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TV regularization on a weighted graph

Let G = (V,E,w) be a weighted graph with
n := |V | nodes
m := |E|/2 undirected edges modeled by oriented edges in both
direction in E.
wij = wji, with wij = 0 for (i, j) /∈ E.

w(A,B) :=
∑

(i,j)∈A×B

wij

For x ∈ Rn

TV(x) :=
1

2

∑
(i,j)∈E

wij |xi − xj |

With f convex differentiable consider

min
x∈Rn

f(x) + λTV(x)
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Properties of the Total Variation on a graph

The Total Variation is the Lovász extension of

F : B 7→ w(B,Bc)

and F is
a submodular function
measure of boundary size/perimeter of B

Moreover if s ∈ Rn and s(B) :=
∑

i∈B si then

min
B

s(B) + λw(B,Bc)

is a max-flow/min cut problem (Picard and Ratliff, 1975)
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Optimization with TV

Active contours (Aubert et al., 2003)
Level-set approach :
Osher and Sethian (1988); Tsai and Osher (2005)
Proximal operator splitting :
Combettes and Pesquet (2008); Chambolle and Pock (2011);
Couprie et al. (2013); Raguet et al. (2013); Lorenz and Pock
(2015); Raguet and Landrieu (2015)
ROF (TV prox) as a parametric max-flow problem :
Chambolle and Darbon (2009); Goldfarb and Yin (2009)
Connections with submodularity :
Bach (2011); Jegelka et al. (2013); Kumar and Bach (2015)
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Idea : An optimization problem over partitions of V
Write

x =

k∑
i=1

ci1Ai

with
Π = {A1, · · · , Ak}

a partition of V into k connected components.

Let Q(x) = f(x) + λTV(x) and define

xΠ = arg min
z∈span(Π)

Q(z).

Then TV minimization can be cast as the problem of finding an
optimal partition

Π? = arg min
Π∈C

Q(xΠ).
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Working set algorithms

Consists in introducing variables as needed
Know as Column generation in the linear programming literature
Particularly relevant for problems regularized by sparsity
inducing regularizers.

→ Way to exploit sparsity computationally
Used in the sparsity literature :

Glmnet (Friedman et al., 2010)
Group Lasso (Obozinski et al., 2006; Roth and Fischer, 2008)
See also (Bach et al., 2012)

Related to Frank-Wolfe and simplicial methods (Jaggi, 2013;
Bach, 2013; Harchaoui et al., 2015)
Exact/approximate regularization paths algorithm

Using warm starts
Exact homotopy algorithms (e.g. LARS algorithm of Efron et al.,
2004)
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Decomposing the objective

Appropriate notion of support : set of active edges

S(x) := {(i, j) ∈ E | xi 6= xj}.

{
QS(x) = f(x) + 1

2λ
∑

(i,j)∈S wij |xi − xj |,
TV|Sc(x) = 1

2λ
∑

(i,j)∈Sc wij |xi − xj |.

QS is differentiable
TV|Sc is the total variation on the graph without active edges.
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TV directional derivative along cuts

Consider descent directions of the form :

uB = γB1B − γBc1Bc

with ‖uB‖2 =1.

Proposition
For x ∈ Rn, if we set S = S(x) then the directional derivative in the
direction of 1B is

Q′(x,1B)=〈∇QS(x),1B〉+λwSc(B,Bc).

Moreover if 〈∇f(x),1B〉 = 0 then

Q′(x, uB) = (γB + γBc)Q′(x,1B).
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Steepest binary cut

Define a steepest binary cut as any (BΠ, B
c
Π) such that

BΠ ∈ arg min
B⊂V

〈∇QS(xΠ),1B〉+λwSc(B,Bc). (1)

Note that since
Q′(x,1∅) = 0,

we have
min
B⊂V

Q′(x,1B) ≤ 0.

