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New technologies allow us to use weather-dependent energy generation

v

Until 2035 it is estimated that 31% of generation will be from renewables (50%
hydro)

v

In addition, we are aiming at efficiency and cost-effectiveness of fossil-fueled
generation (CHP plants, heat and power)

» The current efficiency level is around 33%

Pagnoncelli et al. Microgrid Energy Management 3/30
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is followed by a smaller demand during the rest of the night. It is patent
that such a method of production cannot be economical, for the plant must
be idle, or working to but a fraction of its capacity, most of the time.
Science, (1889)

Storage was suggested as a solution, but the most common method to cope with peak
demand was the introduction of peak generation plants
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Challenges

» Intermittent and weather-dependent generation poses a challenge to the system’s
reliability

» The importance of energy storage systems such as batteries and water tanks

» The management and control of energy grids became more complex!
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More challenges

» Renewables are intrinsically random = need for stochastic models!

» Microgrid architecture

> Problems are usually multistage, and complexity grows exponentially with the
number of stages.
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Some unique issues

» The microgrid operation combines unit commitment with economic dispatch
(hard problems!)

> Centralization versus Decentralization (the objectives are not obvious).

> Island mode = minimize its own generation cost.

> Grid connected mode = Can have contradicting goals with the main grid.
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The model

» The microgrid represents energy consumption in a small town

> We assume there is a central grid (the network), external to the microgrid, from
which energy can be bought and sold

> We want to solve a unit commitment problem with dispatch decisions

Pagnoncelli et al. Microgrid Energy Management 9/30
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Elements of our model

>

A battery storage

> Water pump storage

v

A photovoltaic panel (PV)

> A consumer

v

An electrical network
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PUNP STORAGE PLANT
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[ Volve Energy
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Storage

» The water pump storage is a massive storage element, but has slow response
time

» Batteries are for storing smaller quantities of energy, with instant response time

> In order to model those differences in a meaningful way, we need finer time
frames (more later)
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Storage technologies

ENERGY STORAGE TECHNOLOGIES

Discharge Time (H) =)

ENERGY STORAGE TECHNOLOGIES

ENERGY STORAGE | CLEAN FUEL
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Batteries

into the battery

By =B +oap (FPV—Baztery,t + FNerwork—Battery,t)

from the battery

- (F Battery—Demand,,t + F, Battery—Network,t);

with ap < 1.

Fpv_Battery,t + FNetwork—Barery,r < max charge power x AT

FBanery—Demand,t + FBanery—Network,t < max diSChal‘ge power X AT
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with s < 1, and where S converts electrical energy into water volume.

Fpy_step,i + FNenork—stEP,; < max pumping power x AT
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Water pump storage

into the step

Sit1 = St + asB (Fpv—srep, + Fenvork—sTEP,1)
from the step

— B (Fstep—Dpemand,t + FSTEP—Nenwork,t)

with s < 1, and where S converts electrical energy into water volume.

Fpv_step,s + Fiewwork—step,; < max pumping power x AT
Fs1ep—pemand,t + FstEP—Network,y < max turbine power x AT

In addition,

IS,
<l'e
or | —
_Stht + 2S; - S1+At
(At)2 S Fpumping
—Si—ar+ 2St - St+At
- < F urbine
(Ar)? =
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The PV

> We assume energy generated by the PV is random

> We use 4 years of data, and use clusters and k-means to construct the scenarios
and their probabilities

» If the amount generated is higher than expected demand, the microgrid can sell
the surplus to the network

» If it is smaller energy must be bought from the network

ProdPV = Fpy_step + Fpv—Bar + FPv—Demand + Fpv—Network
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Discretization

> We face the usual granularity trade-off:

» Too fine-grained and we cannot solve the problem, too coarse-grained and the
model becomes meaningless.

> We propose a compromise solution: decision are taken every 15 minutes in the
first day, and uncertainty is revealed every hour.

> In the upcoming days the problem is essentially a two-stage stochastic
programming problem.

Pagnoncelli et al. Microgrid Energy Management 17730
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growing
with time
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Following days

NIGHT DAY

1 scenario 3 scenarios
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The whole horizon

Day 1 Following Days

VA A A A A
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Consumer

» It is not deterministic, but...

» It exhibits less variability than the PV, and it is often defined by contracts (e,g,
mining companies, shopping centers, etc)

» We assume it is deterministic in our model

Demand = Fpy_pemand + BF Batiery—Demand + 0tsFSTEP—Demand + FNetwork—Demand

withag < land as <1
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Demand patterns
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Electrical network

Market Price (Euros/kWh)

0.2 + Sell Prices
+ Buy Prices
0,15 —_— —
0.1
0,05
0

0 50 100 150 200
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Objective function

T
IIII}IIEI: g {(FNetwork—Demand,t + FNetwork—Battery,t + FNerwork—STEP,t) X buypricet

=0
— (Fpv—Neworkt + 0B F Batiery—Networkt + OtsFSTEP —Network,1) X sellprice;}]

+Value of energy at time 7.
> We have a multistage stochastic program with a large number of scenarios
» Trying to solve this problem directly (extensive form) is impossible!
» Even decomposition schemes such as the nested decomposition are intractable
24730
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SDDP with cut sharing
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Destination of PV production

PV Production
160000000
——PVProd ——PV-Network ——PV-Demand ——PV-B ——PV-S
120000000
80000000
40000000
0
0 50 100 150

Pagnoncelli et al. Microgrid Energyr)aaseenionts 27/30



Results
[eJeJe] )

Units and Demand satisfaction

Demand Response
10000000

7500000

5000000

2500000

0 30 60 90

Pagnoncelli et al. Microgrid Energm%s 28/30



Introduction
The model
Results

Conclusions and future work



Conclusions and future work
oe

Present and future research

» Implement policy evaluation via simulation (important in practice)

Pagnoncelli et al. Microgrid Energy Management 30/30



Conclusions and future work
oe

Present and future research

» Implement policy evaluation via simulation (important in practice)

» Incorporate risk into the objective function, and study the effect in the optimal
policy

Pagnoncelli et al. Microgrid Energy Management 30/30



Conclusions and future work
oe

Present and future research

» Implement policy evaluation via simulation (important in practice)

» Incorporate risk into the objective function, and study the effect in the optimal
policy

» Combine data with forecast to make decisions.

Pagnoncelli et al. Microgrid Energy Management 30/30



Conclusions and future work
oe

Present and future research

v

Implement policy evaluation via simulation (important in practice)

» Incorporate risk into the objective function, and study the effect in the optimal
policy

v

Combine data with forecast to make decisions.

v

Improve the model with other elements (e.g. wind generation).
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