dynamics
- Battery dynamics
- Economic criterion

## Optimization of the energy and climate management

- Dynamic optimization problem
- Methods for a dynamic optimization problem
- Taking uncertainty and state feedback into consideration



# Model Predictive Control

MPC rolling horizon strategy

Frequent monitoring and online reoptimization to prevent uncertainty and provide open loop feedback



(Dai et al. 2012)

Tristan Rigaut (Efficacity)

Optimization of a subway station

efficac

- Advantages : feedback by reoptimization, computationally feasible, handle non linearities and state constraints
- Drawbacks : suboptimal, open loop, uncertainties



- There exists substantial potential energy savings
- Work in progress to apply MPC solutions to simulations and real data
- Work in progress to compare MPC policies to other closed loop policies
- Work in progress to compute these strategies on more accurate thermal, electrical and aeraulic models
- Electrical sizing of the battery, electrical simulation and economic model



## Perspectives







Tristan Rigaut (Efficacity)

June 25, 201