If ∅ is a solution to (1), we set BΠ = ∅.
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Max flow formulation (Picard and Ratliff, 1975)

s

t

i

jλwij

∂QS(x)
∂xi

−∂QS(x)
∂xi

nodes in ∇−
nodes in ∇+

edge in Sc

where
∇+ = {i ∈ V | ∇iQS(x) > 0} and
∇− = V \∇+.

Proposition
(C, Vflow\C) is a min cut in Gflow

if and only if
B and V \B are minimizers of

B 7→ Q′(x,1B),

with B := C\{s}.
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Characterisation of optimality via cuts

Proposition

If 〈∇f(x), 1V 〉 = 0 the we have that,

x = arg minz∈Rn Q(z)

if and only if

minB⊂V Q
′(x,1B) = 0.
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Partition update and new subspace

Maintaining x =

k∑
i=1

ci1Ai with Π := {A1, . . . , Ak}

After adding 1B, we have

x ∈ span(1A1 , . . . ,1Ak
,1B)

Cut Pursuit 14/40



Partition update

A1 A2 B

B

A1 A2

A3 A4

A5

Π Binary cut Πnew

The largest subspace X such that for all x ∈ X

S(x) = Snew with Snew := S ∪ (B ×Bc).

is span
({

1C | C ∈ Πnew}
)

with

Πnew := {C | ∃A ∈ Π s.t. C is a connected comp. of A∩B or A∩Bc
}
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Cut-Pursuit

Algorithm 1: Cut Pursuit
Initialize Π← {V }
xΠ ∈ arg minz=c1V ,c∈R Q(z)

while minB⊂V Q
′(xΠ,1B) < 0 do

Pick B ∈ arg minB′⊂V Q
′(xΠ,1B′)

Π← {B ∩A}A∈Π ∪ {Bc ∩A}A∈Π

Π← connected components of elements of Π

Pick xΠ ∈ arg minz∈span(Π)Q(z)

return (Π, xΠ)
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Illustration of the algorithm on Lena
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Reduced graph

Original graph G
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n4

n5

1

2
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node of V
edge of E
node of V
edge of E

Reduced graph G
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{n1} {n2,n3} {n3,n4}

Cut Pursuit 18/40



Reduced graph

G = (V, E) with{
V = Π

E = {(A,B) ∈ V2 | ∃(i, j) ∈ (A×B) ∩ E}

Proposition

For x =
∑

A∈Π cA1A we have TVG(x)=TVG(c) with

TVG(c) :=
1

2

∑
(A,B)∈E

w(A,B) |cA − cB|.
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The case of deblurring

With H the blur operator,

min
x∈Rn

1

2
‖Hx− y‖2 + λTVG(x)

With K = [1A1 , . . . ,1Ak
] and x = Kc we then solve

min
c∈Rk

1

2
‖HKc− y‖2 + λTVG(c)

And
∇c

(
1
2 ‖HKc− y‖

2 ) = KᵀHᵀHKc−KᵀHy.

KᵀHᵀHK and KᵀHy can be computed in O(k2 n log n) time using
FFTs.
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Complexity

(a) Cost of solving the min cut/max flow problem to obtain a
steep binary cut. The algorithm of Boykov et al. (2001) has
worst case exponential complexity but scales in practice linearly
with the graph.

(b) Cost of building the reduced graph. Requires
Computing connected components
All weights w(A,B)

Done in O(m+ n) iterations.
(c) Cost of solving a reduced problem with k nodes. For

deblurring :
Cost of computation of the reduced Hessian : O(k2n log n)
Cost of computation of the reduced gradient : O(k2)
GFB reached a ε primal gap in O(1/ε) iterations.

(d) Number of global iterations needed. In the worse case n
iterations. In practice the partition grows exponentially with the
number of cuts.
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Experiments

Comparing

PGFB Preconditioned Generalized Forward-Backward of Raguet
and Landrieu (2015). PGFB improves over GFB (Raguet
et al., 2013) which was shown to outperform Chambolle
and Pock (2011) and Lorenz and Pock (2015) on
deblurring problems.

FB+ Forward backward with TV proximal operator computed
as the solution of a parametric max-flow using the code of
Chambolle and Darbon (2009).

CP Cut Pursuit
CPFW Cut Pursuit with steepest cut replaced by the FW

direction of Harchaoui et al. (2015). Equivalent to fully
corrective Frank-Wolfe in the generalization of Harchaoui
et al. (2015).
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Deblurring experiments

Original PSNR : 12.1 PSNR : 20.1

0 5 10 15 20 25 30 35

10−5

10−4

10−3

10−2

10−1

time

Q
t/
Q
∞
−

1 FB+
PGFB
CP
CPFW

Cut Pursuit 23/40



Deblurring experiments

Original PSNR : 15.9 PSNR : 27.2
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Deblurring experiments

Original PSNR : 23.3 PSNR : 24.5
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Time breakdown
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Approximate regularization paths
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Generalized minimal partition problem

Cut Pursuit 28/40



Generalized minimal partition problem

min
x∈Rn

f(x) + λΓ(x),

with {
f(x) =

∑
i∈V fi(xi)

Γ(x) =
∑

(i,j)∈S(x)wij

with fi : R 7→ R continuously differentiable and convex
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Greedy algorithm to solve the regularized `0 problem

OMP, Orthogonal least squares (OLS), FoBa, and CoSamp
implicitely tackle

min
x
f(x) s.t. ‖x‖0 ≤ k

For the regularized problem

min
x
f(x) + λ ‖x‖0

Single best replacement (SBR) by Soussen et al. (2011)
Single Maximum Likelihood Replacement (SMLR) of Kormylo
and Mendel (1982)

Adds or removes the variable that decrease the most the objective
after solving the OLS problem.
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Forward step : greedy split by binary cut
Consider x of the form x = h1B + h′1Bc . Since

Γ(h1B + h′1Bc) = Γ(1B) = w(B,Bc),

we need to solve a problem of the form

min
B⊂V

min
h,h′∈R

∑
i∈B

fi(h) +
∑
i∈Bc

fi(h
′) + λw(B,Bc)

Minimization w.r.t. B is obtained as the solution of a max-flow
problem in the graph (V ∪ {s, t}, Eflow) with

Eflow =


(s, i),∀i ∈ ∇+, with csi = fi(h)− fi(h′),
(i, t), ∀i ∈ ∇−, with cit = fi(h

′)− fi(h),

(i, j),∀(i, j) ∈ E, with cij = λwij ,

where ∇+ = {i ∈ V | fi(h) > fi(h
′)} and ∇− = V \∇+.
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Backward step
Let Π−(A,B) := Π \ {A,B} ∪ {A ∪B} and

δ−(A,B) := f(xΠ)− f(xΠ−(A,B)) + λw(A,B).

Simple merge
1 Take the pair (A,B) with maximal δ−(A,B)

2 If δ−(A,B) ≥ 0 then set Πnew = Π−(A,B).

Merge-resplit
1

C ← arg min
C⊂A∪B

∑
i∈C

fi(xA) +
∑

i∈A∪B\C

fi(xB) + λw(C,A ∪B \ C)

2 Replace A and B in Π by the the connected components of C
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Noisy (PSNR : 24.8) `0-CPm (PSNR : 38.1)
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Noisy (PSNR : 18.8) `0-CPm (PSNR = 34.8)
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Population density `0-CPm
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Conclusions
Exploiting the relation between two forms of sparsity

Short total perimeter/boundary size
Coarse partition : small number of level sets

Improves over previous approaches by
Solving a reduced problem on a reduced graph
Choose cuts optimally based on the directional derivative
Removing coupling between atoms

Allows warm-starts and approximate regularization path
computations.

Future work
Extension to other submodular/combinatorial functions
Extension to `2-TV and multivariate TV?
Guarantees on the number of iterations under SNR + graph
structure assumptions ?
Guarantees like α-expansions in the greedy case ?
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